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Introduction: The Tandem Duplicator Phenotype (TDP) is a prominent genomic 
metric prevalent in non-small cell lung cancer (NSCLC).

Methods: Multi-omics samples including DNA copy number, transcriptomics, 
somatic single-nucleotide variations, clinical data, and cell-line drug sensitivity 
from TCGA and CCLE are delved into TDP characteristics.

Results: Our thorough analysis reveals that patients with smaller span sizes TDP 
have a more intricate genome, moderate pathology, enhanced therapeutic 
response, favorable prognosis, a more active immune system, and higher drug 
sensitivity. In contrast, those with larger span sizes TDP exhibited opposite trends.

Discussion: The integrated analysis underscores that an in-depth molecular 
assessment of TDP can offer invaluable insights into its role in cancers. 
Classification strategy of TDP could recognize the chemotherapy sensitivity of 
different NSCLC patients.
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Introduction

As high-throughput biological techniques advance, whole-genome sequencing (WGS) and 
single nucleotide polymorphism (SNP) datasets now allow for a more profound exploration of 
instability patterns in human genome rearrangements and the identification of cancer-associated 
copy number variations (1–6). These recurrent patterns lead to genomic instability and further 
promote tumorigenesis (7–9). Menghi et al. (10, 11) identified a specific structural variation pattern 
known as the “tandem duplicator phenotype (TDP).” TDP is characterized by tandem duplication 
events or segmental duplications where chromosome segments, overlapping with one or more 
genes, can duplicate, positioning adjacently in various configurations. These duplications can 
encompass all or part of a gene’s regulatory elements, suggesting that TDP could serve as instability-
based biomarkers in the human genome (12, 13).

TDP, a unique instability configuration, has been identified in various cancers (14, 15). For 
instance, research shows that TDP, particularly those with head-to-tail somatic segmental tandem 
duplications (TDs), are predominantly present in non-small lung cell cancer, breast cancer, ovarian 
cancer, and endometrial cancers (10, 11, 16–19). Zhou et al. (16) also detected internal tandem 
duplications in NSCLC linked to focal adhesion kinase anomalies. These duplications augmented 
the autophosphorylation proteins level and heightened sensitivity to FAK inhibitors. However, most 
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previous NSCLC studies introduced genomic fingerprints of NSCLC, 
active immune landscape appears in NSCLC patients with high mutation 
burden, these multiple somatic mutation gene are associated with DNA 
repair (20–24). Several studies have demonstrated that EGFR kinase 
domain duplication typically results from an in-frame tandem duplication 
of exons 18–25, leading to constitutive activation of EGFR signaling via 
the formation of an intramolecular dimer in non-small cell lung cancer 
(NSCLC). Similarly, BRAF rearrangements, including kinase domain 
duplications, have been identified at a frequency of approximately 4.3%. 
These findings emphasize the clinical relevance of EGFR and BRAF kinase 
domain duplications in NSCLC and highlight the potential of targeted 
therapies tailored to these recurrent molecular alterations (25–27), the 
impact of varying TD lengths on tumor progression is yet to be fully 
understood. Thus, comprehensive investigations considering TDP effects 
on CNV, clinical variations, transcripts, mutation characteristics, and drug 
sensitivity are warranted (28–30).

In this study, we  developed TDP models for NSCLC, 
encompassing both lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC), by curating existing SNP data from the TCGA 
and CCLE cohorts (31–33). Our goal is to deeply characterize the 
molecular attributes of TDP and methodically examine their 
functions. We  also present a comprehensive analysis of clinical 
variations and drug sensitivity related to TDP. This suggests the 
prospective utility of TDP groups as predictive genomic biomarkers 
in clinical scenarios.

Methods

Data collection

To comprehensively characterize somatic tandem duplications 
(TDs) in NSCLC, including LUAD and LUSC, we amassed diverse 
genomic datasets. These encompass masked copy number variation 
(CNV) data, transcriptomics, somatic mutations, and drug sensitivity 
metrics from the Cancer Genome Atlas (TCGA) and the Cancer Cell 
Line Encyclopedia (CCLE) (31–33). We derived the masked CNV 
data from the Affymetrix Genome-Wide Human SNP Array 6.0, 
utilizing it to identify TDs. To further delineate the distinct features of 
TDP groups, we utilized transcript and somatic mutation datasets 
from TCGA. Pertinent clinical data, including relapse events and 
timelines for TCGA patients, were sourced from the UCSC Cancer 
Genomic Browser.1

TDP classification

Utilizing the masked CNV data, we set criteria to define tandem 
duplication segments based on three rules. Firstly, the amplification 
CN segment exceeded 100 bp in length; Secondly, the segment 
exhibited an increase relative to adjacent segments, with a log2 CN 
ratio of at least 0.3; Thirdly, differences between consecutive 
neighboring segments maintained a log2 CN ratio of 0.3 or less. 
Following these criteria, we determined a TDP score for each tumor 

1 https://xenabrowser.net/datapages/

sample, derived from the count and chromosomal distribution of 
somatic tandem duplications (TDs). As per this metric,
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where TD represented the total number of TDs in a sample, Obsi  
represented the observed number of TDs of chromosome i, expi  
represented the expected number of TDs of chromosome i across all 
analysis samples, and i represented chromosome 1 to 22 and 
chromosome X.

Samples with raw TDP scores below the mean value of the first 
mode in the Gaussian finite distribution, or those with fewer than 20 
TDs, were categorized into the non-TDP group. In contrast, samples 
with TDP scores exceeding the mean value of the second mode in the 
Gaussian finite distribution were identified as part of the TDP group, 
in alignment with the approach taken in the previous study by Menghi 
et al. (10).

In the TDP group, we  analyzed the span size of the density 
distribution for all detected TDs (34, 35). Notably, the distribution 
peaks in each TDP group predominantly clustered at recurrent and 
distinct span-size intervals. To discern the pattern of these distribution 
peaks, we  applied the “mclust” R package for Gaussian fitting 
distribution (25, 36–38). This helped determine the optimal number 
of mixture components, utilizing default values for the initialization 
of the iterative process. In each cohort, by marking thresholds at 
intersections between consecutive Gaussian curves, we distinguished 
span size ranges across distinct, non-overlapping intervals. Previous 
study used TDP group 1 (tens of base pairs), TDP group 2 (hundreds 
of base pairs), TDP group 3 (> 1.7 mb base pairs) to classify TDP class 
(19). We define the similar criterion in our TDP group in LUAD and 
LUSC. This process led to the definition of six unique TDP groups 
based on different intervals. Of these, TDP group 1, TDP group 1/2 
mix, and TDP group 1/3 mix were categorized as small span size 
groups (SSG).

