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Importance: Heart failure with preserved ejection fraction (HFpEF), defined by an
ejection fraction >50%, has emerged as the most prevalent form of heart failure
atthe community level. Multiple comorbidities, including diabetes, hypertension,
obesity, atrial fibrillation, renal diseases, and autoimmune conditions, have been
linked to its development. These conditions share common pathways involving
oxidative stress, metabolic dysregulation, ischemia, and a chronic inflammatory
milieu.

Observations: Patients with autoimmune diseases such as rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE), and systemic sclerosis (SSc) exhibit
an increased risk of developing HFpEF, often through mechanisms involving
chronic inflammation and endothelial dysfunction, which precede the clinical
manifestation of HFpEF. Clinical studies have demonstrated that the risk of
developing HFpEF exists independently of traditional cardiovascular risk factors,
underscoring the pivotal role of chronic inflammation and autoimmunity as key
contributors to its pathogenesis.

Conclusions and relevance: The translational implication is that the distinct
inflammatory pathways driving these autoimmune diseases (e.g., myeloid-T
cells and T-B cell-mediated inflammation in RA, and B cell-driven inflammation
in SLE and SSc) should become personalized therapeutic targets to prevent
HFpEF progression. Early intervention with novel therapies, such as sodium-
glucose cotransporter type 2 (SGLT2) inhibitors, could be crucial in managing
these patients during the early disease stages. Additionally, the H2FPEF score
should be routinely employed to facilitate early diagnosis and risk stratification,
providing a robust framework for personalized management strategies.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) has
emerged as a leading cause of mortality among heart failure patients
(1). According to the current guidelines of the American Heart
Association/American College of Cardiology and the European
Society of Cardiology, the diagnosis of HFpEF is based on three
primary criteria: 1. the presence of signs and symptoms consistent
with heart failure; 2. a preserved left ventricular ejection fraction
(LVEF >50%); and 3. objective evidence of impaired left ventricular
(LV) diastolic function (2). Estimates suggest that at least 50% (range
44-72%) of all heart failure cases occur with preserved ejection
fraction (3).

Community-based data from Olmsted County indicate that
only 16% of HFpEF patients had a prior myocardial infarction,
compared to 28% of those with heart failure with reduced ejection
fraction (HFrEF). Additionally, coronary heart disease accounted
for 29% of deaths in HFpEF patients compared to 43% in HFrEF
patients (4). These findings suggest that coronary artery disease
plays a less dominant role in HFpEF, while myocardial disease
appears to be more prevalent. Between 2000 and 2010, the
proportion of HFpEF among new heart failure cases in Olmsted
County increased from 48 to 52%, with women being affected twice
as often as men. Furthermore, over this decade, the incidence of
HFpEF showed a smaller decline compared to HFrEF (—27 versus
—61%, respectively) (5).

HFpEF is generally characterized by older age, female
predominance, and a higher prevalence of atrial fibrillation, with
lower rates of stroke and coronary artery disease (1). Its global
prevalence is rising, driven by both traditional risk factors (i.e.,
obesity, diabetes, hypertension, smoking, metabolic syndrome, renal
failure, anemia), and emerging pathophysiological mechanisms,
endothelial
microvascular damage, and systemic low-grade inflammation that

including  diastolic  dysfunction, dysfunction,
promotes myocardial remodeling (3, 6). Oxidative stress and fibrosis
are also recognized as critical contributors to the diseases
pathogenesis (7).

Inflammation plays a pivotal role in the development of heart
failure, potentially contributing differently to its various subtypes, with
evidence highlighting a specific association between the interleukin-6
(IL-6)/C-reactive protein (CRP) pathway and the pathogenesis of
HFpEEF (8). In inflammatory and autoimmune rheumatologic diseases,
HFpEF remains underrecognized, despite evidence suggesting that its
development may be driven by distinct autoimmune and inflammatory
mechanisms specific to each condition.

