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Importance: Heart failure with preserved ejection fraction (HFpEF), defined by an 
ejection fraction >50%, has emerged as the most prevalent form of heart failure 
at the community level. Multiple comorbidities, including diabetes, hypertension, 
obesity, atrial fibrillation, renal diseases, and autoimmune conditions, have been 
linked to its development. These conditions share common pathways involving 
oxidative stress, metabolic dysregulation, ischemia, and a chronic inflammatory 
milieu.

Observations: Patients with autoimmune diseases such as rheumatoid arthritis 
(RA), systemic lupus erythematosus (SLE), and systemic sclerosis (SSc) exhibit 
an increased risk of developing HFpEF, often through mechanisms involving 
chronic inflammation and endothelial dysfunction, which precede the clinical 
manifestation of HFpEF. Clinical studies have demonstrated that the risk of 
developing HFpEF exists independently of traditional cardiovascular risk factors, 
underscoring the pivotal role of chronic inflammation and autoimmunity as key 
contributors to its pathogenesis.

Conclusions and relevance: The translational implication is that the distinct 
inflammatory pathways driving these autoimmune diseases (e.g., myeloid-T 
cells and T-B cell-mediated inflammation in RA, and B cell-driven inflammation 
in SLE and SSc) should become personalized therapeutic targets to prevent 
HFpEF progression. Early intervention with novel therapies, such as sodium-
glucose cotransporter type 2 (SGLT2) inhibitors, could be crucial in managing 
these patients during the early disease stages. Additionally, the H2FPEF score 
should be routinely employed to facilitate early diagnosis and risk stratification, 
providing a robust framework for personalized management strategies.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) has 
emerged as a leading cause of mortality among heart failure patients 
(1). According to the current guidelines of the American Heart 
Association/American College of Cardiology and the European 
Society of Cardiology, the diagnosis of HFpEF is based on three 
primary criteria: 1. the presence of signs and symptoms consistent 
with heart failure; 2. a preserved left ventricular ejection fraction 
(LVEF ≥50%); and 3. objective evidence of impaired left ventricular 
(LV) diastolic function (2). Estimates suggest that at least 50% (range 
44–72%) of all heart failure cases occur with preserved ejection 
fraction (3).

Community-based data from Olmsted County indicate that 
only 16% of HFpEF patients had a prior myocardial infarction, 
compared to 28% of those with heart failure with reduced ejection 
fraction (HFrEF). Additionally, coronary heart disease accounted 
for 29% of deaths in HFpEF patients compared to 43% in HFrEF 
patients (4). These findings suggest that coronary artery disease 
plays a less dominant role in HFpEF, while myocardial disease 
appears to be  more prevalent. Between 2000 and 2010, the 
proportion of HFpEF among new heart failure cases in Olmsted 
County increased from 48 to 52%, with women being affected twice 
as often as men. Furthermore, over this decade, the incidence of 
HFpEF showed a smaller decline compared to HFrEF (−27 versus 
−61%, respectively) (5).

HFpEF is generally characterized by older age, female 
predominance, and a higher prevalence of atrial fibrillation, with 
lower rates of stroke and coronary artery disease (1). Its global 
prevalence is rising, driven by both traditional risk factors (i.e., 
obesity, diabetes, hypertension, smoking, metabolic syndrome, renal 
failure, anemia), and emerging pathophysiological mechanisms, 
including diastolic dysfunction, endothelial dysfunction, 
microvascular damage, and systemic low-grade inflammation that 
promotes myocardial remodeling (3, 6). Oxidative stress and fibrosis 
are also recognized as critical contributors to the disease’s 
pathogenesis (7).

Inflammation plays a pivotal role in the development of heart 
failure, potentially contributing differently to its various subtypes, with 
evidence highlighting a specific association between the interleukin-6 
(IL-6)/C-reactive protein (CRP) pathway and the pathogenesis of 
HFpEF (8). In inflammatory and autoimmune rheumatologic diseases, 
HFpEF remains underrecognized, despite evidence suggesting that its 
development may be driven by distinct autoimmune and inflammatory 
mechanisms specific to each condition.

