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Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that involves 
multiple systems. SLE is characterized by the production of autoantibodies and 
inflammatory tissue damage. This study further explored the role of immune-
related genes in SLE. We downloaded the expression profiles of GSE50772 using 
the Gene Expression Omnibus (GEO) database for differentially expressed genes 
(DEGs) in SLE. The DEGs were also analyzed for Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment. The gene modules 
most closely associated with SLE were then derived by Weighted Gene Co-
expression Network Analysis (WGCNA). Differentially expressed immune-related 
genes (DE-IRGs) in SLE were obtained by DEGs, key gene modules and IRGs. The 
protein–protein interaction (PPI) network was constructed through the STRING 
database. Three machine learning algorithms were applied to DE-IRGs to screen 
for hub DE-IRGs. Then, we  constructed a diagnostic model. The model was 
validated by external cohort GSE61635 and peripheral blood mononuclear cells 
(PBMC) from SLE patients. Immune cell abundance assessment was achieved by 
CIBERSORT. The hub DE-IRGs and miRNA networks were made accessible through 
the NetworkAnalyst database. We screened 945 DEGs, which are closely related to 
the type I interferon pathway and NOD-like receptor signaling pathway. Machine 
learning identified a total of five hub DE-IRGs (CXCL2, CXCL8, FOS, NFKBIA, CXCR2), 
and validated in GSE61635 and PBMC from SLE patients. Immune cell abundance 
analysis showed that the hub genes may be involved in the development of SLE 
by regulating immune cells (especially neutrophils). In this study, we identified 
five hub DE-IRGs in SLE and constructed an effective predictive model. These 
hub genes are closely associated with immune cell in SLE. These may provide 
new insights into the immune-related pathogenesis of SLE.
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1 Introduction

Systemic lupus erythematosus (SLE) is an immune-mediated, 
complex, chronic systemic disease (1). Approximately 400,000 new cases 
of SLE are diagnosed globally each year, and it predominantly affects 
young women (2). Due to its complex pathogenesis and multi-organ 
involvement, SLE affects patients’ quality of life and can endanger their 
lives, and may lead to psychological problems such as anxiety and 
depression (3). Genetics, hormones, and viral infections are all thought to 
contribute to the pathogenesis of SLE, but these factors ultimately result 
in immune dysregulation, which produces autoantibodies that lead to 
tissue damage (4). However, the pathogenesis of SLE is intricate and has 
not been thoroughly investigated. At this stage, SLE relies on drugs such 
as hydroxychloroquine and steroids to regulate immune function. 
Nevertheless, the toxic side effects of these drugs, such as infections, 
osteoporosis, and cardiovascular risks, should not be  ignored (5, 6). 
Although the use of biologics offers hope for patients with refractory 
lupus, they are expensive for long-term use and new treatments are 
urgently needed.

The emergence of bioinformatics provides an effective way for 
people to process and analyze large datasets. It is capable of parsing data 
such as genomes and transcriptomes to identify specific biomarkers 
associated with certain diseases, thus aiding in early diagnosis and risk 
assessment (7). In recent years machine learning has become an 
increasingly promising tool for solving complex problems in the 
biomedical field. When combined with bioinformatics facilitates 
improved accuracy and reliability in exploring diseases (8).

In this study, a comprehensive bioinformatics analysis incorporating 
machine learning algorithms was performed to identify hub IRGs and 
pathways in SLE using the GEO and Immport databases. We  then 
constructed a predictive model for SLE and validated the expression of 
the hub IRGs and the accuracy of the model using external datasets and 
RT-qPCR. Subsequently, we investigated a Pearson correlation analysis 
between hub genes and immune cells. Finally, we identified key miRNA 
molecules that interact with the hub genes. In summary, the study 
revealed hub IRGs in SLE, which will help to further elucidate the 
contribution of immune factors in SLE development and thus provide 
clues for exploring the complex etiology of SLE.