Therefore, in this review, we focus on evidence from the past two
decades (2004-2024) exploring the intersection of HFpEF and three
autoimmune diseases: rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE), and systemic sclerosis (SSc). Specifically,
we conducted a literature search using PubMed and Scopus, covering
the years 2004-2024. Search terms included “HFpEE’ “diastolic
dysfunction,” “autoimmune;” “rheumatoid arthritis,” “SLE;” and
“systemic sclerosis” We included english-language studies focusing
specifically on HFpEF in the context of autoimmune diseases,
ultimately identifying five studies in RA, seven prospective studies
overall, and one observational study with relevant clinical data.
We excluded studies that did not clearly distinguish between HFpEF
and HFrEF, or that lacked primary data on cardiovascular outcomes.
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Endothelial dysfunction, chronic
inflammation, diastolic dysfunction,
and HFpEF: experimental models

While not all diastolic dysfunctions (DD) progress to HFpEF, all
HFpEF cases exhibit DD (9). Understanding the pathophysiology of
DD is therefore crucial to elucidate its progression to heart failure. An
ideal murine model of HFpEF should present specific characteristics,
such as exercise intolerance, pulmonary edema, concentric cardiac
hypertrophy, and a preserved EF > 50% (10). Among the proposed
models, three particularly emphasize the link between DD
and inflammation.

In Goto-Kakizaki (GK) rats, a prediabetic model with insulin
deficiency, DD originates in the myofilaments. Synchrotron radiation
small-angle X-ray scattering (SAXS) on beating hearts revealed
displacement of myosin heads from actin filaments during diastole,
along with impaired relaxation and cross-bridge dynamics (11, 12).
Mitochondrial oxidative stress and elevated activity of protein kinase
C (PKC) and Rho kinase (ROCK) increase cardiomyocyte stiffness
and passive tension, ultimately promoting DD (13). Oxidative stress
acts as a secondary messenger, activating PKC (14) and the Rho/
ROCK pathway (15), which in turn trigger NF-kB and AP-1 activation.
These pathways promote cytokine and growth factor transcription,
extracellular matrix (ECM) remodeling, vasospasm, hypertension,
and myocardial remodeling (16, 17) (Figure 1).

Notably, GK rats showed elevated myocardial IL-6, TGF-p1, and
Nox2 (a ROS-producing enzyme). Despite these changes, eNOS and
NO-mediated vasodilation were preserved. These findings establish
oxidative stress and inflammation as central mechanisms driving DD
and endothelial dysfunction (13, 17). Likewise, in women with
ischemia but no coronary artery disease, oxidative stress has been
linked to DD (18).

Diabetes further contributes to DD via chronic low-grade
inflammation, termed “metabolic inflammation” (19). Once DD
develops, its association with ED becomes evident (20, 21), and ED
has emerged as a promising therapeutic target in heart failure (22).

Additional validated models of DD include the SAUNA model
(salty water, unilateral nephrectomy, aldosterone) and an aging
murine model. In both, increased hematopoiesis correlates with
macrophage recruitment and elevated ROS production. These
macrophages secrete TGF-f and IL-10, promoting fibroblast activation
and ECM synthesis (e.g., type I collagen, a-SMA) (23, 24).

Resident cardiac macrophages (RCMs), classified as CCR2 + or
CCR2-, play differential roles. CCR2- macrophages aid repair and
angiogenesis (25), while CCR2 + macrophages fuel inflammation
through IL-1p and Nlrp3 activation, contributing to adverse
remodeling (26). In failing human hearts, CCR2 + cells dominate,
enriched in NF-kB, IL-6, and STAT3 pathways (27, 28). These cells
also express oncostatin M (OSM), known to inhibit myoblast
differentiation, especially after ischemic injury (27). Single-cell
RNA-seq studies confirmed their pro-inflammatory role (28).

Thus, even conditions like hypertension and aging contribute
to cardiac injury and DD, largely through inflammation-
driven mechanisms.

