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Background: Recent advances in machine learning are transforming medical 
image analysis, particularly in cancer detection and classification. Techniques 
such as deep learning, especially convolutional neural networks (CNNs) and 
vision transformers (ViTs), are now enabling the precise analysis of complex 
histopathological images, automating detection, and enhancing classification 
accuracy across various cancer types. This study focuses on osteosarcoma 
(OS), the most common bone cancer in children and adolescents, which affects 
the long bones of the arms and legs. Early and accurate detection of OS is 
essential for improving patient outcomes and reducing mortality. However, the 
increasing prevalence of cancer and the demand for personalized treatments 
create challenges in achieving precise diagnoses and customized therapies.

Methods: We propose a novel hybrid model that combines convolutional neural 
networks (CNN) and vision transformers (ViT) to improve diagnostic accuracy 
for OS using hematoxylin and eosin (H&E) stained histopathological images. The 
CNN model extracts local features, while the ViT captures global patterns from 
histopathological images. These features are combined and classified using a 
Multi-Layer Perceptron (MLP) into four categories: non-tumor (NT), non-viable 
tumor (NVT), viable tumor (VT), and non-viable ratio (NVR).

Results: Using the Cancer Imaging Archive (TCIA) dataset, the model achieved 
an accuracy of 99.08%, precision of 99.10%, recall of 99.28%, and an F1-score 
of 99.23%. This is the first successful four-class classification using this dataset, 
setting a new benchmark in OS research and offering promising potential for 
future diagnostic advancements.
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1 Introduction

Osteosarcoma is recognized as an aggressive form of bone cancer (1) that commonly 
affects adolescents and children (2). To determine the optimal treatment and assess the 
percentage of tumor necrosis, it is crucial to examine various histological regions (3). However, 
traditional diagnostic methods, which rely heavily on manual examination of histopathological 
slides, are time-consuming, prone to observer bias, and often limited in diagnostic precision.
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Mucoskeletal diagnostics, especially tissue characterization and 
intervention planning, have benefited from non-invasive imaging 
advances. Real-time, non-invasive ultrasound imaging of soft tissue 
integrity and bone structure is commonly utilized to detect 
musculoskeletal degeneration and frailty (4). Magnetic resonance 
imaging (MRI) based prognostic analysis is important for patient 
categorization and therapy response evaluation, especially in 
musculoskeletal disorders (5). MRI is widely utilized in bone tumor 
treatment planning, therefore combining MRI-based prognostic 
indicators into AI-driven histopathology might improve tumor 
progression and therapeutic results. Studies on ultrasound-guided 
percutaneous electrolysis have stressed the need of real-time imaging 
for procedure accuracy, supporting AI-enhanced histopathology’s 
ability to combine auxiliary imaging approaches for diagnostic 
precision (6). These findings imply that ultrasonography and MRI 
might supplement AI-powered histopathology models to better assess 
osteosarcoma and other musculoskeletal ailments (7).

Given the increasing prevalence of cancer and the demand for 
personalized treatments, there is an urgent need for automated, 
efficient, and accurate diagnostic tools (8). Pathology informatics, a 
rapidly expanding field within medical informatics, aims to extract 
valuable insights from medical pathology data. In recent years, digital 
pathology has experienced significant growth, with histopathological 
image analysis playing a vital role in the diagnosis and classification of 
OS (9). Machine learning (ML) techniques, particularly deep learning 
(DL), have become increasingly prominent in histology image 
classification and segmentation (10). ML methods, including neural 
networks, are proving to be  highly effective in classifying and 
analyzing images of various cancers (11). Several studies have focused 
on extracting a broad set of features, not all of which are necessarily 
relevant. For instance, Yu et al. (12) extracted over 9,000 features from 
images, covering aspects such as color, texture, object identification, 
granularity, and density. Irshad et al. (13) explored various image 
analysis techniques, including thresholding based on region growth, 
k-means clustering, and morphological features such as area and 
shape structures. Arunachalam et al. (14) introduced a method that 
utilized multi-level thresholding and shape segmentation to identify 
viable tumors, necrotic regions, and non-tumor areas in OS histology 
slides. Similarly, Malon et al. (15) trained a neural network to classify 
mitotic and non-mitotic cells based on morphological features like 
color, texture, and shape. However, many of these methods primarily 
emphasize nuclei segmentation rather than direct classification of 
tumor or non-tumor regions.

The advent of DL, particularly convolutional neural networks 
(CNNs), has significantly advanced computer vision and pattern 
recognition in histopathology (16). CNNs have shown great promise 
in extracting key local features from images, including edges and 
textures. Studies by Litjens (17) and Spanhol et al. (18) demonstrated 
the effectiveness of CNNs in breast image classification. CNNs 
typically extract features through convolutional layers and classify 
these features through fully connected layers. For instance, Su et al. 
(19) used a fast-scanning CNN for breast cancer classification, while 
Spanhol et al. (18) extended the existing AlexNet architecture for 
various breast cancer segmentation tasks. Despite the success of 
CNNs, their reliance on local features limits their ability to capture 
global patterns in complex images such as histopathology slides of OS.

DL techniques have also been applied to OS classification using 
histological images in a few studies. Asmaria et al. (20) developed a 

CNN model to classify cell viability in H&E-stained OS datasets by 
employed data augmentation techniques to improve model 
performance. Sharma et al. (21) investigated various edge detection 
methods and evaluated the effectiveness of different feature sets, 
including Histogram of Oriented Gradients (HOG), using random 
forest and support vector machine (SVM) classifiers. Barzekar et al. 
(22) developed a new CNN structure (C-Net) specifically designed for 
classifying OS histological images. Hardie et al. (23) applied CNN 
models to detect OS, achieving an accuracy of 90.36%. This research 
suggested exploring more advanced DL architectures, such as 
Xception, to enhance diagnostic accuracy.

However, the aforementioned studies also showed some 
limitations. For example, in Asmaria et al. (20), the classification of 
osteosarcoma histological images involved a segmentation step, where 
regions of interest were isolated before the deep learning model could 
be  applied. This segmentation step adds complexity, increasing 
computational time and slowing down the overall process. 
Additionally, it risks losing critical global context by focusing only on 
specific regions, potentially leading to incomplete classifications, 
particularly when tumor heterogeneity plays a role. Moreover, 
segmentation often requires manual intervention, which introduces 
the possibility of human error and bias, especially when tumor 
boundaries are ambiguous.

Similarly, Sharma et al. (21) relied heavily on edge detection and 
segmentation techniques that may overlook subtler image features 
necessary for accurate classification. While effective for extracting 
well-defined structures, these methods may miss less obvious 
characteristics within the tumor tissue, reducing the model’s ability to 
fully capture the complexity of the histological images.