Therefore, in this review, we focus on evidence from the past two 
decades (2004–2024) exploring the intersection of HFpEF and three 
autoimmune diseases: rheumatoid arthritis (RA), systemic lupus 
erythematosus (SLE), and systemic sclerosis (SSc). Specifically, 
we conducted a literature search using PubMed and Scopus, covering 
the years 2004–2024. Search terms included “HFpEF,” “diastolic 
dysfunction,” “autoimmune,” “rheumatoid arthritis,” “SLE,” and 
“systemic sclerosis.” We included english-language studies focusing 
specifically on HFpEF in the context of autoimmune diseases, 
ultimately identifying five studies in RA, seven prospective studies 
overall, and one observational study with relevant clinical data. 
We excluded studies that did not clearly distinguish between HFpEF 
and HFrEF, or that lacked primary data on cardiovascular outcomes.

Endothelial dysfunction, chronic 
inflammation, diastolic dysfunction, 
and HFpEF: experimental models

While not all diastolic dysfunctions (DD) progress to HFpEF, all 
HFpEF cases exhibit DD (9). Understanding the pathophysiology of 
DD is therefore crucial to elucidate its progression to heart failure. An 
ideal murine model of HFpEF should present specific characteristics, 
such as exercise intolerance, pulmonary edema, concentric cardiac 
hypertrophy, and a preserved EF > 50% (10). Among the proposed 
models, three particularly emphasize the link between DD 
and inflammation.

In Goto-Kakizaki (GK) rats, a prediabetic model with insulin 
deficiency, DD originates in the myofilaments. Synchrotron radiation 
small-angle X-ray scattering (SAXS) on beating hearts revealed 
displacement of myosin heads from actin filaments during diastole, 
along with impaired relaxation and cross-bridge dynamics (11, 12). 
Mitochondrial oxidative stress and elevated activity of protein kinase 
C (PKC) and Rho kinase (ROCK) increase cardiomyocyte stiffness 
and passive tension, ultimately promoting DD (13). Oxidative stress 
acts as a secondary messenger, activating PKC (14) and the Rho/
ROCK pathway (15), which in turn trigger NF-κB and AP-1 activation. 
These pathways promote cytokine and growth factor transcription, 
extracellular matrix (ECM) remodeling, vasospasm, hypertension, 
and myocardial remodeling (16, 17) (Figure 1).

Notably, GK rats showed elevated myocardial IL-6, TGF-β1, and 
Nox2 (a ROS-producing enzyme). Despite these changes, eNOS and 
NO-mediated vasodilation were preserved. These findings establish 
oxidative stress and inflammation as central mechanisms driving DD 
and endothelial dysfunction (13, 17). Likewise, in women with 
ischemia but no coronary artery disease, oxidative stress has been 
linked to DD (18).

Diabetes further contributes to DD via chronic low-grade 
inflammation, termed “metabolic inflammation” (19). Once DD 
develops, its association with ED becomes evident (20, 21), and ED 
has emerged as a promising therapeutic target in heart failure (22).

Additional validated models of DD include the SAUNA model 
(salty water, unilateral nephrectomy, aldosterone) and an aging 
murine model. In both, increased hematopoiesis correlates with 
macrophage recruitment and elevated ROS production. These 
macrophages secrete TGF-β and IL-10, promoting fibroblast activation 
and ECM synthesis (e.g., type I collagen, α-SMA) (23, 24).

Resident cardiac macrophages (RCMs), classified as CCR2 + or 
CCR2-, play differential roles. CCR2- macrophages aid repair and 
angiogenesis (25), while CCR2 + macrophages fuel inflammation 
through IL-1β and Nlrp3 activation, contributing to adverse 
remodeling (26). In failing human hearts, CCR2 + cells dominate, 
enriched in NF-κB, IL-6, and STAT3 pathways (27, 28). These cells 
also express oncostatin M (OSM), known to inhibit myoblast 
differentiation, especially after ischemic injury (27). Single-cell 
RNA-seq studies confirmed their pro-inflammatory role (28).