Clinical information collection and 
prognostic analysis

We subsequently compared the clinical information across various 
TDP groups. For the TCGA LUAD cohort, we  collected data on 
clinical stage, distal metastasis stage, and therapy response for analysis. 
In the TCGA LUSC cohort, we examined the clinical stage, lymph 
node stage, and therapy response. Additionally, we  employed the 
Kaplan–Meier survival analysis and the log-rank test to compare 
recurrence-free survival among the different TDP groups.

Analysis of gene differential expression

We selected two TDP groups, TDP group 2 and TDP group 2/3 
mix, which exhibited notably different clinical information and had a 
larger patient count for the analysis of transcript differences. Within 
the TCGA LUAD cohort, we examined both TDP group 2 and TDP 
group 2/3 mix patients. For the TCGA LUSC cohort, we focused on 
SSG and TDP group 2/3 mix patients. We employed the R package 
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“limma” to determine differentially expressed genes in the FPKM files, 
and the “quantile” function from “limma” was used for normalization. 
R package “limma” used empirical bayes to smooth of standard errors, 
(shrinks standard errors that are much larger or smaller than those 
from other genes towards the average standard error), and then used 
t-test to compare the difference between two groups. In the LUAD 
datasets, differentially expressed genes were identified with criteria of 
an adjusted p-value <0.01 (BH multiple hypotheses testing) and an 
absolute fold change ≥2. For the LUSC datasets, the criteria were a 
p-value <0.001 (39). To further explore the KEGG pathways within 
distinct TDP groups, we  used the R package “clusterProfiler” to 
identify relevant KEGG pathways with a p-value threshold of <0.05 
(40–42).

Somatic copy-number analysis

We utilized the Genomic Identification of Significant Targets in 
Cancer (GISTIC 2.0) to pinpoint target genes within focal somatic 
copy-number variants (SCNVs) and to identify significant 
amplification regions containing genes across the six distinct TDP 
groups (43). For this analysis, we adopted the hg19 reference genome. 
The SNP annotation markers file was sourced from the UCSC 
Genome Browser.2 Within GISTIC 2.0, the default settings for 
determining gene amplification or deletion were set with a threshold 
of 0.1. We used a q-value cutoff of ≤0.05, and the confidence level for 
identifying driver aberrations was established at 90%.

TD-impacted cancer genes analysis

From the genes identified with amplifications by GISTIC 2.0, 
we retained only those classified as cancer genes for further analysis. 
These cancer genes were categorized into tumor suppressor genes 
(TSGs) and oncogenes (OGs) as proposed by Davoli et  al. (44). 
We selected 300 TSGs and 250 OGs for evaluation, consistent with a 
prior study. TD-impacted cancer genes were recognized if their 
genomic locations overlapped with one or more TDs and met any of 
the following criteria, (i) duplication (DUP): the TD spanned the 
entire gene body, resulting in gene duplication; (ii) double transection 
(DT): both TD breakpoints were located within the gene body, leading 
to a disruption of gene integrity or (iii) single transection (ST): only 
one TD breakpoint was situated within the gene body, causing an 
effective gene copy number neutral rearrangement. We then assessed 
the TD-impacted cancer genes within the distinct TDP groups of 
each cohort.

Somatic single-nucleotide variation 
analysis

We utilized the MutSigCV2.0 algorithm to pinpoint genes that 
were significantly and recurrently mutated in various TDP groups 
(45), setting a p-value threshold of <0.05. The types of somatic 

2 http://genome.ucsc.edu/

mutations in these genes including synonymous, missense, frame 
insertion/deletion, frame shift, nonsense, splice sites, and other 
non-synonymous variants-were visualized across distinct TDP groups 
using the “pheatmap” R package.

Drug sensitivity analyses

Based on the somatic copy-number profiles sourced from CCLE, 
we also categorized NSCLC cell lines into six distinct TDP groups 
(31). Subsequently, we  assessed the variations in drug sensitivity 
across these TDP groups. We compared IC50 values between the 
groups when subjected to treatment with 24 different 
anticancer drugs.

Results

TDP patient identification and subtypes 
classification

The tandem duplicator phenotype (TDP) is prevalent in NSCLC, 
encompassing both LUAD and LUSC. To comprehensively delineate 
somatic TDP, we sourced and analyzed data from the Affymetrix 
Genome-Wide Human SNP Array 6.0. This dataset consisted of 
1,035 samples and 81 cell lines, which include 532 masked CNV 
segment data from TCGA LUAD, 503 from TCGA LUSC, and 81 
from CCLE NSCLC (Figures  1A,B) (31–33). Through the 
preprocessing of the SNP array data (Figure  1B), we  identified 
appropriate TDs based on the following criteria. Firstly, we selected 
amplification segments with lengths exceeding 100 bp. Secondly, the 
log-transformed CNV ratios of somatic tandem duplications (TDs) 
surpassed 0.3 when compared to adjacent segments. Thirdly, the 
difference in log-transformed CNV ratios between two neighboring 
segments was less than 0.3.

For detection of the number and chromosomal distribution of 
TDs in cancer patients’ genomes, we  used the raw TDP score to 
characterize this feature (described in methods) (Figures  2A,B). 
We  removed the samples whose TD counts were less than 20 
(Figure 1A), and the remaining samples’ raw TDP scores exceeded the 
mean value of the second mode according to previous study. 
Subsequently, 110 TDP patients from TCGA LUAD cohort; 91 TDP 
patients from TCGA LUSC cohort; 28 TDP cell lines from CCLE 
NSCLC cohort were recognized (Figure 1B).

The “Mclust” function from “Mclust” R package was applied to 
the TD span size distribution of TDP patients using default 
parameters. The TD class is defined by the mode in the Gaussian finite 
distribution. LUAD has three modes, resulting in three TD classes, 
while LUSC has four modes, leading to four TD classes according to 
the distribution. We identified three primary TDP groups: LUAD’s 
first mode and LUSC’s first and second modes as TDP group  1, 
LUAD’s second mode and LUSC’s third mode as TDP group 2, and 
LUAD’s third mode and LUSC’s fourth mode as TDP group 3; tumors 
with bimodal distributions were labeled as TDP group mixes (1/2, 
1/3, or 2/3), and notably, TDP group 1, TDP group 1/2 mix, and TDP 
group 1/3 mix were classified as SSG (Figures 2C,D). The sample 
counts for TDP groups 1, 2, 3, as well as 1/2, 1/3, and 2/3 mixtures are 
calculated in TCGA LUAD and LUSC patients (Table 1).
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Distinct model distribution patterns often correlate with 
varying genome complexities. Thus, we  computed the genome 
complexities for the three primary TDP groups and non-TDP 
groups from the aforementioned datasets. It emerged that the 
non-TDP group exhibited significantly fewer amplification and 
deletion regions compared to the TDP groups, with TDP group 1 
and TDP group  2 exhibiting the most pronounced genome 
complexity (Figures 2E,F).