Barzekar et al. (22) and Hardie et al. (23) also faced challenges 
with segmentation-based approaches. Although they achieved 
reasonable accuracy, their reliance on manually segmented data could 
lead to inconsistent results and increased variability due to human 
interpretation. Furthermore, segmentation can miss critical global 
features that contribute to tumor classification, especially in 
heterogeneous tumors, where subtle patterns or transitions across 
tissue regions are essential for an accurate diagnosis. Recent studies 
have also compared various DL models and hybrid approaches for 
cancer diagnosis. Vezakis et al. (24) compared various deep learning 
models for osteosarcoma diagnosis from histopathological images, 
finding that smaller models like MobileNetV2 outperform larger ones 
due to better generalization on limited data. This finds the importance 
of model selection to improve diagnostic accuracy and efficiency in 
medical imaging. Astaraki et al. (25) compared radiomics and DL 
approaches for predicting malignancy in lung nodules, concluding 
that hybrid models combining traditional radiomics and DL methods 
yielded the best diagnostic results. Additionally, Wang et  al. (26) 
developed an hybrid AI-based tool, OS Histological Imaging Classifier 
(OSHIC), which uses digital pathology to predict OS recurrence and 
survival based on nuclear morphological features. To further improve 
medical image segmentation while preserving spatial information, 
Erickson et al. (27) introduced a novel DL architecture called INet, 
which CNNs with attention mechanisms, forming a hybrid model that 
integrates feature extraction and selective focus on important image 
regions. This hybrid approach enhanced the model’s ability to 
accurately classify medical images by blending the strengths of both 
CNNs and attention-based networks, making it particularly effective 
for complex medical datasets. The hybrid models have the advantage 
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of leveraging CNNs’ ability to capture fine-grained local features and 
attention mechanisms’ capacity to model long-range dependencies 
and global patterns within images. This allows for a more 
comprehensive understanding of the image, making hybrid models 
especially suited for tasks requiring both detailed and broad image 
analysis, which is why we applied this approach in our work.

Although convolutional neural networks do an impressive role of 
semantic segmentation of pathological slides, they still have trouble 
capturing shape and structural details and aren’t very efficient (28). 
The Vision Transformer (ViT) (29) created a multi-head self-attention 
mechanism as its main method to get around the problems with 
convolutional networks. It is a powerful tool for medical image 
analysis because it can remember structural details and use multi-
head self-attention (30). It is better at classifying cancers with the ViT 
model because it has better feature extraction, global spatial awareness, 
and accuracy compared to other CNN-based models. Because it can 
remember structural information and use multi-head self-attention 
(31), it is a powerful tool for medical image analysis (32). It is possible 
that transformer architectures will be better than the old models at 
finding cancer on different histopathological imaging tasks (33).

This paper introduces a new hybrid DL method for classifying 
tumor types in OS (non-tumor (NT), non-viable tumor (NVT), viable 
tumor (VT), and non-viable ratio (NVR)) using H&E-stained 
histopathological images of OS sourced from the Cancer Imaging 
Archive (TCIA). The proposed hybrid approach combines CNN, 
Vision Transformer (ViT), and multi-layer perception (MLP) models 
applied directly to histological images without a segmentation step, 
capturing both local and global image features. It is our hypothesis 
that the hybrid CNN-ViT model that we  have proposed will 
outperform the standalone CNN and ViT models in the classification 
of osteosarcoma. Our method is designed to improve the accuracy and 
robustness of classification in the differentiation of various tumor 
types in osteosarcoma histopathological images by integrating ViT’s 
capacity to capture long-range dependencies with CNN’s capacity to 
extract fine-grained local features.

2 Materials and methods

In this study, different DL techniques including ResNet, ViT, 
CNN, and hybrid CNN-ViT architecture are used for classifying OS 
histopathological images. These models utilize both local and global 
feature extraction techniques to accurately classify OS tissues, and the 
hybrid model combines the strengths of CNNs for capturing local 

patterns and ViTs for modeling global context. Through this approach, 
we  aim to establish an efficient and accurate system for 
histopathological image classification in OS that enhances diagnostic 
capabilities in cancer research. We  have divided the dataset into 
training, validation, and test sets for all the models. The validation set 
was used for hyperparameter tuning and model selection, while the 
test set was reserved for final performance evaluation, ensuring an 
unbiased estimate of real-world model performance.

For validation, we employed a train-validation-test split approach 
instead of k-fold cross-validation, as training deep models like CNNs 
and ViTs on large datasets is computationally intensive. Our dataset 
was split into 60% training, 15% validation, and 25% testing, ensuring 
that the model was evaluated on unseen data before final testing. To 
address class imbalance, we applied class weighting to ensure that 
minority classes received appropriate attention during training. 
We  have conducted all the research methods in a Google Colab 
environment using a Tesla T4 GPU and an Intel (R) Core (TM) 
i7-4790K CPU running at 4.00 GHz with 16 GB of RAM.

2.1 The dataset description

In this study, we have used an open-source osteosarcoma histology 
image dataset from the Cancer Imaging Archive (TCIA) 
https://www.cancerimagingarchive.net/collection/osteosarcoma-tumor- 
assessment/, compiled by clinical scientists at the University of Texas 
Southwestern Medical Center at Children’s Medical Center in Dallas 
from 1995 to 2015. For research purposes, the dataset, which is 
publicly available on the TCIA website, consists of 1,144 
histopathological images in JPG format. We categorize the images into 
four classes: (1) non-tumor (NT), (2) non-viable tumor (NVT), (3) 
viable tumor (VT), and (4) non-viable ratio (NVR). The NT category 
is the largest, with 536 images showing normal bone tissue, blood 
vessels, and cartilage. The categories of NVT, VT, and NVR are 
smaller, with 263, 292, and 53 images, respectively. Figure 1 presents 
sample images from each of the four categories.

The definitions of all these categories are explained below:
Non-Tumor: Non-Tumor (NT) refers to tissue that remains 

unaffected by cancer. This could be surrounding healthy tissues such 
as muscles, bones, or organs near the tumor site, but these are not part 
of the cancerous mass.

Non-Viable Tumor: The term non-viable tumor (NVT) tissue 
refers to dead or necrotic tumor cells. This tissue is no longer living or 
functional, often due to previous treatment, such as chemotherapy, 

FIGURE 1

Four samples from the dataset: (1) NT, (2) NVT, (3) NVR, and (4) VT.
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radiation, or spontaneous cell death. Non-viable tumor tissue does not 
have the capability to grow or spread.

Viable Tumor: Viable tumor (VT) tissue consists of living, active 
cancer cells that are capable of growth and division. This tissue poses 
a significant risk due to its potential to proliferate and metastasize to 
other parts of the body.

Non-Viable Ratio: The Non-viable ratio (NVR) describes the 
proportion of living tumor cells to dead tumor cells in a specific area. 
A lower viable-to-non-viable ratio indicates that treatment has 
successfully killed more of the tumor, whereas a higher ratio indicates 
that a significant portion of the tumor remains active and 
potentially dangerous.

2.2 Image pre-processing

The TCIA images (Section 2.1), were resized to 128 × 128 for 
model processing. The dataset is imbalanced, with the NT class having 
the most samples (536 images) and the NVR class having the fewest 
(53 images). To address this imbalance, we  have applied class 
weighting during training to ensure that the model pays adequate 
attention to the minority classes. Moreover, we have normalized them 
using the mean and standard deviation values. Additionally, to 
enhance the generalizability of the model, data augmentation 
techniques were implemented, such as random rotation (±15°), 
horizontal and vertical flipping, and minor brightness and contrast 
adjustments. We employed data augmentation for the minority classes 
(NVT and NVR) in addition to class weighting during training to 
enhance representation and reduce bias. Additionally, a weighted loss 
function was implemented to guarantee that the model adequately 
prioritized minority classes. To preserve the integrity of the dataset, 
we implemented a systematic exclusion of images that exhibited poor 
quality, excessive artifacts, or significant blurring. Lastly, domain 
experts removed images that contained incomplete tissue sections or 
staining artifacts that could have misled the model, following a 
quality check.