2 Materials and methods

2.1 Data collecting

The GEO database1 (9) was searched for the keyword “systemic 
lupus erythematosus” to obtain the SLE-related dataset GSE50772 and 
GSE61635. GSE50772 was used as the training cohort, while 
GSE61635 served as the validation group. Both datasets are based on 
the GPL570 platform. The GSE50772 contains peripheral blood 
samples from 61 SLE patients and 20 normal controls (NC), while 
GSE61635 contains 109 blood samples from SLE and NC. In addition, 
we acquired datasets of primary Sjögren’s Syndrome (pSS, GSE84844) 
and rheumatoid arthritis (RA, GSE17755). GSE84844 and GSE17755 
were used for subsequent assessment of the diagnostic value of the hub 
genes for pSS and RA. Table 1 provides details of all the datasets.

1 https://www.ncbi.nlm.nih.gov/geo/

2.2 Identification of DEGs and enrichment 
analysis

GSE50772 was normalized and filtered for DEGs using the 
“limma” package. The selection criteria for DEGs were set to|log2 
FoldChange| > 0.5, corrected p < 0.05. DEGs were displayed using 
volcano and heatmaps. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) function analysis of 
DEGs was conducted with “clusterprofile” package to understand 
the biological processes and signaling pathways in which they are 
involved. A corrected p < 0.05 was considered to 
be statistical significance.

2.3 Construction of weighted gene 
co-expression network

To screen key gene modules from different modules that affect the 
SLE phenotype, we constructed a co-expression network using the 
“WGCNA” package of R (10). The best soft threshold was first 
established by pickSoftThreshold function. Then, the module merging 
threshold was set to 0.25 to obtain co-expression modules. Every 
module contains a minimum of 20 genes and non-significant genes 
were grouped into gray module. Finally, the correlation between every 
gene module and phenotype was computed. The correlation between 
gene modules and SLE patients was also assessed by the values of gene 
significance (GS) and module membership (MM).

2.4 Acquisition of common genes (CGs) 
and construction of PPI networks

The common genes (CGs) of DEGs and key gene modules 
were obtained by Venn diagram. The STRING database2 (11) is 
commonly utilized to construct PPI networks. The minimum 
required reciprocal score was 0.4. Subsequent visualization was 
performed with Cytoscape software (version 3.9.1) (12). In 
addition, the PPI network nodes were scored utilizing Cytoscape’s 
molecular complex detection (MCODE) plugin to filter out the 
most important modules and genes. The setup parameters for the 
MCODE plugin in this study were MCODE score > 5, degree 
criticality = 2, node score criticality = 0.2, maximum depth = 100, 
k-score = 2.

2.5 Identification of DE-IRGs in SLE

There were 1793 IRGs were acquired from the ImmPort 
database3 (13). The Venn diagram showed that overlapping genes 
of IRGs and CGs are the DE-IRGs in SLE.

2 https://cn.string-db.org/

3 https://www.immport.org/shared
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2.6 Screening of hub DE-IRGs in SLE

The least absolute shrinkage and selection operator (LASSO) 
regression is usually applied to select features for high-
dimensional data, especially in gene expression data analysis (14). 
The basic principle is to perform variable selection by introducing 
L1 regularization terms, so as to efficiently screen out the 
important genes related to the target variables (15). Random 
forest (RF) is a machine learning method based on integrated 
learning, widely used in classification and regression problems, 
and can also be used to screen feature genes. In genomics and 
bioinformatics, random forests can help select the most relevant 
gene features to the target variable by assessing the importance 
of each gene to the prediction model (16). Support vector 
machine-recursive feature elimination (SVM-RFE) is a machine 
learning method commonly applied to screen signature genes. It 
is based on the principle of maximum interval of Support vector 
machine (SVM), through the model training samples, each 
feature score sorting, and then use the recursive feature 
elimination (RFE) algorithm step-by-step iterative way: remove 
the features with the smallest feature scores, and then use the 
remaining features to train the model again for the next iteration. 
The remaining characteristics are then utilized to train the model 
again for the next iteration, and finally the best combination of 
features is selected (17). In this study, we screened signature IRGs 
from 22 DE-IRGs using the three machine learning methods 
described above. The upset R diagram was subsequently utilized 
to obtain the intersecting genes of the three methods as the hub 
DE-IRGs of SLE.