Clinical association and prognosis 
difference in distinct TDP groups

Genomic instability is a recognized hallmark of cancer based on 
previous research. However, the relationship between TDP and cancer 
remains elusive. To bridge this gap, we  explored the association 
between patient clinical data and TDP groups and evaluated the 
prognosis outcomes across these groups.

FIGURE 1

Schematic overview and multi-omics summary of the study. (A) The pie chart illustrates the patients chosen for the TDP study from TCGA LUAD and 
LUSC. The red section represents all patients under analysis, the blue segment denotes patients with more than 20 TDs, and the yellow section signifies 
those classified as TDP patients. (B) This outlines the sequence of operations for classifying TDP patients and the subsequent analyses, which 
encompass genome complexity, clinical implications, transcriptomic attributes, amplification effects, mutation characteristics, and drug 
responsiveness.
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For TCGA LUAD patients, our findings indicated that patients in 
the TDP group  1/2 mix and TDP group  1/3 mix had a relatively 
moderate clinical stage (Figure  3A). They displayed no distal 
metastasis (Figure 3B), and notably, the TDP group 1/2 mix patients 
showed a complete therapy response (Figure 3C). On the other hand, 
a section of the patients in TDP group 2 and TDP group 2/3 mix 
exhibited severe clinical stages, manifested metastasis, and had an 
unsatisfactory therapy response (Figures 3A–C). In terms of relapse-
free survival time, patients from TDP group  1/2 mix and TDP 
group 1/3 mix significantly had better outcome than those from TDP 
group 2 and TDP group 2/3 mix, with a log-rank test p-value of 0.0327 
(Figure 3D).

For TCGA LUSC patients, those in TDP group 1 predominantly 
exhibited clinical stages of I and II (Figure 3E). The majority showed 
no lymph node metastasis and had a full therapy response 
(Figures 3F,G). However, patients from other groups, in contrast, had 
a relatively severe clinical stage, demonstrated lymph node metastasis, 

and responded poorly to therapy (Figures 3E–G). Remarkably, TDP 
group  1 patients exhibited significantly improved outcomes 
concerning relapse-free survival time, with a log-rank test p-value of 
0.0398 (Figure 3H).

Drawing conclusions from the clinical associations and prognostic 
analyses across different TDP groups, it’s evident that patients in TDP 
group 1 and SSG displayed moderate pathology, superior therapy 
response, and a more favorable prognosis compared to their 
counterparts in the TDP group 2/3 mix.

Smaller span size group suggested active 
immune system

To delve deeper into why different TDP groups exhibit varied 
pathology, we compared transcript differences between SSG patients 
(with moderate pathology) and TDP group 2/3 mix patients (with 
severe pathology) in LUAD. We  identified 50 genes with elevated 
expression in SSG patients (Figure 4A). Enriched KEGG pathways 
related to cell proliferation and migration included “PI3K-Akt 
signaling pathway,” “JAK-STAT signaling pathway,” “Focal adhesion,” 
and “ECM-receptor interaction.” Notably, immune pathways like 
“IL-17 signaling pathway,” “Cytokine-cytokine receptor interaction,” 
and “Chemokine signaling pathway” were also enriched (Figure 4B). 
The activation of these immune pathways suggests that SSG patients 
possess an active immune response, potentially contributing to their 
moderate pathology. Conversely, six genes showed heightened 
expression in TDP group  2/3 mix patients (Figure  4A), with cell 
proliferation and migration pathways such as “PI3K-Akt signaling 

FIGURE 2

Classification of TDP patient subtypes and their genome complexity. (A,B) Density plots depict the raw TDP scores for TCGA LUAD (A) and TCGA LUSC 
(B). (C,D) Density plots showcase the TD span size (log10 transformed) for TCGA LUAD (C) and TCGA LUSC (D). Accompanying tables detail the 
classes, groups, and span size ranges. The TD class is determined by the mode in the Gaussian finite distribution. LUAD has three modes, resulting in 
three TD classes, while LUSC has four modes, leading to four TD classes based on the distribution. (E,F) Graphs display the distribution of genome 
complexity across different TDP groups in TCGA LUAD (E) and TCGA LUSC (F), p-value was calculated by two-sided Wilcoxon test.

TABLE 1 Number of TDP groups in TCGA LUAD and LUSC.

TDP classification LUAD LUSC

TDP group 1 0 11

TDP group 1/2 mix 1 31

TDP group 1/3 mix 1 16

TDP group 2 52 1

TDP group 3 1 6

TDP group 2/3 mix 55 24
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pathway,” “MAPK signaling pathway,” “Ras signaling pathway,” “Rap1 
signaling pathway,” and “TNF signaling pathway” being enriched 
(Figure 4C), possibly driving the severe pathology observed.

In TCGA LUSC patients, we  discerned transcript differences 
between TDP group 1 and TDP group 2/3 mix patients. Twenty-one 
genes were found to have increased expression in TDP group  1 
patients (Figure 4D). The “IL-17 signaling pathway” was similarly 
enriched as observed in LUAD SSG patients, accompanied by 
activation of numerous metabolic pathways (Figure 4E). In contrast, 
seven genes exhibited heightened expression in TDP group 2/3 mix 
patients (Figure  4D), with the enrichment of pathways like “Wnt 
signaling pathway,” “Glycolysis/Gluconeogenesis,” and “Galactose 
metabolism” (Figure 4F).

In summary, the activation of immune pathways in SSG and TDP 
group 1 patients may underpin their moderate pathology. Conversely, 
the prominence of cell proliferation and migration pathways in TDP 
group 2/3 mix patients could be responsible for their severe pathology.

Cancer gene amplification effect in distinct 
TDP groups

Following our exploration into TDP groups, we  further 
investigated how TDs influence oncogenes (OGs) and tumor 
suppressor genes (TSGs). For this purpose, we relied on 300 TSGs and 
250 OGs classified by Davoli et al. (44) for an in-depth analysis, TD 
target genes were pinpointed using GISTIC 2.0 (43). As delineated in 
the methods, TDs can impact the integrity of a gene’s body in three 
main ways: (1) duplication (DUP) leading to gene replication, (2) 
double transection (DT) causing gene disruptions, and (3) single 

transection (ST) that results in an effective gene copy-number 
neutral rearrangement.