2.3 ResNet

ResNet50 is a 50-layer DL model that uses residual connections 
to train deep networks (34). These residual connections solve the 
problem of vanishing gradients, which commonly affect deep 
networks by allowing information to skip layers during the forward 
and backward pass. This allows deeper networks like ResNet50 to 
learn effectively, even with many layers, without degrading the model’s 
performance. ResNet50 divides its architecture into several stages, 
each containing a series of convolutional layers, batch normalization, 
activation functions (typically ReLU), and residual connections. The 
network extracts hierarchical features from images, starting with 
low-level features like edges and textures and progressing to more 
complex features representing the structure and patterns within the 
images. By leveraging the pre-trained ImageNet weights and fine-
tuning the final fully connected layer, we can adapt this deep network 
to our specific classification task. The combination of careful 
hyperparameter tuning, data augmentation, and monitoring through 
Tensor Board resulted in a model that achieved high accuracy and 
generalization. This approach underscores the potency of transfer 

learning in medical image analysis, enabling the adaptation of 
pre-trained deep networks to address domain-specific issues with 
minimal alteration and outstanding outcomes.

In Table 1, we have shown the architecture of ResNet50, including 
the layer type, input/output shapes, operations, and purpose at each 
stage of the network. This table specifically corresponds to the 
ResNet50 architecture, which is adapted for four-class classification in 
our study.

Figure 2 illustrates the architecture of the ResNet-50 model used 
in this study, which consists of 50 layers including residual blocks that 
allow for efficient gradient flow. The model incorporates skip 
connections to prevent vanishing gradients, enhancing performance 
on complex image classification tasks by learning deeper features 
without degradation.

2.4 ViT model

The use of a ViT model for histopathological image classification 
represents a novel and effective approach in medical imaging analysis 
(35). In this context, the ViT model processes input images by dividing 
them into non-overlapping patches, embedding these patches into 
vectors, and feeding the embedding into a series of transformer 
blocks. The architecture of the ViT model is based on self-attention 
mechanisms (36) that allows the model to focus on different parts of 
the image simultaneously, capturing dependencies between distant 
regions of the image. This is particularly important in medical imaging 
tasks, where subtle features distributed across the image may 
be critical to accurate classification. Histopathological images require 
spatial relationships and tissue patterns for accurate diagnosis, making 
this capability crucial.

The ViT model can learn both local and global relationships by 
using multi-head self-attention layers to process the whole image 
context (37). To adapt the ViT model for this specific classification 
task, the pre-trained classification head, originally designed for 
1,000 ImageNet classes, was replaced with a custom head tailored 
for the four-class output, i.e., including NT, NVT, VT, and 
NVR. The modified classification layer uses a fully connected layer 
that outputs four probabilities, corresponding to the likelihood 
that the input image belongs to each class. We have connected the 
modified head layer to the ViT’s transformer blocks for this task, 
enabling the model to generate predictions tailored to the 
histopathological data.

We have used a batch size of 32 images during training to balance 
computational efficiency with the ability to capture meaningful 
gradients during optimization. The training was conducted over 20 
epochs, based on observed convergence behavior and available 
computational resources. We  utilized early stopping, based on 
monitoring the validation loss, to prevent overfitting and 
enhance performance.

We used cross-entropy loss as the loss function, measuring the 
difference between predicted class probabilities and true labels. The 
Adam optimizer was employed with parameters β1 = 0.9 and 
β2 = 0.999, which helped to stabilize the training. The optimizer, using 
backpropagation, adjusted the model’s weights to minimize this loss. 
We evaluated the model’s validation loss and accuracy at the end of 
each epoch, saving the model with the lowest validation loss as the 
best-performing model. This early stopping mechanism ensured that 
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the model would not overfit the training data and would generalize 
well to unseen data. After completing the model training, we evaluated 
the final model on the test dataset to gage its performance on unseen 
images. We computed standard metrics such as accuracy, precision, 

recall, and F1-score for each class. These metrics provided a 
comprehensive understanding of the model’s classification 
performance, not only in terms of overall accuracy but also in its 
ability to correctly identify each class.

TABLE 1 The architecture of ResNet50 for four classification of OS patients.

Layer Name Layer type Input shape Output shape Description

Input Image (128, 128, 3) (128, 128, 3) The input image has 128 × 128 pixels and 3 

channels (RGB).

Conv1 Convolution (7 × 7, stride 2) (128, 128, 3) (64, 64, 64) The first convolutional layer applies 64 filters 

with a 7 × 7 kernel size and stride of 2.

MaxPool1 Max pooling (3 × 3, stride 2) (64, 64, 64) (32, 32, 64) Max pooling layer that down samples the input 

by taking the maximum value over 3 × 3 

patches.

Residual block 1 Residual block (3 layers) (32, 32, 64) (32, 32, 256) First set of residual blocks. Includes 1 × 1, 

3 × 3, and 1 × 1 convolutions, with 64 filters.

Residual block 2 Residual block (4 layers) (32, 32, 256) (16, 16, 512) The second set of residual blocks includes 1×1, 

3 × 3, and 1×1 convolutions with 128 filters.

Residual block 3 Residual block (6 layers) (16, 16, 512) (8, 8, 1,024) The third set of residual blocks includes 1 × 1, 

3 × 3, and 1 × 1 convolutions with 256 filters.

Residual block 4 Residual block (3 layers) (8, 8, 1,024) (4, 4, 2048) The fourth set of residual blocks includes 1 × 1, 

3 × 3, and 1 × 1 convolutions with 512 filters.

Global average pooling 

(GAP)

Global average pooling (4, 4, 2048) (2048) Reduces the spatial dimensions (4 × 4) to a 1D 

vector of 2048 features by averaging across 

each filter.

Fully connected layer Fully connected (Linear) (2048) (4) A fully connected layer customized to output 4 

class probabilities (for 4 classes).

SoftMax layer SoftMax activation (4) (4) Converts the raw logits into probabilities for 

each of the 4 classes (NT, NVT, VT, NVR).

FIGURE 2

The structure of ResNet 50 model is used in this study.
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In Table 2, we have shown the architecture of the ViT model used 
in this paper for four classification of OS patients.

2.5 A custom CNN model

Convolutional neural networks (CNNs) are a powerful class of DL 
models (38) specifically designed for tasks involving image data (39). 
In the case of histopathological image classification, CNNs offer a 
robust mechanism for automatically extracting and learning 
important features from the raw image data, such as textures, edges, 
and patterns (40). These features are crucial for distinguishing between 
different types of tumor cells in medical images. Below, we explain the 
details of the CNN model used in this work, followed by its advantages 
and limitations. In this paper, we  have implemented the CNN 
architecture to classify histopathological images into four distinct 
categories: NT, NVT, VT, and NVR.

The architecture starts with three blocks of convolutional layers. 
The first block contains two convolutional layers, each with 64 filters 
and a kernel size of (3, 3). LeakyReLU activation functions with an 
alpha value of 0.25 follow the convolutional layers, which allows a 
small gradient for negative inputs, preventing neurons from “dying” 

and improving the robustness of the model. This block ends with a 
MaxPooling2D layer that reduces the spatial size of the feature maps, 
focusing on the most important features while reducing computational 
complexity. The second block follows the same pattern, but with two 
convolutional layers using 128 filters, further enhancing the model’s 
ability to capture more abstract features from the image data. The third 
convolutional block increases the number of filters to 256, helping the 
model learn even more detailed and complex features from the 
images. We  used a learning rate of 410− , determined through 
hyperparameter tuning, and the Adam optimizer for faster 
convergence and better adaptability during training. We then applied 
the GlobalAveragePooling2D layer, which reduces each feature map 
to a single value by taking the average across spatial dimensions. This 
technique reduces the number of parameters, making the fully 
connected layers more efficient and less prone to overfitting. The final 
layers consist of two fully connected (dense) layers with 1,024 units 
each, both followed by LeakyReLU activations. The final layer in the 
network—a dense output layer with four units—represents the four 
output classes. It employs a SoftMax activation function to transform 
the raw output scores into probabilities, guaranteeing that the 
predicted class aligns with the highest probability. For training, 
we used a batch size of 32 and 30 epochs, which allowed the model to 

TABLE 2 The architecture of the ViT model for four classification of OS patients.