2.7 Construction and validation of model

The accuracy of hub DE-IRGs selected by the machine learning 
methods was validated in another external SLE dataset. 
Subsequently, a model based on hub genes was constructed with 
an area under the curve (AUC) was greater than 0.8, indicating that 
the model has strong diagnostic value. Furthermore, we  also 
assessed the diagnostic worth of the hub genes for pSS and RA by 
ROC curves.

2.8 Acquisition of peripheral blood 
mononuclear cells (PBMCs)

Peripheral blood was collected from 30 patients diagnosed 
with SLE from June 2024 to December 2024 in the Department 
of Rheumatology, the Second Affiliated Hospital of Fujian 

Medical University. Peripheral blood was also collected from 22 
normal controls who excluded hepatitis B, diabetes mellitus, 
pathogenic infection, malignant tumor and other types of 
autoimmune diseases, such as RA and pSS. The diagnosis of 
SLE was based on the European League Against Rheumatism 
(EULAR)/American College of Rheumatology (ACR) 2019 
criteria. Furthermore, SLE disease activity was evaluated 
based on the SLE disease activity index 2000 (SLEDAI-2K) (18). 
We  also collected gender, age, and relevant clinical and 
laboratory indicators for all participants (Table 2). Erythrocyte 
lysate (C3702) and lymphocyte isolate (C0025) were purchased 
from Beyotime (Shanghai, China). Mononuclear cells from 
peripheral blood were isolated according to the appropriate 
instructions (19).

TABLE 1 Details of the datasets included in this study.

Dataset Platform Species Tissue Number of cases and controls Type of cohorts

GSE50772 GPL570

Homo sapiens Peripheral blood

61 SLE/20NC Training

GSE61635 GPL570 79 SLE/30NC Validating

GSE84844 GPL570 30 pSS/30NC Validating

GSE17755 GPL1291 112RA/53 NC Validating

TABLE 2 Clinical traits of SLE patients and normal controls.

Clinical traits* SLE 
(n = 30)

Normal controls 
(n = 22)

Sex, male/female 2/28 2/20

Age (year) 35.77 ± 15.59 33.25 ± 9.99

Duration (year) 8.63 ± 7.69

LN 12 (30)

SLEDAI scores 11.5 ± 3.82

ANA (positive) 29 (30)

Anti-dsDNA antibody (positive) 26 (30)

Lupus anticoagulant (positive) 12 (30)

Leukocyte (109/L) 5.63 ± 1.79

Platelets (109/L) 180.65 ± 94.51

CRP (mg/L) 10.05 ± 13.24

ESR (mm/h) 20.2 ± 15.69

C3 (g/L) 0.73 ± 0.45

C4 (g/L) 0.1 ± 0.05

IgG (g/L) 15.14 ± 8.05

IgA (g/L) 2.67 ± 1.8

IgM (g/L) 0.8 ± 0.63

Serum creatinine (μmol/L) 72.81 ± 58.24

24 h urine protein (positive) 12 (30)

*LN, lupus nephritis; SLEDAI, systemic lupus erythematosus disease activity index; ANA, 
antinuclear antibody; Anti-dsDNA antibody, anti-double stranded deoxyribonucleic acid 
antibody; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; C3/C4, complement 
3/complement 4; Igs, immunoglobulins.
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2.9 RT-qPCR to validate hub genes 
expression

The RNA extraction kit was purchased from BioTeke (Beijing, 
China). See reference (19) for specific methodology. Reverse transcription 
reagents were purchased from Takara (Japan). The cDNA synthetic 
reaction was run at 37°C for 15 min and then heated at 85°C for 3 min to 
terminate. The cDNA was subsequently kept in liquid nitrogen. Finally, 
ABI PRISM 7500 PCR instrument (Applied Biosystems, United States) 
was used to amplify the target genes. The PCR cycle was performed as 
follows: 95°C for 15 min, 40 cycles of 95°C for 5 s, and 60°C for 30 s. 
B-actin was used as housekeeping gene to normalize target gene data. The 
primer sequences are shown in Table 3.