For the sake of robust results and considering sample size, our 
focus turned to TDP groups with substantial numbers—specifically, 
TDP group 2 and TDP group 2/3 mix in LUAD, along with SSG and 
TDP group 2/3 mix in LUSC—to examine the effects of cancer gene 
amplification. Amplification regions were identified by GISTIC 2.0, 
and genes from these regions with a p-value below 0.05 were selected 
for further scrutiny.

Our findings highlighted that in LUAD TDP group 2 patients, 
OGs like “MAPK1” and “MLLT11” along with TSGs such as 
“TMCO2” and “EXO5” were subject to the DUP effect. Specifically, 
the DUP effect for OGs was observed in 6 out of 52 TDP group 2 
patients, and for TSGs, this effect was noted in 4 out of the same 52 
patients (Figure 5A). For the LUAD TDP group 2/3 mix, OGs like 
“KRAS,” “EGFR,” and “CAPRIN2” and TSGs including “KMT2B” 
manifested the DUP effect. Here, the DUP effect was present in 10 of 
55 patients for OGs and 8 of 55 for TSGs (Figure  5B). These 
amplifications, particularly in OGs, could potentially underlie the 
severe pathology.

For the TCGA LUSC dataset, OGs such as “EGFR,” “NFE2L2,” 
“MLLT11,” “NBPF10,” and “PSPH” as well as TSGs like “NOTCH2” 
exhibited the DUP effect in SSG patients, with the OGs’ DUP effect 
recorded in 7 out of 60 SSG patients (Figure  5C). In the TDP 
group 2/3 mix patients, OGs including “AKT1,” “EGFR,” “ZFR,” 
and “UBE2QL1” and TSGs like “NIPBL” demonstrated the DUP 
effect. Here, the OGs’ DUP effect was evident in 9 out of the 24 
TDP group 2/3 mix patients (Figure 5D). This higher proportion 
of affected patients underscores the link between severe pathology 
and the TDP group 2/3 mix.

FIGURE 3

Distribution of clinical data and prognosis across various TDP groups. (A–C) Graphs illustrate the distribution of clinical stage (A), distal metastasis (B), 
and therapy response (C) among TDP group patients within the TCGA LUAD dataset. (D) Kaplan–Meier survival curves and log-rank tests were 
executed for the TCGA LUAD dataset. TDP group 1/3 mix patients have better prognosis outcome than TDP group 2 patients (p-value = 0.0318), TDP 
group 1/3 mix patients have better prognosis outcome than TDP group 2/3 patients (p-value = 0.0152). (E–G) Charts depict the distribution of clinical 
stage (E), lymph node stage (F), and therapy response (G) for patients in different TDP groups within the TCGA LUSC dataset. (H) Kaplan–Meier survival 
curves and log-rank tests were conducted for the TCGA LUSC dataset. TDP group 1 patients have better prognosis outcome than TDP group 1/3 
patients (p-value = 0.0108), TDP group 1 patients have better prognosis outcome than TDP group 3 patients (p-value = 0.0215).
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Insights into mutation feature in distinct 
TDP groups

We further examined the mutation characteristics of OGs and 
TSGs across various TDP groups. Among TCGA LUAD patients, 

commonly occurring mutations of OG “KRAS” and TSGs such as 
“TP53,” “KEAP1,” “RB1,” and “SMARCA4” were identified in both 
TDP group 2 and TDP group 2/3 mix patients. Additionally, each 
group presented with its unique set of mutated genes (Figures 6A,B). 
Previous research by Ambrogio et al. (46) highlighted that “KRAS” 

FIGURE 5

Amplification effects on cancer genes across different TDP groups. (A,B) Graphs represent the amplification effects on OGs and TSGs in TDP group 2 
(A) compared to TDP group 2/3 mix (B) for TCGA LUAD patients. (C,D) Illustrations depict the amplification effects on OGs and TSGs in SSG (C) versus 
TDP group 2/3 mix (D) for TCGA LUSC patients.

FIGURE 4

Transcriptional features across different TDP groups. (A) Differentially expressed genes are showcased between SSG and TDP group 2/3 mix in TCGA 
LUAD patients. (B,C) Charts depict pathways that are upregulated in SSG (B) compared to those in TDP group 2/3 mix (C) of TCGA LUAD patients. 
(D) Illustration of the differentially expressed genes between TDP group 1 and TDP group 2/3 mix in TCGA LUSC patients. (E,F) Graphs highlight 
pathways that are upregulated in TDP group 1 (E) versus those in TDP group 2/3 mix (F) of TCGA LUSC patients.
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dimerization enhances the survival of both human and murine KRAS 
mutant LUAD tumor cells possessing wild-type KRAS, explaining the 
observed resistance to MEK inhibition. Further, Romero et al. (47) 
suggested a link between Keap1 loss and KRAS-driven lung cancer.

For TCGA LUSC patients, recurring mutations in TSGs like 
“TP53,” “CDKN2A,” “PTEN,” and “KEAP1” were observed in both 
SSG and TDP group  2/3 mix patients. Specifically, mutations in 
“NFE2L2” and “ZNF750” were detected in SSG patients, while 
“SEMG2,” “CSMD3,” “HGF,” “ZNF479,” and “MFAP5” mutations were 
noted in the TDP group 2/3 mix patients (Figures 6C,D). A study by 
Zhang et al. (48) identified novel genetic disruptions in squamous cell 
lung carcinoma, pointing out that “CSMD3” is associated with a high 
frequency of single nucleotide variants.

Smaller span size TDP groups have greater 
drug sensitivity

To delve deeper into the varied drug sensitivities across different 
TDP groups, we sourced pharmacological profiles and segmented 
copy-number profiles for 24 anticancer drugs, encompassing 504 cell 
lines from the Cancer Cell Line Encyclopedia3 (31).

For the CCLE LUAD cohort, we segmented cell lines into distinct 
TDP groups using criteria consistent with the TCGA cohort. Upon 
calculating the TDP score (Supplementary Figures 1A,B) and evaluating 
the Gaussian fitting distribution (Supplementary Figures  1C,D), 

3 https://portals.broadinstitute.org/ccle/data

we classified cell lines into TDP group 1 and TDP group 1/2 mix. The 
former comprised six samples, while the latter included twenty-two. 
Aligning TDP groups with drug therapy concentration data, we noted 
that following Lapatinib treatment (targeting the “EGFR” gene), the 
IC50 for TDP group 1/2 mix cell lines was considerably higher than for 
TDP group 1 cell lines, yielding a p-value of 0.0107 (one-sided Wilcoxon 
test) (Supplementary Figure 1E). A parallel outcome emerged when 
LUAD cell lines were treated with Panobinostat (targeting the “HDAC” 
gene), where the p-value was 0.0318 (Supplementary Figure 1F).