In conclusion, the pathophysiology of HFpEF encompasses
cardiomyocyte stiffness, fibrosis, microvascular dysfunction, oxidative
stress, and chronic inflammation. As stated by Paulus and Tschope
(29), all comorbidities associated with HFpEF appear to converge on
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During inflammatory response, in the mytochondrial environment, oxidative stress activates PKC and Rho/ROCK pathway, subsequently triggering
cellular NF-kB and AP-1, which drive inflammatory cascades. Thus, contributes to the development of coronary vasospasm, hypertension, and
myocardial remodeling, ultimately resulting in diastolic dysfunction. PKC, protein kinase C; NF-kB, nuclear factor kappa light chain of B cells; AP-1,

activator protein-1; ECM, extracellular matrix.

a shared inflammatory axis that sustains myocardial dysfunction
(Figure 2).

This section emphasizes that inflammation is a unifying
mechanism across diverse HFpEF models and sets the stage for
exploring human clinical phenotypes.

HFpEF human phenotypes

These experimental insights highlight how inflammation initiates
and perpetuates the pathophysiology of HFpEF and justify exploration
of clinical phenotypes linked to such mechanisms. The relationship
between HFpEF and comorbidities is well-documented beyond aging
(30, 31). Across cohorts, approximately 45% of HFpEF patients have
diabetes (32), 80% in the US are obese (33), 40-60% present with atrial
fibrillation/flutter (34, 35), 55% have hypertension (36-38), and
26-49% have renal disease (39, 40). These comorbidities collectively
create a low-to-moderate inflammatory state. Combined with
neurohormonal, metabolic, and ischemic factors, this milieu promotes
myocardial stiffness via oxidative stress, ischemia, and inflammation
(Table 1).

Understanding these phenotypes helps contextualize the relevance
of inflammation in HFpEF and paves the way to analyze autoimmune
conditions in the following sections.

Chronic inflammation, autoimmunity,
and the heart

Understanding the role of systemic inflammatory burden across

populations  helps translate experimental evidence into
clinical relevance.

Chronic heart inflammation, unlike acute myocarditis, is typically
driven by autoimmune diseases, which vary in inflammatory load and
vascular involvement. Analyzing cardiovascular comorbidities in
these conditions provides valuable insights into how chronic

inflammation contributes to HFpEE.
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Several studies have shown that the risk of acute myocardial
infarction (AMI) in rheumatoid arthritis (RA) rivals that of type 2
diabetes (41), and that heart failure (HF) risk is doubled in RA
compared to the general population (42). The QRISK 3 algorithm now
includes RA and systemic lupus erythematosus (SLE) in its 10-year
cardiovascular risk estimation (43). Additionally, persistent
inflammation—as measured by high-sensitivity CRP—has been
shown to better predict cardiovascular events and mortality than LDL
cholesterol in statin-treated patients (44).

Notably, the Reynolds score used in women also incorporates
hsCRP, linking inflammation and cardiovascular risk. CRP is strongly
associated with endothelial dysfunction (ED) in hyperlipidemic
individuals (45), reinforcing the tight interplay among inflammation,
lipids, and endothelial damage.

Together, these observations build a strong rationale for focusing
on vascular inflammation as a shared pathway driving HFpEF in
autoimmune diseases.

Autoimmunity, chronic inflammation,
and diastolic dysfunction

Diastolic dysfunction (DD) affects approximately 28.1% of the
general population (46), where it independently predicts mortality
and heart failure (47, 48). In autoimmune diseases, DD is even more
prevalent and strongly associated with disease features.

For example, in RA, DD was observed in 31% of patients and
linked to disease duration and elevated IL-6 levels (49). Premenopausal
RA patients showed an even higher prevalence (47%) compared to
age-matched controls (26%), with CRP being the strongest
independent predictor (50).