2.10 Evaluation of immune cell abundance

Since SLE is a classical autoimmune disease, immune cells play an 
important part in its development. CIBERSORT4 utilizes a gene 
expression matrix from a sample compared to a known set of genes that 
characterize the cell type using an inverse convolution algorithm to infer 
the relative level of each type of cell in the sample (20). We obtained the 
composition of 22 immune cells in SLE by Cibersort. We then compared 
the difference in the distribution of immune cells between the SLE and 
NC groups. Subsequent Pearson correlation analysis between hub genes 
and immune cells was calculated. For the above analysis, p < 0.05 
represents statistical significance.

2.11 Construction of gene-miRNA 
networks

We uploaded hub genes to NetworkAnalyst website5 (21) to get 
miRNAs closely related to hub genes and constructed their 
interaction networks.

4 https://cibersortx.stanford.edu/

5 https://www.networkanalyst.ca/NetworkAnalyst/

2.12 Statistical analysis

The R software (version 4.4.2) was employed for all analyses. 
Pearson analysis was applied to investigate the correlation between 
hub genes and immune cells, and p < 0.05 was considered to 
be  statistical significance. The specific flow chart of the study is 
summarized in Figure 1.

3 Results

3.1 Acquisition and enrichment analysis of 
DEGs

The median gene expression of single samples remained 
consistent after normalization to the training cohort, indicating 
that potential batch effects were rectified 
(Supplementary Figure 1). Based on the above selection criteria, 
we obtained 945 DEGs from GSE50772 (Figure 2A). The heatmap 
showed that they were expressed differently in NC and SLE 
groups (Figure 2B). The specific names of the DEGs were given 
in the Supplementary file. GO analysis showed that DEGs were 
mainly closely related to the type I interferon (Figure 2C). While 
KEGG enrichment showed that DEGs were primarily engaged in 
NOD-like receptor signaling pathway and TNF signaling pathway 
(Figure 2D). We chose the NOD-like receptor signaling pathway 
to demonstrate the distribution of DEGs in it 
(Supplementary Figure 2).

3.2 Identification of key module genes

Weighted Gene Co-expression Network Analysis showed that 
the mean connectivity is 0.9 when the soft threshold β is 5 
(Figure  3A). A total of 17 gene modules were recognized 
(Figure  3B). We  chose modules with a disease correlation 
coefficient greater than 0.7 as key modules. Green yellow and 
pink modules were found to fulfill our requirements and they 
satisfied p < 0.05 (Figures 3C–E). We take the intersection of the 
two modules’ genes and DEGs to get their common genes (CGs). 
A total of 175 CGs were obtained (Figure 3F). We then uploaded 
the CGs to the STRING database and visualized the PPI network 
using Cytoscape. We got a PPI network consisting of 54 points 
and 247 edges (Supplementary Figure  3A). The most critical 
module is composed of 20 points and 147 edges 
(Supplementary Figure  3B). This suggested that CGs work 
together in the same biological process.

3.3 Identification of the hub DE-IRGs in SLE

The Venn plot identified 22 DE-IRGs in SLE (Figure 4A). 
Three machine learning methods was applied to screen signature 
genes. LASSO regression screened eight signature genes 
(Figures  4B,C). Random Forest ranked the 22 DE-IRGs for 
importance to get the top  10 genes with the highest scores 
(Figure 4D). A total of 22 signature genes were obtained from 
SVM-RFE (Figure 4E). The intersection of the signature genes 

TABLE 3 The primers used in this study.