Layer (Type) Output shape The number of 
parameters

Layer (Type) Output shape The number of 
parameters

Conv2d [−1, 768, 14, 14] 590,592 LayerNorm [−1, 197, 768] 1,536

Identity [−1, 196, 768] 0 Linear [−1, 197, 3,072] 2,360,064

PatchEmbed [−1, 196, 768] 0 Dropout [−1, 197, 3,072] 0

Dropout [−1, 197, 768] 0 Linear [−1, 197, 3,072] 0

Identity [−1, 197, 768] 0 Dropout [−1, 197, 768] 0

LayerNorm [−1, 197, 768] 1,536 MLP [−1, 197, 768] 0

Linear [−1, 197, 2,304] 1,771,776 Block [−1, 197, 768] 0

Identity [−1, 12, 197, 64] 0 Layer Norm [−1, 197, 768] 1,536

Linear [−1, 197, 768] 590,592 Linear [−1, 197, 2,304] 1,771,776

Dropout [−1, 197, 768] 0 Identity [−1, 12, 197, 64] 0

Attention [−1, 197, 768] 0 Linear [−1, 197, 768] 590,592

LayerNorm [−1, 197, 768] 1,536 Dropout [−1, 197, 768] 0

Linear [−1, 197, 3,072] 2,362,368 Attention [−1, 197, 768] 0

GELU [−1, 197, 3,072] 0 LayerNorm [−1, 197, 768] 1,536

Dropout [−1, 197, 3,072] 0 Linear [−1, 197, 3,072] 2,362,368

Linear [−1, 197, 768] 2,360,064 GELU [−1, 197, 3,072] 0

Dropout [−1, 197, 768] 0 Dropout [−1, 197, 3,072] 0

MLP [−1, 197, 768] 0 Linear [−1, 197, 768] 2,360,064

Block [−1, 197, 768] 0 Dropout [−1, 197, 768] 0

LayerNorm [−1, 197, 768] 1,536 MLP [−1, 197, 768] 0

Linear [−1, 197, 2,304] 1,771,776 Block [−1, 197, 768] 0

Identity [−1, 12, 197, 64] 0 LayerNorm [−1, 768] 1,536

Linear [−1, 197, 768] 590,592 Identity [−1, 768] 0

Dropout [−1, 197, 768] 0 Dropout [−1, 3] 0

Attention [−1, 197, 768] 0 Linear [−1, 197, 768] 2,304
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effectively classify histopathological images into four categories. 
We  used early stopping, which was predicated on tracking the 
validation loss, to avoid overfitting and maximizing performance. 
We  used cross-entropy loss as the loss function, measuring the 
difference between predicted class probabilities and true labels. The 
Adam optimizer was employed with parameters β1 = 0.9 and 
β2 = 0.999, which helped to stabilize the training. The optimizer, using 
backpropagation, adjusted the model’s weights to minimize this loss. 
We evaluated the model’s validation loss and accuracy at the end of 
each epoch, saving the model with the lowest validation loss as the 
best-performing model.

We optimized the model’s hyperparameters using the grid search 
method to balance extraction, computational efficiency, and 
generalization while addressing challenges like overfitting and 
computational costs.

2.6 CNN+ViT model (a hybrid model)

In this model, we have concatenated the features extracted from 
the CNN and Vision Transformer (ViT) into a single feature vector 
before passing them to the Multi-Layer Perceptron (MLP) as a well-
known classifier (41) for classification. This process is crucial for 
integrating local features (captured by CNN) and global features 
(captured by ViT) into a unified representation, allowing the model to 
leverage both types of information for improved classification accuracy.

2.6.1 Extracting features from CNN and ViT

2.6.1.1 CNN features
After passing the input image through CNN, we obtain a feature 

vector of size 1,024. The CNN uses a learning rate of 410− , Adam 
optimizer, batch size of 32, and trains for 30 epochs, ensuring optimal 
local feature extraction.

2.6.1.2 ViT features
Similarly, after processing the same input image through ViT, 

we extract a much larger feature vector of size 150,528. The ViT model 
uses Adam optimizer with parameters β1 = 0.9 and β2 = 0.999, a batch 
size of 32, and trains for 30 epochs, allowing it to capture global 
patterns effectively.

We performed preliminary experiments with Adam, AdamW, and 
stochastic gradient descent (SGD) to determine the most effective 
optimizer for our model. Adam (β1 = 0.9, β2 = 0.999) was selected for 
its adaptive learning rate, stable convergence, and enhanced 
performance in preliminary evaluations. Although AdamW was 
evaluated for its enhanced weight decay management, it did not 
provide notable performance improvements compared to Adam. In a 
similar vein, SGD with momentum (0.9) demonstrated slower 
convergence and necessitated considerable adjustment of the learning 
rate schedule, rendering it less efficient for our dataset. Based on these 
findings, Adam was chosen due to its rapid convergence and consistent 
training performance across various runs. We utilized a grid search 
strategy to identify the optimal hyperparameters by systematically 
evaluating different values for batch size, learning rate, and number of 
epochs. The findings indicated that a batch size of 32 achieved optimal 
computational efficiency and model performance. Learning rates of 

1e-5, 5e-5, 1e-4, 5e-4, and 1e-3 were examined, with 1e-4 showing the 
highest stability and validation accuracy. We  evaluated training 
durations of 50, 100, 150, and 200 epochs, ultimately selecting 100 
epochs based on validation performance and early stopping criteria.

2.6.2 Concatenation of features
Once we have both sets of features, we concatenate them into a 

single, unified feature vector of size 151,552. This concatenation 
combines the local and global features from CNN and ViT, respectively.

Alternative Fusion Methods: (1) Weighted Feature Fusion: This 
method allocates varying importance weights to features derived from 
Convolutional Neural Networks (CNNs) and Vision Transformers 
(ViTs). This method can improve model performance by prioritizing 
relevant features; however, it also adds hyperparameters that 
necessitate careful tuning, which may complicate the training process. 
(2) Attention-Based Fusion: Attention mechanisms facilitate the 
dynamic assessment of feature significance, enabling the model to 
concentrate on the most informative elements of the data. While 
effective, these methods introduce significant computational overhead 
and complexity to the model, which may not be  suitable for all 
applications. Lastly, we selected a straightforward concatenation of 
CNN and ViT features, which offers a straightforward yet efficient 
means of combining local and global feature representations without 
necessitating extensive hyperparameter tuning or needing extra 
computational complexity. A better comprehension of the model’s 
performance is made possible by this uncomplicated method, which 
also guarantees that the contributions of the CNN (local features) and 
ViT (global features) stay separate and interpretable.

We experimented with different fusion methods, like weighted 
feature fusion and bilinear pooling, to confirm this decision. Although 
these techniques demonstrated promise, they either created new 
computational difficulties or were unable to substantially outperform 
concatenation. Weighted feature fusion, for example, required meticulous 
and time-consuming parameter optimization but produced results with 
comparable accuracy. Conversely, bilinear pooling enhanced feature 
representation but at the expense of significantly higher computational 
overhead and training time. These factors further supported our choice 
of concatenation as a dependable and effective fusion technique.

The Multi-Layer Perceptron (MLP), an artificial neural network 
(42), with its fully connected layers, receives the concatenated 
151,552-dimensional feature vector. The MLP processes this combined 
feature vector to classify the image into one of the four categories: NT, 
NVT, VT, and NVR. The MLP applies transformations to the vector 
using hidden layers and LeakyReLU activation functions with early 
stopping and evaluates the performance based on validation loss to 
prevent overfitting. Combining the detailed CNN features with the 
global ViT features can improve the model’s classification accuracy by 
leveraging the strengths of both architectures.