A comparable analysis was executed for CCLE LUSC cell lines 
treated with AZD6244 (targeting the “MEK” gene). This resulted in the 
identification of four TDP group  1 cell lines and seventeen TDP 
group 1/2 mix cell lines. The IC50 of the TDP group 1/2 mix cell lines 
was markedly higher than that of the TDP group 1 cell lines, with a 
p-value of 0.0333 (one-sided Wilcoxon test) (Supplementary Figure 1G).

Conclusively, TDP groups with smaller span sizes exhibited lower 
IC50 values, signifying that their drug sensitivity surpassed that of 
groups with larger span sizes.

Discussion

Recurrent genomic rearrangements, such as duplications, 
translocations, inversions, and deletions, have become a focal point in 
current research, specifically in the context of TDP. This article 
explores of TDP, identifying six unique TDP groups based on TD span 
size, each with distinct characteristics. Notably, TDP group 1 and SSG 
stand out as exemplars of genomic complexity, while the non-TDP 
group exhibits the least complexity. Referring to Macintyre’s et al. (49) 
research, we draw connections between high genomic complexities, 

FIGURE 6

Mutation characteristics of cancer genes across different TDP groups. (A,B) The mutation patterns of OGs and TSGs are displayed for TDP group 2 
(A) in comparison to TDP group 2/3 mix (B) in TCGA LUAD patients. (C,D) Charts showcase the mutation characteristics of OGs and TSGs for SSG 
(C) versus TDP group 2/3 mix (D) in TCGA LUSC patients.
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particularly CN signatures 1, 7, and 8, and favorable prognoses, with 
CN signature 7 indicating a tandem duplicator phenotype.

As expected, both TDP group  1 and SSG patients experience 
significantly improved recurrence-free survival, characterized by a 
moderate clinical stage, primarily “stage I” and “stage II” absence of 
distal metastases, moderate lymph node stages, and positive therapy 
response. In contrast, a substantial portion of TDP group 2/3 mix 
patients presents severe pathology, evident metastasis, advanced 
lymph node stages, and less responsive therapy outcomes. We propose 
that the length of TDP may serve as a potential biomarker for 
predicting lung cancer recurrence. Considering the clinical relevance 
of TDP in oncogenes such as EGFR and BRAF, targeted sequencing 
probes could be developed to detect these alterations more effectively, 
thereby enabling a more accurate assessment of patient prognosis.

Examining the clinical pathology at the transcriptomic level 
across different TDP groups reveals that SSG and TDP group  1 
patients activate numerous immune-associated pathways, potentially 
curbing tumor cell growth and spread. Conversely, the TDP group 2/3 
mix shows an enrichment of pathways driving cell growth and 
mobility, likely contributing to their severe pathology.

Analyzing gene amplification in the TDP group 2/3 mix highlights 
OG duplication, particularly emphasizing the frequent occurrence of 
EGFR in TCGA LUAD and LUSC cohorts. EGFR amplification, 
recognized for spurring cell proliferation, may hinder targeted 
treatments, especially in tumors with EGFR-Kinase domain 
duplications (26, 50). Notably, TDP group 2/3 mix patients exhibit a 
worse prognosis, possibly due to the amplification of EGFR wild-
type alleles.

On the mutation front, recurrent “KRAS” mutations are identified 
in both TDP group  2 and TDP group  2/3 mix of TCGA LUAD, 
suggesting potential resistance and adverse pathology. Similarly, the 
“CSMD3” mutation, a driver of LUSC, is prevalent in the TDP 
group 2/3 mix, contributing to severe pathology.

Neo-adjuvant studies underscore the responsiveness of TDP 
group 1 cell lines to treatments, with lower IC50 values than TDP 
group 1/2 mix cell lines. These differences suggest that the TDP tumor 
classification is a potent predictor of treatment response, irrespective 
of tumor type. Importantly, SSG and TDP group 1, prevalent in both 
LUAD and LUSC, share similar clinical, prognostic, transcriptional, 
mutational, and biological features. It should be noted that the drug 
susceptibility analysis based on CCLE data included only six LUAD 
cell lines, which limits the statistical power and raises the possibility 
of false-positive associations. Therefore, the results should 
be  interpreted as preliminary and hypothesis-generating. Further 
validation in larger datasets and experimental models is essential to 
confirm these findings. Thus, classifying TDP tumors into six distinct 
categories based on molecular determinants holds clinical significance, 
potentially guiding adjuvant chemotherapy benefits.

In summary, our findings significantly advance the classification 
of TDP tumor genomic complexity, delineating the molecular features 
of different TDP groups, elucidating the underpinnings of diverse 
pathologies and prognoses, and highlighting the clinical implications 
of distinct TDP groups in adjuvant chemotherapy. Despite these 
promising findings, several limitations should be acknowledged. First, 
the analyses were primarily based on retrospective datasets, which 
may introduce bias. Second, the drug susceptibility analysis was 
limited by the small number of LUAD cell lines in the CCLE dataset, 

which may affect the robustness of the results. Third, functional and 
mechanistic validation of the TDP subtypes and their association with 
drug response is lacking. Future studies should address these 
limitations through larger, prospective cohorts and 
experimental validation.

Conclusion

We conducted a systematic analysis of the molecular 
characteristics of TDP, establishing a link between TDP, clinical 
pathology, therapeutic response, and drug sensitivity. Our findings 
indicate that patients with a smaller span size exhibit a better 
therapeutic response and a more active immune system. This insight 
lays the groundwork for a deeper exploration of the roles TDP plays 
in cancer, the deep exploration in TDP by using single cell genome 
data with single cell transcript data might improve the explanation of 
difference between heterogenous TDP cell types. Moreover, TDP 
classification would help identify patients who could benefit 
from chemotherapy.

Code availability

The code of this manuscript was deposited in Github, the website is 
https://github.com/jacklee2thu/Comprehensive-multi-omics-analysis-of- 
tandem-duplicator-phenotypes-in-non-small-cell-lung-cancer.