Thus, even conditions like hypertension and aging contribute 
to cardiac injury and DD, largely through inflammation-
driven mechanisms.

In conclusion, the pathophysiology of HFpEF encompasses 
cardiomyocyte stiffness, fibrosis, microvascular dysfunction, oxidative 
stress, and chronic inflammation. As stated by Paulus and Tschope 
(29), all comorbidities associated with HFpEF appear to converge on 
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a shared inflammatory axis that sustains myocardial dysfunction 
(Figure 2).

This section emphasizes that inflammation is a unifying 
mechanism across diverse HFpEF models and sets the stage for 
exploring human clinical phenotypes.

HFpEF human phenotypes

These experimental insights highlight how inflammation initiates 
and perpetuates the pathophysiology of HFpEF and justify exploration 
of clinical phenotypes linked to such mechanisms. The relationship 
between HFpEF and comorbidities is well-documented beyond aging 
(30, 31). Across cohorts, approximately 45% of HFpEF patients have 
diabetes (32), 80% in the US are obese (33), 40–60% present with atrial 
fibrillation/flutter (34, 35), 55% have hypertension (36–38), and 
26–49% have renal disease (39, 40). These comorbidities collectively 
create a low-to-moderate inflammatory state. Combined with 
neurohormonal, metabolic, and ischemic factors, this milieu promotes 
myocardial stiffness via oxidative stress, ischemia, and inflammation 
(Table 1).

Understanding these phenotypes helps contextualize the relevance 
of inflammation in HFpEF and paves the way to analyze autoimmune 
conditions in the following sections.

Chronic inflammation, autoimmunity, 
and the heart

Understanding the role of systemic inflammatory burden across 
populations helps translate experimental evidence into 
clinical relevance.

Chronic heart inflammation, unlike acute myocarditis, is typically 
driven by autoimmune diseases, which vary in inflammatory load and 
vascular involvement. Analyzing cardiovascular comorbidities in 
these conditions provides valuable insights into how chronic 
inflammation contributes to HFpEF.

Several studies have shown that the risk of acute myocardial 
infarction (AMI) in rheumatoid arthritis (RA) rivals that of type 2 
diabetes (41), and that heart failure (HF) risk is doubled in RA 
compared to the general population (42). The QRISK 3 algorithm now 
includes RA and systemic lupus erythematosus (SLE) in its 10-year 
cardiovascular risk estimation (43). Additionally, persistent 
inflammation—as measured by high-sensitivity CRP—has been 
shown to better predict cardiovascular events and mortality than LDL 
cholesterol in statin-treated patients (44).

Notably, the Reynolds score used in women also incorporates 
hsCRP, linking inflammation and cardiovascular risk. CRP is strongly 
associated with endothelial dysfunction (ED) in hyperlipidemic 
individuals (45), reinforcing the tight interplay among inflammation, 
lipids, and endothelial damage.

Together, these observations build a strong rationale for focusing 
on vascular inflammation as a shared pathway driving HFpEF in 
autoimmune diseases.

Autoimmunity, chronic inflammation, 
and diastolic dysfunction

Diastolic dysfunction (DD) affects approximately 28.1% of the 
general population (46), where it independently predicts mortality 
and heart failure (47, 48). In autoimmune diseases, DD is even more 
prevalent and strongly associated with disease features.

For example, in RA, DD was observed in 31% of patients and 
linked to disease duration and elevated IL-6 levels (49). Premenopausal 
RA patients showed an even higher prevalence (47%) compared to 
age-matched controls (26%), with CRP being the strongest 
independent predictor (50).

In PsA, DD prevalence reached 38%, associated with older age 
and hypertension (51). In SSc, DD affected 35% of patients, regardless 
of whether disease was limited or diffuse, and correlated with 
Raynaud’s duration (52).