In PsA, DD prevalence reached 38%, associated with older age
and hypertension (51). In SSc, DD affected 35% of patients, regardless
of whether disease was limited or diffuse, and correlated with
Raynaud’s duration (52).

In SLE, 39% had DD independent of disease activity (SELENA-
SLEDAI), with disease duration being the strongest determinant,
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Traditional risk factors

Age
Sex
Smoking
Obesity
Diabetes
Hypertension
Dyslipidemia
eGFR

Diastolic dysfunction (DD)

1. Average E/e’ ratio > 10

2. Septal e’ <7 cm/s or lateral e’ < 10
cm/s

3. Left atrial volume index (LAVI) > 34
ml/m?2

(DD considered to be present if > 2
conditions were positive)

FIGURE 2

NON traditional risk factors

Oxydative stress
Autoimmunity
Chronic inflammation
Autoinflammation
Thrombophilia
Endothelial dysfunction
NSAIDs
Glucocorticosteroids

HFpEF

1. Preserved LVEF (LVEF > 50%)

2. NTproBNP levels exceeding 125

pg/ml (non acute care)

Symptoms or signs of HF and

4. Either left ventricular
hypertrophy (defined as LV mass
indexed to BSA > 95 g/m2 for
women, >115 g/m2 for men), left
atrial enlargement (defined as
LAVI > 34 ml/m2) or DD

w

Traditional and non-traditional risk factors leading to diastolic dysfunction and to heart failure with preserved ejection fraction. eGFR, estimated
glomerular filtration rate; NSAIDs, non-steroidal anti-inflammatory drugs; HFpEF, heart failure with preserved ejection fraction; LVEF, left ventricular
ejection fraction; NTproBNP, N-terminal pro—-B-type natriuretic peptide; BSA, body surface area.

while the Framingham score proved unreliable (53). Anti-
cardiolipin antibodies, especially LAC, predicted worse DD
progression (54).

Similarly, in IBD, DD was associated with reduced coronary flow
reserve (CFR), an indicator of microvascular function (55), and
cardiovascular risk has been recognized by expert panels (56).

These findings consistently show that autoimmune and chronic
inflammatory diseases are strong contributors to DD, reinforcing the
importance of cardiovascular monitoring in these patients.

Endothelial dysfunction in
autoimmune-chronic inflammatory
diseases: a screening of diastolic
dysfunction?

The 2013 paradigm by Paulus and Tschope (29) proposed that
cardiovascular risk factors induce systemic inflammation, which
impairs endothelial and coronary microvascular function, ultimately
leading to HFpEE. This is supported by histological evidence of
microvascular rarefaction and NOX2 expression in macrophages from
HFpEEF patients (57), as well as high prevalence of vascular dysfunction
in this condition (58). Accordingly, autoimmune diseases frequently
exhibit ED. Specifically:

1. RA:impaired response to acetylcholine, reversible with TNF-a
blockade; long-term improvement requires disease remission
(59, 60).
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2. SSc: ED reversible with endothelin A receptor antagonism, but
not with nitroprusside (61).

3. SLE: reduced FMD, worsened by comorbidities (62, 63).

4. PMR: FMD remained low even after 6 months of treatment,
inversely correlated with CRP (64).

Normal FMD is ~6.4%, with age-related decline (65);
standardized protocols now enable its use as a biomarker (66).
Moreover, prospective studies show that ED predicts DD
progression (67), and DD precedes HFpEF (48). Hence, maintaining
control of systemic inflammation (as in RA and SLE) is essential
(60, 68).

All together, these data support the concept of ED as an early and
actionable marker in the prevention of HFpEF among patients with
chronic autoimmune inflammation.