Data availability statement

The datasets generated and/or analyzed during the current study are 
available in the UCSC Cancer Genomic Browser repository and CCLE 
repository. Pertinent masked CNV data, gene expression data (FPKM 
value), somatic mutation data, clinical data, including relapse events 
and timelines for TCGA LUAD patients, were sourced from the 
UCSC Cancer Genomic Browser https://xenabrowser.net/
datapages/?cohort=GDC%20TCGA%20Lung%20Adenocarcinoma%20
(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.
edu%3A443. These data for TCGA LUSC patients were deposited at 
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20
Lung%20Squamous%20Cell%20Carcinoma%20(LUSC)&removeHub=
https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443. The cell lines data 
and drug resistance data were source from https://xenabrowser.net/
datapages/?cohort=Cancer%20Cell%20Line%20Encyclopedia%20
(CCLE)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.
edu%3A443.

Author contributions

JL: Writing  – original draft, Writing  – review & editing. XP: 
Writing – original draft. YB: Writing – original draft. JHu: Writing – 
review & editing. JP: Writing  – review & editing. CB: Writing  – 
original draft, Writing – review & editing. JHo: Writing – original 
draft, Writing  – review & editing. YC: Writing  – original draft, 
Writing – review & editing.

https://doi.org/10.3389/fmed.2025.1556840
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://github.com/jacklee2thu/Comprehensive-multi-omics-analysis-of-tandem-duplicator-phenotypes-in-non-small-cell-lung-cancer
https://github.com/jacklee2thu/Comprehensive-multi-omics-analysis-of-tandem-duplicator-phenotypes-in-non-small-cell-lung-cancer
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Lung%20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Lung%20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Lung%20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Lung%20Adenocarcinoma%20(LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Lung%20Squamous%20Cell%20Carcinoma%20(LUSC)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Lung%20Squamous%20Cell%20Carcinoma%20(LUSC)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=GDC%20TCGA%20Lung%20Squamous%20Cell%20Carcinoma%20(LUSC)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=Cancer%20Cell%20Line%20Encyclopedia%20(CCLE)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=Cancer%20Cell%20Line%20Encyclopedia%20(CCLE)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=Cancer%20Cell%20Line%20Encyclopedia%20(CCLE)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=Cancer%20Cell%20Line%20Encyclopedia%20(CCLE)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443


Li et al. 10.3389/fmed.2025.1556840

Frontiers in Medicine 10 frontiersin.org

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This work was 
supported in part by the National Natural Science Foundation of 
China (No. 82404091), the Yunnan Fundamental Research Projects 
(202501CF070023), the Health Commission Foundation of 
Yunnan Province (2023-KHRCBZ-B15), the National Natural 
Science Foundation of China (No. 82302957), Major Science and 
Technology Project of Yunnan Province (202402AA310016), 
Yunnan Province Key Basic Research Science and Technology Plan 
Project (202201AS070009), Yunnan Province Xingdian Famous 
Doctor Plan Project (XDYC-MY-2022-0029).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2025.1556840/
full#supplementary-material

References
 1. Eisfeldt J, Pettersson M, Vezzi F, Wincent J, Käller M, Gruselius J, et al. 

Comprehensive structural variation genome map of individuals carrying complex 
chromosomal rearrangements. PLoS Genet. (2019) 15:e1007858:e1007858. doi: 
10.1371/journal.pgen.1007858

 2. Pros E, Saigi M, Alameda D, Gomez-Mariano G, Martinez-Delgado B, 
Alburquerque-Bejar JJ, et al. Genome-wide profiling of non-smoking-related lung 
cancer cells reveals common RB1 rearrangements associated with histopathologic 
transformation in EGFR-mutant tumors. Ann Oncol. (2020) 31:274–82. doi: 
10.1016/j.annonc.2019.09.001

 3. Koch L. Cancer genetics: a 3D view of genome rearrangements. Nat Rev Genet. 
(2017) 18:456. doi: 10.1038/nrg.2017.56

 4. Xu C, Xia P, Li J, Lewis KB, Ciombor KK, Wang L, et al. Discovery and validation 
of a 10-gene predictive signature for response to adjuvant chemotherapy in stage II and 
III colon cancer. Cell Rep Med. (2024) 5:101661. doi: 10.1016/j.xcrm.2024.101661

 5. Zhu X, Li Y, Gu N. Application of artificial intelligence in the exploration and 
optimization of biomedical nanomaterials. Nano Biomed Eng. (2023) 15:342–53. doi: 
10.26599/NBE.2023.9290035

 6. Tade RS, Jain SN, Satyavijay JT, Shah PN, Bari TD, Patil TM, et al. Artificial 
intelligence in the paradigm shift of pharmaceutical sciences: a review. Nano Biomed 
Eng. (2024) 16:64–77. doi: 10.26599/NBE.2023.9290043

 7. Soca-Chafre G, Montiel-Davalos A, Rosa-Velazquez IA, Caro-Sanchez CHS, Pena-
Nieves A, Arrieta O. Multiple molecular targets associated with genomic instability in 
lung cancer. Int J Genomics. (2019) 2019:9584504. doi: 10.1155/2019/9584504

 8. Li J, Chen J, Sun X, Yang H, Sun K, Liu C, et al. Uncovering chromatin accessibility 
and cancer diagnostic potential via cell-free DNA utilization. Sci Bull. (2024) 69:2987–92. 
doi: 10.1016/j.scib.2024.04.013

 9. Zhang X, Li J, Lan X, Li J. Cell-free DNA-associated multi-feature applications in 
cancer diagnosis and treatment. Clin Transl Discov. (2024) 4:e280. doi: 10.1002/ctd2.280

 10. Menghi F, Inaki K, Woo X, Kumar PA, Grzeda KR, Malhotra A, et al. The tandem 
duplicator phenotype as a distinct genomic configuration in cancer. Proc Natl Acad Sci 
USA. (2016) 113:E2373–82. doi: 10.1073/pnas.1520010113

 11. Menghi F, Liu ET. Reply to Watkins et  al.: Whole-genome sequencing-based 
identification of diverse tandem duplicator phenotypes in human cancers. Proc Natl 
Acad Sci USA. (2016) 113:E5259–60. doi: 10.1073/pnas.1610624113

 12. Catchen JM, Braasch I, Postlethwait JH. Conserved synteny and the zebrafish 
genome. Methods Cell Biol. (2011) 104:259–85. doi: 10.1016/B978-0-12-374814-0.00015-X

 13. Baik CS, Wu D, Smith C, Martins RG, Pritchard CC. Durable response to tyrosine 
kinase inhibitor therapy in a lung cancer patient harboring epidermal growth factor 
receptor tandem kinase domain duplication. J Thorac Oncol. (2015) 10:e97–9. doi: 
10.1097/JTO.0000000000000586

 14. Choi EY, Patel K, Haddad MR, Yi L, Holmes C, Goldstein DS, et al. Tandem 
duplication of exons 1–7 neither impairs Atp7a expression nor causes a Menkes disease 
phenotype. JIMD Rep. (2015) 20:57–63. doi: 10.1007/8904_2014_391