In SLE, 39% had DD independent of disease activity (SELENA-
SLEDAI), with disease duration being the strongest determinant, 

FIGURE 1

During inflammatory response, in the mytochondrial environment, oxidative stress activates PKC and Rho/ROCK pathway, subsequently triggering 
cellular NF-κB and AP-1, which drive inflammatory cascades. Thus, contributes to the development of coronary vasospasm, hypertension, and 
myocardial remodeling, ultimately resulting in diastolic dysfunction. PKC, protein kinase C; NF-κB, nuclear factor kappa light chain of B cells; AP-1, 
activator protein-1; ECM, extracellular matrix.
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while the Framingham score proved unreliable (53). Anti-
cardiolipin antibodies, especially LAC, predicted worse DD 
progression (54).

Similarly, in IBD, DD was associated with reduced coronary flow 
reserve (CFR), an indicator of microvascular function (55), and 
cardiovascular risk has been recognized by expert panels (56).

These findings consistently show that autoimmune and chronic 
inflammatory diseases are strong contributors to DD, reinforcing the 
importance of cardiovascular monitoring in these patients.

Endothelial dysfunction in 
autoimmune-chronic inflammatory 
diseases: a screening of diastolic 
dysfunction?

The 2013 paradigm by Paulus and Tschöpe (29) proposed that 
cardiovascular risk factors induce systemic inflammation, which 
impairs endothelial and coronary microvascular function, ultimately 
leading to HFpEF. This is supported by histological evidence of 
microvascular rarefaction and NOX2 expression in macrophages from 
HFpEF patients (57), as well as high prevalence of vascular dysfunction 
in this condition (58). Accordingly, autoimmune diseases frequently 
exhibit ED. Specifically:

	 1.	 RA: impaired response to acetylcholine, reversible with TNF-α 
blockade; long-term improvement requires disease remission 
(59, 60).

	 2.	 SSc: ED reversible with endothelin A receptor antagonism, but 
not with nitroprusside (61).

	 3.	 SLE: reduced FMD, worsened by comorbidities (62, 63).
	 4.	 PMR: FMD remained low even after 6 months of treatment, 

inversely correlated with CRP (64).

Normal FMD is ~6.4%, with age-related decline (65); 
standardized protocols now enable its use as a biomarker (66). 
Moreover, prospective studies show that ED predicts DD 
progression (67), and DD precedes HFpEF (48). Hence, maintaining 
control of systemic inflammation (as in RA and SLE) is essential 
(60, 68).

All together, these data support the concept of ED as an early and 
actionable marker in the prevention of HFpEF among patients with 
chronic autoimmune inflammation.

HFpEF in rheumatoid arthritis, lupus 
and systemic sclerosis

While DD and ED are well-documented in autoimmune diseases, 
the clinical burden of HFpEF is only recently emerging as a distinct 
phenotype. Multiple studies from 2008 to 2024 have demonstrated 
that HFpEF is the dominant HF subtype in these populations (69–73) 
(Table 2). In RA, one-year mortality after HF diagnosis was 35%, 
compared to 19% in controls (69), and incidence ranged from 2.5 to 
8.2% across cohorts (70–72). These risks remained stable over decades 
and were linked to disease activity.

FIGURE 2

Traditional and non-traditional risk factors leading to diastolic dysfunction and to heart failure with preserved ejection fraction. eGFR, estimated 
glomerular filtration rate; NSAIDs, non-steroidal anti-inflammatory drugs; HFpEF, heart failure with preserved ejection fraction; LVEF, left ventricular 
ejection fraction; NTproBNP, N-terminal pro–B-type natriuretic peptide; BSA, body surface area.
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Similarly, HF incidence was higher in RA (4.87/1,000 person-
years vs. 3.96 in controls) (73). In other autoimmune diseases, HFpEF 
also emerged as the predominant phenotype. For instance, the 
Athero-APS study showed an increasing gradient of HFpEF 
prevalence from asymptomatic aPL carriers (6.3%) to full-blown 
SLE-APS (27.8%) (74). Large population studies confirmed that HF 
risk is markedly elevated in SSc, SLE, and RA (75), with worse 
in-hospital outcomes for SLE patients (76). In SSc, 27% met HFpEF 
criteria, and interstitial lung disease was a key predictor (77). Up to 
70.5% of patients with autoimmune HF had the preserved EF 
phenotype (78).