HFpEF in rheumatoid arthritis, lupus
and systemic sclerosis

While DD and ED are well-documented in autoimmune diseases,
the clinical burden of HFpEEF is only recently emerging as a distinct
phenotype. Multiple studies from 2008 to 2024 have demonstrated
that HFpEF is the dominant HF subtype in these populations (69-73)
(Table 2). In RA, one-year mortality after HF diagnosis was 35%,
compared to 19% in controls (69), and incidence ranged from 2.5 to
8.2% across cohorts (70-72). These risks remained stable over decades
and were linked to disease activity.
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TABLE 1 Experimental models and in vivo human phenotypes of endothelial and diastolic dysfunction ending up to HFpEF.

Experimental models

GOTO-KAKIZAKI

Diabetes rat model (Insulin deficient- increased PKC and ROCK activity- Cardiomyocyte stiffening) (11, 12)

Diastolic dysfunction precedes endothelium

dysfunction

SAU-NA

hypertensive model—increased recruitment of macrophages CCR2+) (23)

Hypertensive mouse model (unilateral nephrectomy, chronic exposure to aldosterone and accelerated mortality—

Diastolic dysfunction followed by

cardiomyopathy and accelerated mortality

AGING

CCR2 + macrophages) (24)

Mouse model (increase in left ventricular mass, interstitial fibrosis, with high expression of TGFb and IL10 and

Diastolic dysfunction, cardiomyocites

hypertrophy and stiffness, microvascular

dysfunction

inflammatory cytokines; endothelial and diastolic dysfunction) (32)

Human phenotypes (age as the major risk factor)

DIABETES (pathophysiologic mechanisms: alteration in sodium handling; increased volume overload; release of pro-

45% of HFpEF have diabetes

remodeling; impaired pulmonary vasodilation; systemic inflammation) (33)

OBESITY (pathophysiologic mechanisms: volume overload; endothelial and diastolic dysfunction; biventricular

80% of HFpEF in US are obese

ATRIAL FIBRILLATION and FLUTTER (pathophysiologic mechanisms: widespread endothelial dysfunction; oxidative

stress; microvascular inflammation with increased CRP levels; atrial and ventricular fibrosis) (35)

40-60% of HFpEF have atrial fibrillation or flutter

HYPERTENSION (pathophysiologic mechanisms: coronary microvascular endothelial dysfunction; increased afterload

on left ventricle; ventricular hypertrophy; diastolic dysfunction; systemic inflammation) (37)

55% of patients with HFpEF have hypertension

cardiorenal syndrome) (40)

CHRONIC RENAL DISEASES (pathophysiologic mechanisms: endothelial dysfunction, inflammation and systemic and

renal fibrosis are mutual consequences of diabetes, hypertension and dyslipidaemia, which can also be drivers of

HFpEF patients: 26-49% have renal disease

Similarly, HF incidence was higher in RA (4.87/1,000 person-
years vs. 3.96 in controls) (73). In other autoimmune diseases, HFpEF
also emerged as the predominant phenotype. For instance, the
Athero-APS study showed an increasing gradient of HFpEF
prevalence from asymptomatic aPL carriers (6.3%) to full-blown
SLE-APS (27.8%) (74). Large population studies confirmed that HF
risk is markedly elevated in SSc, SLE, and RA (75), with worse
in-hospital outcomes for SLE patients (76). In SSc, 27% met HFpEF
criteria, and interstitial lung disease was a key predictor (77). Up to
70.5% of patients with autoimmune HF had the preserved EF
phenotype (78).

Interestingly, RA patients on biologics were more likely to recover
EF (78), but those with autoimmune comorbidities had a 3x higher
risk of mortality or hospitalization (79). The underlying inflammatory
drivers differ: RA involves myeloid-T and T-B cell inflammation (80,
81), SLE and SSc involve B-cell-mediated pathways (82-85).

Thus, therapies should reflect this heterogeneity: IL-6 blockers
show promise in ischemic damage (86), T cell costimulation blockade
prevents age-related dysfunction (87), and B-cell depletion has
improved dilated cardiomyopathy (88).

This highlights the need for a personalized, inflammation-targeted
approach in preventing and managing HFpEF in autoimmune disease.