 15. Bailey EJ, Duffield AS, Greenblatt SM, Aplan PD, Small D. Effect of FLT3 ligand on 
survival and disease phenotype in murine models harboring a FLT3 internal tandem 
duplication mutation. Comp Med. (2013) 63:218–26. doi: 10.30802/AALAS-CM-13-000014

 16. Zhou B, Wang GZ, Wen ZS, Zhou YC, Huang YC, Chen Y, et al. Somatic mutations 
and splicing variants of focal adhesion kinase in non-small cell lung cancer. J Natl Cancer 
Inst. (2018) 110:195–204. doi: 10.1093/jnci/djx157

 17. Glodzik D, Morganella S, Davies H, Simpson PT, Li Y, Zou X, et al. A somatic-
mutational process recurrently duplicates germline susceptibility loci and tissue-specific 
super-enhancers in breast cancers. Nat Genet. (2017) 49:341–8. doi: 10.1038/ng.3771

 18. Popova T, Manie E, Boeva V, Battistella A, Goundiam O, Smith NK, et al. Ovarian 
cancers harboring inactivating mutations in CDK12 display a distinct genomic 
instability pattern characterized by large tandem duplications. Cancer Res. (2016) 
76:1882–91. doi: 10.1158/0008-5472.CAN-15-2128

 19. Menghi F, Barthel FP, Yadav V, Tang M, Ji B, Tang Z, et al. The tandem duplicator 
phenotype is a prevalent genome-wide cancer configuration driven by distinct gene 
mutations. Cancer Cell. (2018) 34:197–210.e5. doi: 10.1016/j.ccell.2018.06.008

 20. Wang C, Yin R, Dai J, Gu Y, Cui S, Ma H, et al. Whole-genome sequencing reveals 
genomic signatures associated with the inflammatory microenvironments in Chinese 
NSCLC patients. Nat Commun. (2018) 9:2054. doi: 10.1038/s41467-018-04492-2

 21. Garsed DW, Pandey A, Fereday S, Kennedy CJ, Takahashi K, Alsop K, et al. The 
genomic and immune landscape of long-term survivors of high-grade serous ovarian 
cancer. Nat Genet. (2022) 54:1853–64. doi: 10.1038/s41588-022-01230-9

 22. Ricciuti B, Wang X, Alessi JV, Rizvi H, Mahadevan NR, Li YY, et al. Association of 
high tumor mutation burden in non-small cell lung cancers with increased immune 
infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression 
levels. JAMA Oncol. (2022) 8:1160–8. doi: 10.1001/jamaoncol.2022.1981

 23. Wang S, Yuan P, Mao B, Li N, Ying J, Tao X, et al. Genomic features and tumor 
immune microenvironment alteration in NSCLC treated with neoadjuvant PD-1 
blockade. NPJ Precis Oncol. (2022) 6:2. doi: 10.1038/s41698-021-00244-6

 24. Chen Y, Zheng Q, Wang H, Tang P, Deng L, Li P, et al. Integrating transcriptomics 
and proteomics to analyze the immune microenvironment of cytomegalovirus 
associated ulcerative colitis and identify relevant biomarkers. BioData Min. (2024) 17:26. 
doi: 10.1186/s13040-024-00382-0

 25. Du Z, Brown BP, Kim S, Ferguson D, Pavlick DC, Jayakumaran G, et al. Structure–
function analysis of oncogenic EGFR Kinase Domain Duplication reveals insights into 
activation and a potential approach for therapeutic targeting. Nat Commun. (2021) 
12:1382. doi: 10.1038/s41467-021-21613-6

 26. Wang J, Li X, Xue X, Ou Q, Wu X, Liang Y, et al. Clinical outcomes of EGFR kinase 
domain duplication to targeted therapies in NSCLC. Int J Cancer. (2019) 144:2677–82. 
doi: 10.1002/ijc.31895

 27. Sheikine Y, Pavlick D, Klempner SJ, Trabucco SE, Chung JH, Rosenzweig M, et al. 
BRAF in lung cancers: analysis of patient cases reveals recurrent BRAF mutations, 
fusions, kinase duplications, and concurrent alterations. JCO Precis Oncol. (2018):2. doi: 
10.1200/PO.17.00172

https://doi.org/10.3389/fmed.2025.1556840
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2025.1556840/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2025.1556840/full#supplementary-material
https://doi.org/10.1371/journal.pgen.1007858
https://doi.org/10.1016/j.annonc.2019.09.001
https://doi.org/10.1038/nrg.2017.56
https://doi.org/10.1016/j.xcrm.2024.101661
https://doi.org/10.26599/NBE.2023.9290035
https://doi.org/10.26599/NBE.2023.9290043
https://doi.org/10.1155/2019/9584504
https://doi.org/10.1016/j.scib.2024.04.013
https://doi.org/10.1002/ctd2.280
https://doi.org/10.1073/pnas.1520010113
https://doi.org/10.1073/pnas.1610624113
https://doi.org/10.1016/B978-0-12-374814-0.00015-X
https://doi.org/10.1097/JTO.0000000000000586
https://doi.org/10.1007/8904_2014_391
https://doi.org/10.30802/AALAS-CM-13-000014
https://doi.org/10.1093/jnci/djx157
https://doi.org/10.1038/ng.3771
https://doi.org/10.1158/0008-5472.CAN-15-2128
https://doi.org/10.1016/j.ccell.2018.06.008
https://doi.org/10.1038/s41467-018-04492-2
https://doi.org/10.1038/s41588-022-01230-9
https://doi.org/10.1001/jamaoncol.2022.1981
https://doi.org/10.1038/s41698-021-00244-6
https://doi.org/10.1186/s13040-024-00382-0
https://doi.org/10.1038/s41467-021-21613-6
https://doi.org/10.1002/ijc.31895
https://doi.org/10.1200/PO.17.00172


Li et al. 10.3389/fmed.2025.1556840

Frontiers in Medicine 11 frontiersin.org

 28. Li J, Lan X. Perspective on new cell-free DNA technologies for early cancer 
detection. Cancer Biol Med. (2023) 21:139–43. doi: 10.20892/j.issn.2095-3941.2023.0159

 29. Li J, Sun X, Yang H, Chen J, Bu Z, Ji J, et al. Integrated analysis toolkit for dissecting 
whole-genome-wide features of cell-free DNA. Clin Transl Med. (2023) 13:e1212. doi: 
10.1002/ctm2.1212