Interestingly, RA patients on biologics were more likely to recover 
EF (78), but those with autoimmune comorbidities had a 3x higher 
risk of mortality or hospitalization (79). The underlying inflammatory 
drivers differ: RA involves myeloid–T and T–B cell inflammation (80, 
81), SLE and SSc involve B-cell-mediated pathways (82–85).

Thus, therapies should reflect this heterogeneity: IL-6 blockers 
show promise in ischemic damage (86), T cell costimulation blockade 
prevents age-related dysfunction (87), and B-cell depletion has 
improved dilated cardiomyopathy (88).

This highlights the need for a personalized, inflammation-targeted 
approach in preventing and managing HFpEF in autoimmune disease.

Evidence and perspectives

Controlling inflammation has emerged as a crucial strategy for 
improving diastolic dysfunction and potentially preventing 
HFpEF. Animal studies have offered compelling evidence supporting 
this approach. In a model of HFpEF using DAHL/SS salt-sensitive 
hypertensive rats, the administration of colchicine significantly 

improved survival, reduced cardiac dysfunction, and diminished 
oxidative stress and inflammatory cell infiltrates (89). These findings 
suggest the potential efficacy of colchicine, with human trials expected 
to provide further clarification (90).

Among the most promising emerging therapies, sodium-
glucose cotransporter 2 (SGLT2) inhibitors have demonstrated 
clinical benefits in HFpEF, particularly in patients with comorbid 
conditions such as type 2 diabetes and obesity. Results from large 
randomized trials, including EMPEROR-Preserved (91) and 
DELIVER (92), showed that treatment with empagliflozin or 
dapagliflozin significantly reduced the risk of heart failure 
hospitalization and cardiovascular death. These effects are thought 
to arise from improved myocardial energetics, decreased preload 
and afterload, and anti-inflammatory as well as antifibrotic 
properties. While data specifically addressing autoimmune 
populations are currently lacking, the potential of SGLT2 inhibitors 
to modulate endothelial dysfunction and low-grade systemic 
inflammation suggests they may also benefit patients with 
autoimmune-driven HFpEF. Nonetheless, clinicians should 
be cautious of adverse effects, including genital infections, volume 
depletion, and ketoacidosis, particularly in elderly or non-obese 
individuals (Figure 3). Further studies are needed to explore the 
safety and efficacy of these agents in this specific subgroup.

Plasma IL-6 has been a focal point of recent research, with its levels 
showing a strong predictive value for HFpEF but not for HFrEF in the 
PREVEND cohort—a prospective study of 961 participants. This 
association persisted even after adjusting for key risk factors, suggesting 
IL-6 as a potential target for novel therapeutic strategies (93). Supporting 
this, IL-6 was found to be an independent predictor of all-cause mortality 
in hospitalized HFpEF patients, even after accounting for B-type 
natriuretic peptide (BNP) levels (94). Furthermore, tocilizumab, an IL-6 

TABLE 1  Experimental models and in vivo human phenotypes of endothelial and diastolic dysfunction ending up to HFpEF.

Experimental models

GOTO-KAKIZAKI

Diabetes rat model (Insulin deficient- increased PKC and ROCK activity- Cardiomyocyte stiffening) (11, 12)

Diastolic dysfunction precedes endothelium 

dysfunction

SAU-NA

Hypertensive mouse model (unilateral nephrectomy, chronic exposure to aldosterone and accelerated mortality—

hypertensive model—increased recruitment of macrophages CCR2+) (23)

Diastolic dysfunction followed by 

cardiomyopathy and accelerated mortality

AGING

Mouse model (increase in left ventricular mass, interstitial fibrosis, with high expression of TGFb and IL10 and 

CCR2 + macrophages) (24)