Gene names Primers sequences (5′ → 3′)

B-actin-F CATGTACGTTGCTATCCAGGC

B-actin-R CTCCTTAATGTCACGCACGAT

CXCL2-F GGCAGAAAGCTTGTCTCAACCC

CXCL2-R CTCCTTCAGGAACAGCCACCAA

CXCR2-F TCCGTCACTGATGTCTACCTGC

CXCR2-R TCCTTCAGGAGTGAGACCACCT

CXCL8-F GAGAGTGATTGAGAGTGGACCAC

CXCL8-R CACAACCCTCTGCACCCAGTTT

FOS-F GCCTCTCTTACTACCACTCACC

FOS-R AGATGGCAGTGACCGTGGGAAT

NFKBIA-F TCCACTCCATCCTGAAGGCTAC

NFKBIA-R CAAGGACACCAAAAGCTCCACG
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obtained from the three machine learning algorithms is taken to 
acquire the final five hub genes (CXCL2, CXCL8, FOS, NFKBIA, 
CXCR2) (Figure 4F). The hub genes are positively correlated with 
each other (Figure  4G). This implied that hub genes are 
synergistic in some functions.

3.4 Construction and validation of models

Interestingly, all of the hub genes are upregulated genes in the 
SLE training cohort (p < 0.05) (Figure  5A). We  subsequently 
constructed a nomogram of SLE (Figure 5B). The AUC for ROC 
was found to be greater than 0.8, indicating that performed well 
in diagnosing SLE (Figure 5C). We then verified in the external 
cohort that the expression of hub genes was consistent with the 
training cohort (Figure 5D). And the accuracy of the model was 
verified again, and it was found that the AUCs were all greater 
than 0.8, which more strongly supported our results (Figure 5E). 
Further RT-qPCR results indicated that the expression of hub 
genes in the SLE group was obviously higher than that in the NC 
group (Figure  5F). Then, we  detected that the expression of 
CXCL8 in the pSS was significantly higher than that in the NC 
group, while NFKBIA was significantly lower than that in 
the NC group (Supplementary Figure 4A). Whereas in RA, the 
expression of CXCL8, CXCR2 and NFKBIA was markedly higher 
than that in the NC group (Supplementary Figure  4B). 
Surprisingly, although the hub genes have some diagnostic value 
for pSS and RA, their diagnostic efficacy is not as good as that of 

SLE (AUCs < 0.8) (Supplementary Figures 4C,D). This reinforces 
the specificity of the hub genes in the diagnosis of SLE.

3.5 Immune cell abundance analysis

Since SLE is a classical autoimmune disease, immune cells play an 
essential function in its pathogenesis. Our results showed that 
monocytes are the major immune component cells in SLE and NC 
groups (Figure  6A). The second is NK cells resting (Figure  6B). 
Meanwhile, our results revealed that T cells regulatory (p < 0.05), M2 
macrophages (p < 0.001) and dendritic cells activated (p < 0.001), 
mast cells activated (p < 0.01) and neutrophils (p < 0.0001) were 
significantly higher in SLE (Figure  6C). In contrast, B cells naive 
(p < 0.05), T cells CD4 naive (p < 0.05), T cells CD4 memory resting 
(p < 0.05), NK cells resting (p < 0.001), mast cells resting (p < 0.0001) 
and eosinophils (p < 0.05) were significantly lower in SLE than in NC 
(Figure 6C). These results suggest that M2 macrophages and T cells 
are the major immune component cells in SLE patients. These cells 
may play an important role in the pathogenesis of SLE (22).