All steps of the presented method including image processing, 
feature extraction methods, classification, and how to combine them 
for the intended four-class classification, are shown in Figure 3.

2.7 Evaluation metrics

The classification results are evaluated using accuracy, recall, 
precision, and F1-score:
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FIGURE 3

The overall procedure of the proposed hybrid method.
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TP and TN are the numbers of true positives and negatives that 
are accurately labeled. FP and FN are incorrectly labeled samples (43).

This study evaluates model performance using accuracy, precision, 
recall, F1-score, and AUC-ROC, ensuring a comprehensive assessment 
of classification performance. Accuracy measures the overall 
correctness of predictions, while precision and recall provide insight 
into false positives and false negatives, which are critical in medical 
classification tasks. The F1-score balances precision and recall, making 
it particularly useful in imbalanced datasets.

3 Results

In this study, we  have evaluated the performance of four DL 
models—CNN, ViT, ResNet, and a hybrid model—for the 
classification of OS histopathological images. We have applied these 

models to datasets for two-class (the results are shown in Table 3), 
three-class (the results are shown in Table  4), and four-class 
classification tasks (the results are shown in Table 5). We have assessed 
each model’s performance using key evaluation metrics such as 
accuracy, precision, recall, and F1-score (Table 6).

The CNN model showed decent performance, especially in 
two-class and three-class tasks. Specifically, for two-class classification, 
CNN achieved 82% test accuracy and 86% validation accuracy, 
demonstrating its capacity for binary classification tasks. It showed 
improvement in the three-class task, with 89% test accuracy and 90% 
validation accuracy. However, as the classification problem became 
more complex in the four-class task, CNN’s performance dropped to 
81% test accuracy and 88% validation accuracy.

On the other hand, ViT model uses its self-attention mechanism 
to capture global patterns, enabling it to model relationships between 
distant image regions. We observed that the ViT model consistently 
outperformed CNN in all tasks. For two-class classification, the ViT 
achieved 93% test accuracy and 94% validation accuracy, significantly 
better than the CNN. It also performed well in the three-class task, 
with 95% test accuracy and 93% validation accuracy. In the four-class 
task, ViT outperformed CNN again with 89% test accuracy and 88% 
validation accuracy (Table 2).

ResNet  also performed well in these tasks. The two-class 
classification results showed 87% test accuracy and 92% validation 
accuracy, which is better than CNN but slightly below ViT. For the 
three-class task, ResNet achieved 87% test accuracy and 92% 
validation accuracy. However, in the four-class task, ResNet managed 
87% test accuracy and 92% validation accuracy, reflecting a stable but 
less impressive performance compared to ViT (Table 6).

Among the tested models, the CNN + ViT hybrid model 
demonstrated the best performance across all tasks. In the two-class 

TABLE 3 Results related to the binary classification.

Model Test accuracy Test precision Test recall Test F1-score

CNN 0.82 0.76 0.83 0.78

ViT 0.93 0.93 0.83 0.86

CNN + ViT 0.9367 0.9401 0.9367 0.9283

ResNet 0.87 0.65 0.69 0.67

Bold formatting highlights the highest metric values.

TABLE 4 Results related to the three-class classification.

Model Test accuracy Test precision Test recall Test F1-score

CNN 0.89 0.87 0.88 0.87

ViT 0.95 0.94 0.95 0.96

CNN + ViT 0.9956 0.9958 0.9990 0.9926

ResNet 0.87 0.82 0.87 0.84

Bold formatting highlights the highest metric values.

TABLE 5 Results related to the four-class classification.

Model Test accuracy Test precision Test recall Test F1-score

CNN 0.81 0.79 0.81 0.79

ViT 0.89 0.86 0.89 0.87

CNN + ViT 0.9908 0.9910 0.9928 0.9923

ResNet 0.87 0.82 0.87 0.84

Bold formatting highlights the highest metric values.
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task, it achieved 93.67% test accuracy and 91.60% validation accuracy, 
outperforming both standalone CNN and ViT models. In the three-
class task, the hybrid model was especially impressive, achieving a 
near-perfect 99.56% test accuracy and 99.91% validation accuracy, 
which sets a new benchmark for this task. For the four-class 
classification, which is the most challenging task, the hybrid model 
again outperformed all others, with 99.08% test accuracy and 99.70% 
validation accuracy.

Figure 4 shows the average performance criteria for each of the 
models whose results are given in Table 3 for VT vs. NT patients.

Figure 5 shows the average performance criteria for each of the 
models whose results are given in Table  4 for VT vs. NVT vs. 
NT patients.

Figure 6 shows the average performance criteria for each of the 
models whose results are given in Table 5 for all patients.

The CNN + ViT model’s confusion matrix, which is displayed in 
Figure 7, was created to offer a thorough examination of the model’s 
classification performance. The model’s capacity to categorize 
osteosarcoma histopathology images into four groups—Non-Tumor 
(NT), Non-Viable Tumor (NVT), Viable Tumor (VT), and Non-Viable 
Ratio (NVR)—is demonstrated by the matrix. The matrix provides a 
breakdown of correctly and incorrectly classified samples for each 
class, with each entry denoting the number of predictions the 
model made.

3.1 Statistical analysis

To ensure statistical rigor and validate the significance of 
performance differences among models, we  conducted additional 

TABLE 6 The architecture of our hybrid model for the classification of OS patients.

Stage/Layer Layer type Input shape Output shape Description

Input Image (128, 128, 3) (128, 128, 3) The input is an image of size 128×128 with 3 color channels (RGB).

CNN feature 

extraction

CNN (multiple conv 

& pooling)

(128, 128, 3) (1024) The CNN extracts 1,024 local features from the image through several 

convolutional and pooling layers, capturing low-level and mid-level 

patterns.

ViT feature 

extraction

Vision transformer 

(ViT)

(128, 128, 3) (150,528) The Vision Transformer divides the image into patches, applies self-

attention, and extracts 150,528 global features, capturing contextual 

relationships.

Feature 

concatenation

Concatenation (1024) + (150,528) (151,552) The features extracted from CNN and ViT are concatenated to form a 

combined feature vector of size 151,552.

MLP - layer 1 Fully connected 

layer (Linear)

(151,552) (1024) The first fully connected layer reduces the feature vector to 1,024 units, 

applying non-linearity (ReLU) for transformation.

MLP - layer 2 Fully connected 

layer (Linear)

(1024) (256) The second fully connected layer further reduces the dimensionality to 

256 units, followed by ReLU activation.

Output layer Fully connected 

layer (Linear)

(256) (4) The final fully connected layer outputs 4 class logits (NT, NVT, VT, 

and NVR).

Softmax layer Softmax activation (4) (4) Convert the logits into probabilities for the four classes.

FIGURE 4

Results obtained by applying all classification models for VT vs. NT.
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analyses, including confidence interval (CI) estimation, paired 
statistical tests, and ANOVA analysis.

We computed 95% confidence intervals (CIs) for each model’s 
performance metrics using bootstrap resampling with 100 iterations. 
This method provides an estimate of the variability in our reported 
results and ensures that the observed differences are statistically 
reliable. To evaluate whether the improvements of the CNN + ViT 
hybrid model over individual models (CNN, ViT, and ResNet) were 
statistically significant, we  performed paired t-tests. This test 
determines whether the differences in model performance are likely 
to be due to chance or reflect a meaningful improvement.