 30. Li J, Xu M, Peng J, Wang J, Zhao Y, Wu W, et al. Novel technologies in cfDNA 
analysis and potential utility in clinic. Chin J Cancer Res. (2021) 33:708–18. doi: 
10.21147/j.issn.1000-9604.2021.06.07

 31. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, 
et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 
(2019) 569:503–8. doi: 10.1038/s41586-019-1186-3

 32. The Cancer Genome Atlas Research Network. Comprehensive molecular profiling 
of lung adenocarcinoma. Nature. (2014) 511:543–50. doi: 10.1038/nature13385

 33. The Cancer Genome Atlas Research Network. Comprehensive genomic 
characterization of squamous cell lung cancers. Nature. (2012) 489:519–25. doi: 
10.1038/nature11404

 34. Wang X, Chen H, Jiang R, Hong X, Peng J, Chen W, et al. Interleukin-17 activates 
and synergizes with the notch signaling pathway in the progression of pancreatic ductal 
adenocarcinoma. Cancer Lett. (2021) 508:1–12. doi: 10.1016/j.canlet.2021.03.003

 35. Wang S, Xia P, Zhang L, Yu L, Liu H, Meng Q, et al. Systematical Identification of 
Breast Cancer-Related Circular RNA Modules for Deciphering circRNA Functions 
Based on the Non-Negative Matrix Factorization Algorithm. Int J Mol Sci. (2019) 20:919. 
doi: 10.3390/ijms20040919

 36. Xu C, Ping Y, Zhao H, Ning S, Xia P, Wang W, et al. LncNetP, a systematical 
lncRNA prioritization approach based on ceRNA and disease phenotype association 
assumptions. Oncotarget. (2017) 8:114603–12. doi: 10.18632/oncotarget.23059

 37. Pang H, Jiang Y, Li J, Wang Y, Nie M, Xiao N, et al. Aberrant Nad+ metabolism 
underlies Zika virus-induced microcephaly. Nat Metab. (2021) 3:1109–24. doi: 
10.1038/s42255-021-00437-0

 38. Li J, Wang W, Xia P, Wan L, Zhang L, Yu L, et al. Identification of a five-lncRNA 
signature for predicting the risk of tumor recurrence in patients with breast cancer. Int 
J Cancer. (2018) 143:2150–60. doi: 10.1002/ijc.31573

 39. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic 
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

 40. Yu G, Wang LG, Han Y, He QY. Clusterprofiler: an R package for comparing 
biological themes among gene clusters. Omics. (2012) 16:284–7. doi: 
10.1089/omi.2011.0118

 41. Xu C, Qi R, Ping Y, Li J, Zhao H, Wang L, et al. Systemically identifying and 
prioritizing risk lncRNAs through integration of pan-cancer phenotype associations. 
Oncotarget. (2017) 8:12041–51. doi: 10.18632/oncotarget.14510

 42. Chen J, Sun Y, Li J, Lyu M, Yuan L, Sun J, et al. In-depth metaproteomics analysis 
of tongue coating for gastric cancer: a multicenter diagnostic research study. Microbiome. 
(2024) 12:6. doi: 10.1186/s40168-023-01730-8

 43. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. 
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic 
copy-number alteration in human cancers. Genome Biol. (2011) 12:R41. doi: 
10.1186/gb-2011-12-4-r41

 44. Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, et al. Cumulative 
haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer 
genome. Cell. (2013) 155:948–62. doi: 10.1016/j.cell.2013.10.011

 45. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. 
Mutational heterogeneity in cancer and the search for new cancer-associated genes. 
Nature. (2013) 499:214–8. doi: 10.1038/nature12213

 46. Ambrogio C, Kohler J, Zhou ZW, Wang H, Paranal R, Li J, et al. KRAS dimerization 
impacts MEK inhibitor sensitivity and oncogenic activity of mutant KRAS. Cell. (2018) 
172:857–868.e15. doi: 10.1016/j.cell.2017.12.020

 47. Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, et al. Keap1 
loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat 
Med. (2017) 23:1362–8. doi: 10.1038/nm.4407

 48. Zhang P, Kang B, Xie G, Li S, Gu Y, Shen Y, et al. Genomic sequencing and 
editing revealed the Grm8 signaling pathway as potential therapeutic targets of 
squamous cell lung cancer. Cancer Lett. (2019) 442:53–67. doi: 
10.1016/j.canlet.2018.10.035

 49. Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, et al. 
Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet. 
(2018) 50:1262–70. doi: 10.1038/s41588-018-0179-8

 50. Nukaga S, Yasuda H, Tsuchihara K, Hamamoto J, Masuzawa K, Kawada I, et al. 
Amplification of EGFR wild-type alleles in non-small cell lung cancer cells confers 
acquired resistance to mutation-selective EGFR tyrosine kinase inhibitors. Cancer Res. 
(2017) 77:2078–89. doi: 10.1158/0008-5472.CAN-16-2359

https://doi.org/10.3389/fmed.2025.1556840
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.20892/j.issn.2095-3941.2023.0159
https://doi.org/10.1002/ctm2.1212
https://doi.org/10.21147/j.issn.1000-9604.2021.06.07
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1038/nature13385
https://doi.org/10.1038/nature11404
https://doi.org/10.1016/j.canlet.2021.03.003
https://doi.org/10.3390/ijms20040919
https://doi.org/10.18632/oncotarget.23059
https://doi.org/10.1038/s42255-021-00437-0
https://doi.org/10.1002/ijc.31573
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.18632/oncotarget.14510
https://doi.org/10.1186/s40168-023-01730-8
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1016/j.cell.2013.10.011
https://doi.org/10.1038/nature12213
https://doi.org/10.1016/j.cell.2017.12.020
https://doi.org/10.1038/nm.4407
https://doi.org/10.1016/j.canlet.2018.10.035
https://doi.org/10.1038/s41588-018-0179-8
https://doi.org/10.1158/0008-5472.CAN-16-2359

	Comprehensive multi-omics analysis of tandem duplicator phenotypes in non-small cell lung cancer
	Introduction
	Methods
	Data collection
	TDP classification
	Clinical information collection and prognostic analysis
	Analysis of gene differential expression
	Somatic copy-number analysis
	TD-impacted cancer genes analysis
	Somatic single-nucleotide variation analysis
	Drug sensitivity analyses

	Results
	TDP patient identification and subtypes classification
	Clinical association and prognosis difference in distinct TDP groups
	Smaller span size group suggested active immune system
	Cancer gene amplification effect in distinct TDP groups
	Insights into mutation feature in distinct TDP groups
	Smaller span size TDP groups have greater drug sensitivity

	Discussion
	Conclusion
	Code availability

	References