3.6 Correlation between the hub genes and 
immune cells

In order to further understand the relationship between hub genes 
and immune cells, we performed Pearson correlation analysis on them. 
The results of the analysis showed that all hub genes showed strong 

FIGURE 1

The specific flowchart of this study.
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correlation with a variety of immune cells (Figure 7A). Specifically, 
CXCL8 was positively correlated with neutrophils (R = 0.64) and 
negatively correlated with mast cells resting (R = −0.59) (Figure 7B). 

FOS correlated with immune cells in the same way as CXCL8, also 
positively with neutrophils (R = 0.56) and negatively with mast cells 
resting (R = −0.61) (Figure  7C). CXCL2 was positively related to 

FIGURE 2

Identification of DEGs in systemic lupus erythematosus (SLE) and enrichment analysis. (A) The volcano plot displayed the DEGs. Red represents 
upregulated genes, while blue represents downregulated genes. (B) The heatmap showed the expression of DEGs in normal controls (NC) and SLE. 
(C) Bar and bubble plots of GO enrichment analysis. (D) Bar and bubble plots of KEGG enrichment analysis.
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FIGURE 3

Weighted gene co-expression network analysis (WGCNA) for SLE. (A) The soft threshold and mean connectivity of the WGCNA network. (B) The 
clustering dendrogram of the WGCNA network. (C) The heatmap depicts the correlation of the different modules with clinical features, especially SLE 
and NC. (D) The scatter plot between the gene significance (GS) and module members (MM) in the green yellow module. (E) The scatter plot between 
the GS and MM in the pink module. (F) The Venn plot displayed the common genes (CGs) of yellow-green modular genes, pink modular genes, and 
DEGs.
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multiple immune cells, which included M2 macrophages (R = 0.47), 
neutrophils (R = 0.48), and activated mast cells (R = 0.5), while it was 
negatively associated with mast cells resting (R = −0.63) (Figure 7D). 
NFKBIA showed a strong negative correlation with mast cells resting 

(R = −0.73) (Figure  7E). CXCR2 possessed the strongest positive 
correlation with neutrophils (R = 0.88) and was negatively correlated 
with CD4+T cells naive (R = −0.45) (Figure 7F). These suggest that hub 
genes are strongly associated with immune cells in SLE.

FIGURE 4

Identification of hub immune-related genes in SLE. (A) The Venn diagram showed 22 differentially expressed immune-related genes (DE-IRGs) for SLE. 
(B) Path diagram of LASSO regression coefficients for DE-FRGs in the training set. (C) LASSO regression cross-validation curves. A 10-fold cross-
validation was used in the training set to determine the optimal λ value. (D) The lollipop plot illustrates the relative importance of genes in the random 
forest model in the training set. (E) SVM-RFEs algorithm to screen feature genes. (F) The upset depicted the hub genes obtained by three machine 
learning algorithms. (G) The heatmap revealed the correlation between hub genes.
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3.7 Construction of hub genes-miRNA 
network

Many studies have demonstrated that miRNAs perform their 
biological functions by participating in the regulation of their 
downstream gene translation. Therefore, we hope to find the key 
miRNAs that interact with these hub genes by constructing a hub 
genes-miRNAs network. The results showed that hsa-mir-335-5p 
is the molecule to which these hub genes are co-connected 
(Figure 8).

4 Discussion

Genome-wide studies have identified a number of susceptibility 
genes for SLE, but the IRGs for SLE remain largely unknown (23). In 
this study, we screened 945 DEGs for SLE. Further GO functional 
analysis of DEGs revealed that they were strongly associated with type 
I interferon and immune function. These results are consistent with 
previous studies (24–26). KEGG enrichment showed that DEGs were 
principally participated in NOD-like receptor signaling pathway and 
TNF signaling pathway. Inhibition of certain important molecules in 