Diastolic dysfunction, cardiomyocites 

hypertrophy and stiffness, microvascular 

dysfunction

Human phenotypes (age as the major risk factor)

DIABETES (pathophysiologic mechanisms: alteration in sodium handling; increased volume overload; release of pro-

inflammatory cytokines; endothelial and diastolic dysfunction) (32)
45% of HFpEF have diabetes

OBESITY (pathophysiologic mechanisms: volume overload; endothelial and diastolic dysfunction; biventricular 

remodeling; impaired pulmonary vasodilation; systemic inflammation) (33)
80% of HFpEF in US are obese

ATRIAL FIBRILLATION and FLUTTER (pathophysiologic mechanisms: widespread endothelial dysfunction; oxidative 

stress; microvascular inflammation with increased CRP levels; atrial and ventricular fibrosis) (35)
40–60% of HFpEF have atrial fibrillation or flutter

HYPERTENSION (pathophysiologic mechanisms: coronary microvascular endothelial dysfunction; increased afterload 

on left ventricle; ventricular hypertrophy; diastolic dysfunction; systemic inflammation) (37)
55% of patients with HFpEF have hypertension

CHRONIC RENAL DISEASES (pathophysiologic mechanisms: endothelial dysfunction, inflammation and systemic and 

renal fibrosis are mutual consequences of diabetes, hypertension and dyslipidaemia, which can also be drivers of 

cardiorenal syndrome) (40)

HFpEF patients: 26–49% have renal disease
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receptor antagonist, demonstrated improvements in left ventricular 
ejection fraction in rheumatoid arthritis patients without overt cardiac 
symptoms, reinforcing the potential benefits of targeting IL-6 (95).

However, the results of targeting inflammation in HFpEF have 
been mixed. Anakinra, an IL-1 receptor antagonist targeting IL1α/β, 
failed to improve cardiac function in obese HFpEF patients, despite 
successfully lowering CRP and NT-proBNP levels (96). Similarly, the 
CANTOS trial, which investigated canakinumab (an anti-IL1β 
therapy), found that higher IL-6 levels 3 months post-initiation were 
associated with a substantial increase in major adverse cardiovascular 
events (MACE) and all-cause mortality (97), complicating the role of 
IL-1β inhibition in this context.

The link between inflammation and NT-proBNP levels provides 
additional insight. Among participants in the MESA study, IL-6 levels 
were significantly correlated with NT-proBNP levels, although it 
remains unclear whether these increases directly reflect the risk of 
incident HFpEF (98).

Of particular interest is the emerging evidence regarding IL-17. A 
preliminary study indicated that secukinumab, an IL-17A inhibitor, 
improved inflammation and diastolic dysfunction, which was present 
in nearly 39% of patients (99). If confirmed, this finding is especially 

significant given the central role of IL-17 in autoimmune inflammatory 
diseases (100) and its established involvement in inducing ventricular 
arrhythmias in ischemic heart failure (101). In addition, both IL-17 
and IL-6 were identified as independent predictors of DD progression 
in patients with normal left ventricular ejection fraction who 
underwent invasive hemodynamic assessment (102).

Conclusions and research agenda

Compelling evidence underscores the pivotal role of inflammation 
in the development of HFpEF. Endothelial dysfunction emerges as a 
critical early biomarker, signaling the onset of microvascular damage 
that can progress to diastolic dysfunction and ultimately 
HFpEF. Despite these insights, there is a notable absence of clinical 
trials focused on identifying the optimal diagnostic approach for early 
detection of DD and stratifying patients for targeted therapeutic 
protocols based on the type and intensity of underlying inflammation.

No long-term studies have yet evaluated whether tailored 
treatments can reduce HFpEF incidence in patients with autoimmune 
chronic inflammatory diseases such as RA, SLE, or SSc. Additionally, 

FIGURE 3

SGLT2 inhibitors have demonstrated clinical benefits in HFpEF, reducing the risk of heart failure hospitalization and cardiovascular death by modulating 
endothelial dysfunction and low-grade systemic inflammation, leading to improve myocardial energetics, decrease preload and afterload, and thought 
anti-inflammatory and antifibrotic properties. Nonetheless, adverse effects include genital infections, volume depletion, and ketoacidosis. SGLT2, 
sodium-glucose cotransporter 2; HFpEF, heart failure with preserved ejection fraction.