The p-values from the paired t-tests are CNN vs. CNN + ViT: 
p = 0.0037 (significant), ViT vs. CNN + ViT: p = 0.1413 (not 
significant), and ResNet vs. CNN + ViT: p = 0.0235 (significant). 
These results indicate that CNN + ViT significantly outperforms CNN 

and ResNet, while the difference between CNN + ViT and ViT alone 
is not statistically significant.

To assess whether there is a statistically significant difference 
across all models, we  conducted a one-way ANOVA test, which 
resulted in p = 0.0011. This confirms that at least one model differs 
significantly from the others in performance. All statistical results for 
the binary classification are shown in Table 7.

The CNN + ViT hybrid model demonstrates the highest 
performance across all metrics, with statistically significant 
improvements over CNN and ResNet. Then, the ViT model alone 
performs competitively with CNN + ViT, but the difference is not 
statistically significant, indicating that ViT alone effectively captures 
global features. The 95% CIs confirm the robustness of our results, 
ensuring that the observed differences are not due to 
random variability.

FIGURE 5

Results obtained by all classification models for VT vs. NVT vs. NT.

FIGURE 6

Results obtained by applying all classification models for VT vs. NVT vs. NT vs. NVR.
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For the three-class classification, the ANOVA test (p = 0.0011) 
further supports that at least one model differs significantly from the 
others, reinforcing the advantage of ViT-based architecture over 
CNN-based models.

As it is shown in Table  8, the CNN + ViT hybrid model 
achieves significantly higher accuracy and robustness across all 
performance metrics, with statistically significant improvements 
over CNN, ViT, and ResNet. The 95% CIs confirm the stability of 

our results, ensuring that the performance differences are not due 
to random variations. The one-way ANOVA test (p = 1.42 × 10−8) 
further.

supports that at least one model performs significantly 
differently, reinforcing the effectiveness of the hybrid CNN + ViT 
approach. We  computed 95% confidence intervals (CIs) using 
bootstrap resampling with 100 iterations for each model’s 
performance metrics (accuracy, precision, recall, and F1-score). 

TABLE 7 Summary of statistical results for the classification models for VT vs. NT.

Model Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1-Score (95% 
CI)

p-value (vs 
CNN + ViT)

CNN (76.5%, 82.5%) (72.1%, 78.3%) (79.8%, 85.2%) (75.2%, 80.3%) 0.0037 (significant)

ViT (91.2%, 94.8%) (91.1%, 94.9%) (80.4%, 85.7%) (84.5%, 88.2%) 0.1413 (not significant)

CNN + ViT (92.9%, 94.5%) (92.6%, 95.3%) (92.1%, 94.7%) (91.3%, 94.2%) -

ResNet (85.3%, 88.2%) (61.2%, 67.8%) (65.4%, 71.3%) (63.2%, 70.4%) 0.235 (significant)

TABLE 8 Summary of statistical results of classification models for VT vs. NVT vs. NT.

Model Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1-Score (95% 
CI)

p-value (vs 
CNN + ViT)

CNN (87.0%, 88.5%) (85.6%, 88.1%) (86.2%, 89.0%) (86.1%, 88.9%) 0.0001 (significant)

ViT (94.1%, 95.6%) (93.5%, 95.2%) (93.7%, 95.4%) (94.0%, 96.1%) 0.0026 (significant)

CNN + ViT (99.2%, 99.8%) (99.3%, 99.9%) (99.4%, 99.9%) (99.1%, 99.8%) -

ResNet (85.3%, 87.2%) (80.1%, 84.1%) (83.5%, 88.5%) (81.2%, 85.7%) 0.11 (significant)

Bold indicate the strongest performance ranges (highest confidence intervals) across models for each evaluation metric. Statistically significant p-values (p ≤ 0.05) in comparison to the CNN + 
ViT model.

FIGURE 7

The visualization of the confusion matrix for the CNN + ViT model.
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This approach helps estimate the variability in our reported results 
and enhances statistical reliability. To assess whether the 
improvements in the CNN + ViT hybrid model over individual 
models (CNN, ViT, and ResNet) were statistically significant, 
we performed paired t-tests. The results are CNN vs. CNN + ViT: 
p = 0.000059 (significant), ViT vs. CNN + ViT: p = 0.000591 
(significant), and ResNet vs. CNN + ViT: p = 0.00135 (significant). 
These values indicate that CNN + ViT significantly outperforms all 
other models in the four-class classification task. To evaluate 
whether there is a statistically significant difference across all 
models, we conducted a one-way ANOVA test, which resulted in 
p = 5.38 × 10−9, confirming that at least one model exhibits a 
significantly different performance.

As is shown in Table 9, the CNN + ViT hybrid model significantly 
outperforms all other models, achieving statistically significant 
improvements over CNN, ViT, and ResNet. The 95% confidence 
intervals confirm the stability of our reported results, ensuring that the 
performance differences are not due to chance. The ANOVA test 
(p = 5.38 × 10−9) further supports the claim that at least one model 
performs significantly differently, reinforcing the superiority of hybrid 
CNN + ViT fusion over individual architectures.

To determine whether the observed improvements in our hybrid 
CNN + ViT model are statistically significant, we conducted paired 
t-tests for binary, three-class, and four-class classification tasks. The 
results confirm that CNN + ViT significantly outperforms CNN and 
ViT standalone in all settings:

In Table  10, While the difference with standalone ViT is not 
statistically significant (p = 0.1413), CNN + ViT performs significantly 
better than CNN in binary classification (p = 0.0037). This implies that 
ViT by itself is already able to capture robust global features. 
CNN + ViT demonstrates the benefit of feature fusion in complex 
classification tasks by outperforming both CNN and ViT in three-class 
and four-class classification (p < 0.01 in all cases).

3.2 Error analysis

To provide a better understanding of classification challenges, 
we have addressed misclassified cases and providing confusion matrices 
for each of the individual models (CNN, ViT, ResNet, and CNN + ViT). 

The dataset’s class imbalance is one of the main elements affecting 
misclassification patterns. With 536 images, the NT (normal tissue) 
category has the most samples, whereas the NVT (non-viable tumor), 
NVR (non-viable ratio), and NVT (non-viable tumor) categories have 
much fewer samples (263, 292, and 53 images, respectively). Because 
smaller classes were more likely to be misclassified, this imbalance affected 
the model’s performance. Because the histopathological characteristics of 
NVT and VT overlap, CNN frequently misclassified NVT as VT, 
according to our analysis of the classification errors. Like this, ViT tended 
to incorrectly identify NT as NVT, presumably due to differences in tissue 
structures and staining intensity. Because the necrotic characteristics of 
the two classes are similar, the NVR category, which is the smallest, had 
the highest misclassification rate of any model.

CNN and ResNet had trouble distinguishing between NVT and VT 
in the three-class and four-class classification tasks, which frequently 
resulted in misclassification errors. The impact of class imbalance on 
model performance was further demonstrated by ResNet’s difficulties in 
classifying NVR. Although global feature extraction enhanced 
classification, small sample sizes continued to be  a problem, as ViT 
showed improved generalization but still mistook NVR for NVT. By 
successfully capturing both local texture details (CNN) and global spatial 
dependencies (ViT), the CNN + ViT hybrid model improved class 
separability and dramatically decreased misclassification rates.

The CNN + ViT model’s confusion matrix, which was shown in 
Figure 7, was created to offer a thorough examination of the model’s 
classification performance. We  have shown The Resnet model’s 
confusion matrix in Figure 8, The ViT model’s confusion matrix in 
Figure 9, and The CNN model’s confusion matrix in Figure 10.