FIGURE 5

The construction and validation of the model and hub genes. (A) Expression levels of hub genes in the training set GSE50772. (B) The nomogram 
illustrated the diagnostic model for diagnosing SLE. (C) ROC analysis of five hub genes of the training cohort. (D) Expression levels of hub genes in the 
validation set GSE61635. (E) ROC analysis of five hub genes of the validating cohort. (F) The hub genes were verified by RT-qPCR of peripheral blood 
mononuclear cells (PBMC) from SLE patients. **p < 0.01, ****p < 0.0001.
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the NOD-like receptor signaling pathway and the TNF signaling 
pathway are effective strategies for the treatment of SLE (27–31). There 
are many studies on this type of research, which we will not elaborate 
here. In addition, WGCNA constructed modules that were closely 
related to SLE and selected the two modules with the strongest 
correlation to take the intersection with DEGs to get CGs. Then 

we  obtained DE-IRGs in SLE by CGs and IRGs. Three machine 
learning algorithms were selected for these DE-IRGs to obtain hub 
genes (CXCL2, CXCL8, FOS, NFKBIA, CXCR2). These hub genes 
showed high sensitivity and high specificity for the diagnosis of SLE 
(AUC > 0.8). We also validated the model by validation cohort and 
PBMC. Subsequently, we analyzed the large differences in immune 

FIGURE 6

Analysis of immune cell abundance in SLE. (A) The heatmap showed the distribution of immune cells in SLE and NC. (B) Relative percentage of 
immune cell subpopulations in SLE and NC. (C) The box plot displayed the differences in the levels of immune cells in SLE and NC. *p < 0.05, 
***p < 0.001, ****p < 0.0001.

https://doi.org/10.3389/fmed.2025.1557307
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1557307

Frontiers in Medicine 11 frontiersin.org

cells expression in SLE and NC as well as the possible influence of hub 
genes on the involvement of multiple immune cells in the pathogenesis 
of SLE. Therefore, we  hypothesized that these five hub genes are 
important immune-related biomarkers for SLE. Finally, hsa-mir-
335-5p was found to be tightly associated with the hub genes.

CXCL2 (C-X-C Motif Chemokine Ligand 2), CXCL8 (C-X-C Motif 
Chemokine Ligand 8) and CXCR2 (C-X-C Motif Chemokine Receptor 
2) are all members of the chemokine family. CXCL2 and CXCR2 are a 
bunch of important chemokine ligands and receptors. CXCL2 – CXCR2 

has been shown to play an important role in the development of a 
variety of tumors and is closely associated with neutrophil activation 
and migration (32–35). Neutrophils are the most abundant immune 
cells in the body and are inextricably linked to the development of 
SLE. Abnormal activation of neutrophils can exacerbate inflammatory 
responses and tissue damage. Neutrophils can also promote immune 
complex formation through the release of cytokines, the generation of 
neutrophil extracellular traps (NETs), and the production of oxidative 
stress, which can lead to exacerbation of the autoimmune response, 

FIGURE 7

Correlation analysis of hub genes with immune cells. (A) Pearson correlation analysis of hub immune-related genes in SLE with immune cells. 
(B) Correlation analysis of CXCL8 with immune cells. (C) Correlation analysis of FOS with immune cells. (D) Correlation analysis of CXCL2 with immune 
cells. (E) Correlation analysis of NFKBIA with immune cells. (F) Correlation analysis of CXCR2 with immune cells.
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especially in complications such as lupus nephritis (LN) (36–38). In 
addition, stimulation by autoantibodies promotes ferroptosis of 
neutrophils thereby exacerbating inflammation (39). It is in accordance 
with the outcome of our immune cell analysis. CXCL8 is also called 
interleukin 8 (IL-8), has a similar effect on neutrophils as CXCL2-
CXCR2 and also promotes the formation of NETs to exacerbate 
inflammation and tissue damage (40). CXCL8 levels were significantly 
elevated in the serum of SLE patients and positively correlated with 
proteinuria, sedimentation, antinuclear antibodies and SLEDAI. And 
there is a strong correlation between IL-8 gene polymorphisms and SLE 
risk (41). We  hypothesized that CXCL2-CXCR2 and CXCL8 may 
exacerbate SLE organ damage by promoting aberrant activation and 
migration of immune cells (especially neutrophils).