TABLE 2  Clinical evidence of HFpEF in autoimmune diseases.

Study Disease Key findings Notable observations

Davis et al. (69) RA 35% 1-year mortality after HF vs. 19% in controls High mortality burden in RA-related HF

Huang et al. (70) RA 8.2% developed HF over 10.7 years Long-term CV risk in RA

Mantel et al. (71) RA 2.5% HF incidence over 5 years Modest but relevant incidence

Myasoedova et al. (72) RA Stable HF prevalence over 30 years Persistent CV burden despite treatment evolution

Ahlers et al. (73) RA HF incidence: 4.87 vs. 3.96 per 1,000 person-years Higher chronic inflammatory load linked to HF

Athero-APS Study (74) APS/SLE HFpEF prevalence: 6.3% (carriers) to 27.8% (SLE-APS) Severity-dependent CV risk escalation

Prasada et al. (75) SSc, SLE, RA HR for HF: 7.26 (SSc), 3.15 (SLE), 1.39 (RA) Significant HF risk across diseases

Nomigolzar et al. (76) SLE 0.61% of 10 M HF cases had SLE; higher in-hospital mortality Increased pericardial complications

Oliveira et al. (77) SSc 27% met HFpEF criteria Age, AF, and ILD were key predictors

Rivera et al. (78) ACIDs 70.5% with HF had HFpEF Higher rate than general population

Tada et al. (79) ACIDs 3x increased risk of death/hospitalization in HFpEF with ACID Poorer prognosis vs. non-ACID patients

RA, rheumatoid arthritis; APS/SLE, antiphospholipid syndrome/systemic lupus erythematosus; SSc, systemic sclerosis; ACIDs, autoimmune and chronic inflammatory diseases; HF, heart 
failure; HFpEF, heart failure with preserved ejection fraction; AF, atrial fibrillation; ILD, interstitial lung disease.
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the field lacks consensus on key diagnostic thresholds, such as the 
cutoff values for assessing DD or levels of natriuretic peptides (e.g., 
NT-proBNP) indicative of imminent HFpEF (103). Research should 
prioritize defining whether NT-proBNP levels warrant routine annual 
evaluation, particularly in older patients. The importance of early 
biomarker evaluation is further highlighted by data from the 
U.S. National Inpatient Sample Database (2016–2020), which showed 
that SLE patients hospitalized with acute decompensated heart 
failure—whether HFpEF or HFrEF—had a mean age of 61 years, 
compared to 72 years for non-SLE patients. SLE patients also exhibited 
higher in-hospital mortality rates, emphasizing the need for timely 
identification of predictive biomarkers to guide early 
interventions (104).

This approach gains urgency in the context of ACIDs coexisting 
with metabolic comorbidities such as type 2 diabetes or obesity, 
particularly in aging populations, where the cumulative risk of HF 
increases significantly (103). These scenarios reflect the additive 
impact of metabolic dysfunction and chronic inflammation on cardiac 
damage. Addressing this, a cardio-immuno-rheumatologic framework 
should be integrated into clinical practice (105, 106), ensuring that 
patients with persistent active inflammation are systematically 
monitored for HFpEF risk.

For diagnostic precision, the H2FPEF score—a composite tool 
combining clinical and echocardiographic parameters—offers a 
valuable approach. This scoring system can predict HFpEF with up to 
95% probability when the score exceeds 5/9 (Table 3). Implementing 
such algorithms could revolutionize screening and management 
strategies in ACIDs, ensuring timely intervention for patients at 
elevated cardiovascular risk.

Future research must focus on:

	 1.	 Longitudinal studies evaluating the impact of targeted anti-
inflammatory therapies on HFpEF incidence across RA, SLE, 
and SSc.