The enhanced confusion matrices for the CNN, ViT, and ResNet 
models offer significant insights into the classification difficulties 
among various tissue categories (NT, NVT, VT, NVR). Normal 
tissue (NT), the predominant category, is typically well-classified 
across all models; nonetheless, it still demonstrates occasional 
misclassifications, especially with viable tumor (VT), suggesting 
possible feature similarities between these categories. The 
non-viable tumor (NVT) and viable tumor (VT) categories, 
characterized by limited samples, exhibit elevated misclassification 
rates, particularly in their mutual confusion, possibly attributable 
to overlapping morphological characteristics. The NVR (non-viable 
ratio) group, characterized by a limited number of samples, 

TABLE 9 Summary of statistical results of classification models for VT vs. NVT vs. NT vs. NVR.

Model Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1-Score (95% 
CI)

p-value (vs 
CNN + ViT)

CNN (79.2%, 81.0%) (77.4%, 80.5%) (79.6%, 82.1%) (78.9%, 80.9%) 0.000059 (significant)

ViT (87.5%, 89.8%) (84.3%, 87.4%) (87.1%, 90.1%) (86.2%, 88.5%) 0.000591 (significant)

CNN + ViT (98.9%, 99.3%) (98.7%, 99.4%) (99.0%, 99.5%) (98.8%, 99.6%) -

ResNet (85.3%, 87.2%) (80.1%, 84.1%) (83.5%, 88.5%) (81.2%, 85.7%) 0.135 (significant)

Bold indicate the strongest performance ranges (highest confidence intervals) across models for each evaluation metric. Statistically significant p-values (p ≤ 0.05) in comparison to the CNN + 
ViT model.

TABLE 10 Summary of paired t-tests results for binary, three-class, and four-class classification tasks.

Task CNN vs. CNN + ViT (p-value) ViT vs. CNN + ViT (p-value)

Binary classification 0.0037 (significant) 0.1413 (not significant)

Three-class classification 0.0001 (significant) 0.0026 (significant)

Four-class classification 0.000059 (significant) 0.591 (significant)
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demonstrates considerable misclassification, especially being 
identified as NT or VT, indicating the model’s challenge in 
differentiating this underrepresented class. Among the models, ViT 
exhibits improved overall performance with fewer misclassifications 
than CNN and ResNet, indicating its enhanced capability in feature 
extraction for histopathology images.

These matrices offer a thorough understanding of the classification 
difficulties and emphasize the benefits of hybrid feature fusion in the 
classification of histopathological images. The updated discussion 
explains why some categories, like NVT and NVR, are still difficult to 
use even with sophisticated deep learning architectures and clearly 
explains how class imbalance affected model performance.

FIGURE 8

The visualization of the confusion matrix for the Resnet model.

FIGURE 9

The visualization of the confusion matrix for the ViT model.
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4 Discussion

In this study, we developed a hybrid DL model that combines 
CNN and ViT to classify OS histopathological images into four 
distinct categories: NT, NVT, VT, and NVR. Our approach introduced 
several advantages over previous methods, improving classification 
accuracy and reducing computational complexity.

First, we achieved a higher accuracy (93.67%) in distinguishing 
VT from NT groups, surpassing previous studies that used the same 
dataset. For example, Mishra et al. (44) employed a custom CNN 
model, achieving an accuracy of 84% in binary classification 
between VT and NT. Similarly, another study (14) that used 
segmentation techniques reported a testing accuracy of 86% for the 
same task. Our model exceeded this benchmark, confirming the 
strength of the CNN + ViT hybrid architecture in effectively 
capturing both local and global image features with no segmentation 
step required.

Second, for the three-class classification (VT, NVT, NT), our 
model demonstrated an accuracy of 99.56% and a recall measure of 
99.9% while reducing computational complexity. Prior research, such 
as that by Ahmed et al. (45), utilized two CNN models to classify three 
tumor types, achieving an accuracy of 86%. Fakieh et al. (46) improved 
upon this with a Wind Driven Optimization (WDO) and Deep 
Stacked Sparse Autoencoder (DSSAE) model, reaching an average 
accuracy of 99.71%. Moreover, Vaiyapuri et al. (47) developed a model 
incorporating the Honey Badger Optimization (HBO) algorithm and 
achieved an accuracy of 99.71%, with a high F1-score of 99.62%. 
Although these methods achieved high accuracy, they involved 
optimization techniques which increased computational demands. 
Our model, in contrast, maintained similar levels of accuracy but with 
reduced reliance on complex optimization methods, offering 
greater efficiency.

Furthermore, our work is the first to classify all four classes of OS 
(NT, NVT, VT, and NVR) using the TCIA dataset, setting a new 
benchmark for OS classification. We have achieved an accuracy of 
99.08% in four-class classification.

Previous research primarily focused on binary or three-class 
classification, overlooking the critical NVR category. For instance, 
Mishra et  al. (48) achieved an accuracy of 92.4% in three-class 
classification (VT, NVT, NT), but no prior studies had expanded to 
four-class classification. The non-viable ratio (NVR) category is 
crucial in osteosarcoma classification because it helps evaluate the 
effectiveness of treatment, particularly chemotherapy. A higher NVR, 
indicating a larger proportion of necrotic (non-viable) tissue 
compared to viable tumor areas, often correlates with a positive 
response to therapy and better patient outcomes. The NVR serves as 
a valuable prognostic tool, aiding clinicians in assessing tumor 
regression and adjusting treatment plans accordingly. Additionally, 
including the NVR in classifications offers a more comprehensive view 
of tumor heterogeneity.

Previous studies have often excluded the NVR category due to 
the complexity of accurately identifying and segmenting 
non-viable tissue in histopathological images. Traditional 
classification models focused primarily on simpler distinctions, 
such as viable versus non-viable tumors, which were more 
straightforward to define. Challenges like the lack of labeled data, 
segmentation difficulties, and the tendency to focus on clinically 
easier classifications limited the incorporation of NVR into earlier 
models. By addressing this gap in the research, our study’s 
inclusion of the NVR category sets a new benchmark, offering 
more detailed insights into treatment outcomes and improving the 
accuracy of osteosarcoma classifications.

However, we observed that CNN’s classification performance 
dropped in the four-class task. This suggests that while CNN excels 

FIGURE 10

The visualization of the confusion matrix for the CNN model.
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at detecting local patterns, it struggles with tasks like specific image 
classification or segmentation activities that demand the model 
recognize and interpret larger, more complex relationships or 
structures within the image. This requires the model to understand 
broader, more complex image structures. We also observed that 
ResNet performance was lower than ViT for the four-class 
classification task. We think the reason is that ResNet can deal with 
problems like vanishing gradients due to its residual connections, 
but it still uses convolutional layers for feature extraction, which 
cannot model global information as well as ViT. The CNN + ViT 
hybrid model demonstrated the best performance among all 
models used for all classification tasks. These results clearly 
highlight the strength of combining the local feature extraction 
abilities of CNN with the global feature understanding 
capabilities of ViT.

In Table  11, we  have shown the results of the articles for the 
classification OS patients using TCIA dataset.

The strengths of vision transformers (ViTs) for identifying global 
patterns and convolutional neural networks (CNNs) for extracting 
local features are combined in the suggested hybrid CNN + ViT model.