FOS (FBJ Murine Osteosarcoma Viral Oncogene Homolog) is a 
class of genes associated with cell proliferation, differentiation and 
survival and is a member of the transcription factor family. The 

Activator Protein 1 (AP-1) dimeric structure composed of FOS and 
JUN is involved in the regulation of many immune responses and 
inflammatory processes (42). Follicular helper T cell (TFH) numbers 
expanded and correlated with disease activity in SLE (42, 43). The AP-1 
complex promotes antibody production by regulating the proliferation 
and differentiation of B cells into plasma cells (44). Meanwhile, AP-1 is 
an important transcription factor in the T-cell activation process, 
regulates TFH proliferation, and inhibits IL-2 production, promoting 
SLE progression (45, 46). This suggests that FOS may also be  an 
important immune marker for SLE.

NFKBIA (Nuclear Factor Kappa-B Inhibitor Alpha, also named 
IKBA) is a potent inhibitor of Nuclear Factor Kappa-B (NF-KB). Over-
activation of the NF-KB signaling pathway promotes the expression of 
TNF-α, IL-1β, and IL-6, which exacerbates inflammation and tissue 
damage (47, 48). These cytokines happen to be the substances involved 
in the key SLE (49–51). Yang et al. (52) found that inhibition of the 

FIGURE 8

The regulatory network of hub genes and miRNAs.
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NFKB signaling pathway significantly reduced urinary protein and 
autoantibody levels in lupus mice, as well as reduced renal immune 
complex deposition. Therefore, inhibiting the over-activation of NFKB 
by enhancing the expression of NFKBIA may be an effective way to 
attenuate the inflammatory and immune responses in SLE.

Multiple studies have shown that miRNAs play an essential function 
in the development of SLE. For example, miR-590-3p ameliorated 
inflammation in lupus mice by inhibiting Th17 cell differentiation (53). 
miR-21 and miR-155 genetic variants were associated with susceptibility 
to SLE (54). Xu et al. (55) found that IL-10 targeting E2F2-miR-17-5p 
inhibited autoantibody secretion in active SLE patients. The hsa-mir-
335-5p is widely expressed in human and has been found to positively 
correlate with anti-CCP antibodies and C-reactive protein in 
rheumatoid arthritis (RA), and is a good biomarker for RA (56). It is 
also a valid marker for osteoarthritis (57). Inhibition of FOS expression 
by has-mir-335-3p regulates bone metabolic homeostasis in a stress 
mouse model. However, there is a lack of reports on the direct link 
between hub genes, microRNA and SLE.

Notably, the samples we  chose for our dataset were all from 
peripheral blood, and we also validated this by peripheral blood 
from SLE patients, which may greatly support our results. 
Nevertheless, there are some shortcomings in our study. First, the 
dataset we analyze is an online public dataset, which is a secondary 
mining of the data. Second, the small sample size and the sample 
originating from one center in this study may be biased. Third, our 
immune cell analysis could not directly assess the limitations of 
tissue-resident immune cells, and it is hoped that future studies may 
combine tissue sampling with circulating cell analysis to gain a more 
comprehensive understanding. Fourth, due to the long duration of 
the disease in SLE patients and the wide range of medications used 
during treatment, the effect of medications on pivotal gene 
expression cannot be excluded. Finally, we lack more experiments to 
verify our results. Therefore, in the future, we  will do further 
research in in vivo or in vitro experiments.

5 Conclusion

In summary, this is a study to screen for IRGs and metabolic 
pathways that are hubs in the peripheral blood of SLE. We identified 
five hub genes (CXCL2, CXCL8, FOS, NFKBIA and CXCR2), and 
constructed and validated a diagnostic model. We hope to provide 
new directions and evidence for the pathogenesis and 
treatment of SLE.
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