	 2.	 Establishing evidence-based thresholds for biomarkers like 
NT-proBNP to guide routine screening.

	 3.	 Developing and validating diagnostic algorithms that integrate 
inflammatory markers, clinical parameters, and imaging data 
to improve early identification and risk stratification.

By addressing these gaps, we can move closer to a personalized, 
proactive approach in preventing HFpEF, particularly in high-
risk populations.

Finally, considering the heterogeneity of the available studies, 
particularly regarding HFpEF definitions, patient populations, and 
outcome measures, as well as the scarcity of randomized controlled 
trials in autoimmune settings, our conclusions should be interpreted 
with caution. These limitations further underscore the urgent need for 
disease-specific, prospective investigations.
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TABLE 3  H2FPEF score to evaluate the possible presence of HFpEF in 
patients with symptomatic dyspnea.

Clinical variables Points

Weight (BMI > 30) 2

Hypertension (antihypertensive medications) 1

Atrial fibrillation (history or presence) 3

Pulmonary hypertension (RVSP at rest >35 mmHg) 1

Age (age >60 yrs) 1

Filling pressure (Rest E/e’ > 9) 1

Score 0–1 Score 2–5 Score 6–9

HFpEF ruled out
HFpEF possible: assess rest/

stress RHC or Echo stress
Very likely HFpEF

BMI, body mass index; RVSP, right ventricle systolic pressure; E/e’, ratio of early diastolic 
mitral inflow blood velocity to mitral annular tissue velocity; RHC, right heart 
catheterization.
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Glossary

HFpEF - Heart Failure with Preserved Ejection Fraction

HFrEF - Heart Failure with Reduced Ejection Fraction

LVEF - Left Ventricular Ejection Fraction

LV - Left Ventricle

DD - Diastolic Dysfunction

ED - Endothelial Dysfunction

IL-6 - Interleukin-6

CRP - C-reactive Protein

RA - Rheumatoid Arthritis

SLE - Systemic Lupus Erythematosus

SSc - Systemic Sclerosis

APS - Anti-Phospholipid Syndrome

FMD - Flow-Mediated Dilation

ECM - Extracellular Matrix

TGF-β - Transforming Growth Factor Beta

NF-κB - Nuclear Factor Kappa-light-chain-enhancer of 
activated B cells

AP-1 - Activator Protein 1

ROS - Reactive Oxygen Species

eNOS - Endothelial Nitric Oxide Synthase

NO - Nitric Oxide

α-SMA - Alpha Smooth Muscle Actin

CCR2 - C-C Chemokine Receptor Type 2

STAT3 - Signal Transducer and Activator of Transcription 3

AMI - Acute Myocardial Infarction

DM2 - Type 2 Diabetes Mellitus

hsCRP - High Sensitivity C-Reactive Protein

MACE - Major Adverse Cardiovascular Events

BNP - B-type Natriuretic Peptide

NT-proBNP - N-terminal pro B-type Natriuretic Peptide

TNF - Tumor Necrosis Factor

OSM - Oncostatin M

BITE - Bispecific T-cell Engager

FDR - False Discovery Rate

WHS - Women’s Health Study

PMR - Polymyalgia Rheumatica

UC - Ulcerative Colitis

IBD - Inflammatory Bowel Disease

CFR - Coronary Flow Reserve

https://doi.org/10.3389/fmed.2025.1557312
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	Autoimmune inflammation as a key risk factor for heart failure with preserved ejection fraction: the different types of inflammation driving to HFpEF
	Introduction
	Endothelial dysfunction, chronic inflammation, diastolic dysfunction, and HFpEF: experimental models
	HFpEF human phenotypes
	Chronic inflammation, autoimmunity, and the heart
	Autoimmunity, chronic inflammation, and diastolic dysfunction
	Endothelial dysfunction in autoimmune-chronic inflammatory diseases: a screening of diastolic dysfunction?
	HFpEF in rheumatoid arthritis, lupus and systemic sclerosis
	Evidence and perspectives
	Conclusions and research agenda

	References