The preservation of local patterns, like edges and textures, 
which are essential for histopathological image analysis, may 
be improved by incorporating features from intermediate CNN 
layers. By merging local and global features at different levels, 
architectures such as CvT (49), MobileViT (50), and LeViT (51) 
show how successful multi-stage feature integration can be. These 
methods might influence our hybrid model’s subsequent iterations. 
Furthermore, to prioritize significant local features during feature 
fusion, attention mechanisms could be  used. Weighted feature 
fusion or attention-based modules, for instance, have the potential 
to increase classification accuracy by dynamically balancing local 
and global contributions. Fakieh et al. (46) and Vaiyapuri et al. (47) 
used large datasets (1,144 histopathology images) with different 

train-test split configurations (70–30% and 80–20%). They were all 
from the same dataset, though, so no testing was done using 
datasets from other institutions. Most previous studies did not 
report sensitivity and specificity as evaluation metrics. Instead, 
most studies used F1-score, recall, accuracy, and precision to assess 
classification performance. Although these metrics provide insight 
into the predictive power of the model, they do not fully capture 
its clinical reliability in distinguishing between true positive and 
true negative cases. Sensitivity and specificity are key concepts in 
understanding false positives (erroneous classifications) and false 
negatives (missed diagnoses), which have a direct impact on 
medical decision-making. However, since none of the reviewed 
studies provided these values, direct clinical comparisons 
are limited.

4.1 Significance of the four-class 
classification

An important development in the study of cancer tissue is the 
suggested four-class classification framework for osteosarcoma 
histopathological images, which consists of non-tumor (NT), 
non-viable tumor (NVT), viable tumor (VT), and non-viable ratio 
(NVR). The classification is clinically relevant since each of these 
categories offers important insights into tumor biology and treatment 
response. By adding the NVR category, this four-class classification 
framework incorporates an extra layer of prognostic information in 
contrast to conventional binary (tumor vs. non-tumor) or three-class 
(NT, NVT, VT) approaches. By differentiating between viable and 
non-viable tumor areas and recording their relative proportions, this 
enables a more nuanced assessment of treatment effectiveness. By 
emphasizing the distribution of necrotic and living tissue within the 
tumor microenvironment, it enhanced knowledge of tumor 

TABLE 11 Related works on the classification of OS patients using TCIA dataset.

Related works Classification methods Classification type The classes Classification results

(44)

2017

A Custom CNN Binary VT vs. NT F1-score: 86%

Accuracy: 84%

(14)

2017

A combination of image segmentation 

and analysis techniques

Binary VT vs. NT Testing accuracy of 86%

(48)

2018

A Custom CNN 3-Classes VT vs. NVT vs. NT Accuracy: 92.4%

Precision: 97%

Recall: 94%

F1-Score: 95%

(45)

2021

Two CNN models 3-Classes VT vs. NVT vs. NT Testing accuracy: 86%

(46)

2022

The Wind Driven Optimization (WDO) 

and Deep Stacked Sparse Autoencoder 

(DSSAE)

3-Classes VT vs. NVT vs. NT Average accuracy: 99.71%

Average precision: 99.28%

Average recall: 99.67%

Average F1-Score: 99.47%

(47)

2022

Honey Badger Optimization with DL-

Based Automated OS Classification 

(HBODL-AOC) model

3-Classes VT vs. NVT vs. NT Accuracy: 99.71%

Precision: 99.57%

Recall: 99.68%

F1-Score: 99.62%

AUC Score: 99.73%
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heterogeneity. Furthermore, because the NVR class directly correlates 
with therapeutic outcomes, it offers practical insights into treatment 
planning and monitoring. Even though the four-class framework 
performed exceptionally well in this study, more improvement could 
increase its clinical utility. Furthermore, the dataset’s comparatively 
small number of NVR samples presents a problem, indicating the 
need for larger datasets to confirm the classification’s robustness. Our 
framework establishes a new standard for osteosarcoma 
histopathology analysis by correctly classifying these four categories, 
opening the door to more individualized, accurate treatment plans.

4.2 AI-assisted osteosarcoma 
histopathology

Pathologists use a microscope to examine H&E-stained slides of 
osteosarcoma, identifying viable (VT) and non-viable tumor (NVT) 
regions, assessing necrotic areas (NVR) for treatment response, and 
separating tumor regions from normal tissue (NT). In borderline 
cases, identifying viable from necrotic tumor tissue is difficult, making 
this manual process time-consuming, subjective, and prone to 
interobserver variability. Our CNN + ViT model automates tumor 
classification with excellent accuracy (99.08% in four-class 
classification) using CNNs for local histological characteristics (e.g., 
nuclear morphology, tissue organization) and ViTs for global spatial 
dependencies to capture complicated patterns. The algorithm helps 
pathologists prioritize difficult patients, reduce misclassification 
errors, and evaluate therapy response through exact VT vs. NVR 
discrimination. Initial results indicate that the model captures 
histology signals like cellular deterioration and nuclear fragmentation, 
and Grad-CAM visualizations may be  used to identify tumor 
progression biomarkers. Despite its accuracy, borderline histological 
overlaps (e.g., NVT vs. VT, NVR vs. NVT) remain difficult, 
demonstrating that CNN + ViT is both a classification tool and an aid 
for osteosarcoma histology assessment.

Our study uses H&E-stained histopathology slides, the norm for 
osteosarcoma diagnosis, but physicians sometimes use Masson’s 
Trichrome, Immunohistochemistry (IHC), and Special Stains to 
highlight tumor markers. Our CNN + ViT model is trained only on 
H&E images, but ViT-based architectures can collect global 
contextual information beyond color disparities, allowing them to 
generalize across staining variances. Adapting to diverse stains 
requires stain normalization methods like Reinhard or Macenko. 
We  trained and tested our model using the TCIA osteosarcoma 
dataset, however real-world datasets from other institutions may 
have different patient demographics, slide preparation, and scanning 
resolutions, which could affect model performance. Future work will 
include data augmentation with fake staining changes and cross-
dataset validation to ensure model robustness across varied 
histopathological situations.

4.3 Regulatory compliance for clinical 
deployment

Compliance with SaMD and MDR (EU 2017/745) regulations 
must be  followed before the CNN + ViT model can be  used in a 

clinical setting, which requires regulatory approval from the FDA 
(U.S.) and CE marking (EU). To show clinical reliability, safety, and 
bias mitigation, validation through prospective and retrospective 
studies is crucial. As a decision-support tool, the model should 
guarantee explainability (like Grad-CAM) and smooth pathology 
workflow integration. The advancement of ethical AI deployment in 
practical histopathology applications and regulatory compliance will 
be the main goals of future research.

The CNN + ViT model improves interpretability by employing 
Grad-CAM for CNN feature visualization and attention heatmaps for 
ViT-based global comprehension, enabling pathologists to validate 
decision-making. Misclassification study elucidates difficult 
circumstances (e.g., NVT versus VT, NVR versus NVT), hence 
enhancing confidence in model predictions. Functioning as a 
decision-support instrument, it facilitates region-of-interest 
identification, prioritizes intricate cases, and assesses treatment 
efficacy, so providing transparency and clinical dependability.

5 Conclusion

The proposed hybrid AI model demonstrated significant 
improvements in accurately identifying critical features in OS images 
by merging the local feature extraction capabilities of CNNs with the 
global feature recognition strengths of ViTs.

This hybrid architecture outperformed traditional models, such 
as ResNet, by effectively leveraging both local and global features. 
The success of this model demonstrates the potential of combining 
these two approaches to advance medical imaging and improve 
personalized cancer treatment. Our results show that this hybrid 
method can significantly enhance diagnostic precision, streamline 
decision-making, and improve patient outcomes for diagnosis of 
OS patients.

Future research could focus on optimizing the model to reduce 
its computational demands, incorporating cancer-specific 
pre-training, and applying it to other cancer types. Testing this 
method in real-world clinical settings will be essential to assess its 
practicality and robustness for use in diagnosis and 
treatment planning.
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