Evidence and perspectives

Controlling inflammation has emerged as a crucial strategy for
improving diastolic dysfunction and potentially preventing
HFpEE. Animal studies have offered compelling evidence supporting
this approach. In a model of HFpEF using DAHL/SS salt-sensitive
hypertensive rats, the administration of colchicine significantly
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improved survival, reduced cardiac dysfunction, and diminished
oxidative stress and inflammatory cell infiltrates (89). These findings
suggest the potential efficacy of colchicine, with human trials expected
to provide further clarification (90).

Among the most promising emerging therapies, sodium-
glucose cotransporter 2 (SGLT2) inhibitors have demonstrated
clinical benefits in HFpEF, particularly in patients with comorbid
conditions such as type 2 diabetes and obesity. Results from large
randomized trials, including EMPEROR-Preserved (91) and
DELIVER (92), showed that treatment with empagliflozin or
dapagliflozin significantly reduced the risk of heart failure
hospitalization and cardiovascular death. These effects are thought
to arise from improved myocardial energetics, decreased preload
and afterload, and anti-inflammatory as well as antifibrotic
properties. While data specifically addressing autoimmune
populations are currently lacking, the potential of SGLT?2 inhibitors
to modulate endothelial dysfunction and low-grade systemic
inflammation suggests they may also benefit patients with
autoimmune-driven HFpEE. Nonetheless, clinicians should
be cautious of adverse effects, including genital infections, volume
depletion, and ketoacidosis, particularly in elderly or non-obese
individuals (Figure 3). Further studies are needed to explore the
safety and efficacy of these agents in this specific subgroup.

Plasma IL-6 has been a focal point of recent research, with its levels
showing a strong predictive value for HFpEF but not for HFrEF in the
PREVEND cohort—a prospective study of 961 participants. This
association persisted even after adjusting for key risk factors, suggesting
IL-6 as a potential target for novel therapeutic strategies (93). Supporting
this, IL-6 was found to be an independent predictor of all-cause mortality
in hospitalized HFpEF patients, even after accounting for B-type
natriuretic peptide (BNP) levels (94). Furthermore, tocilizumab, an IL-6
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TABLE 2 Clinical evidence of HFpEF in autoimmune diseases.

10.3389/fmed.2025.1557312

Study Disease Key findings Notable observations

Davis et al. (69) RA 35% 1-year mortality after HF vs. 19% in controls High mortality burden in RA-related HF
Huang et al. (70) RA 8.2% developed HF over 10.7 years Long-term CV risk in RA

Mantel et al. (71) RA 2.5% HF incidence over 5 years Modest but relevant incidence

Myasoedova et al. (72) RA Stable HF prevalence over 30 years Persistent CV burden despite treatment evolution
Abhlers et al. (73) RA HF incidence: 4.87 vs. 3.96 per 1,000 person-years Higher chronic inflammatory load linked to HF
Athero-APS Study (74) APS/SLE HFpEF prevalence: 6.3% (carriers) to 27.8% (SLE-APS) Severity-dependent CV risk escalation

Prasada et al. (75) SSc, SLE, RA HR for HF: 7.26 (SSc), 3.15 (SLE), 1.39 (RA) Significant HF risk across diseases

Nomigolzar et al. (76) SLE 0.61% of 10 M HF cases had SLE; higher in-hospital mortality Increased pericardial complications

Oliveira et al. (77) SSc 27% met HFpEF criteria Age, AF, and ILD were key predictors

Rivera et al. (78) ACIDs 70.5% with HF had HFpEF Higher rate than general population

Tada et al. (79) ACIDs 3x increased risk of death/hospitalization in HFpEF with ACID Poorer prognosis vs. non-ACID patients

RA, rheumatoid arthritis; APS/SLE, antiphospholipid syndrome/systemic lupus erythematosus; SSc, systemic sclerosis; ACIDs, autoimmune and chronic inflammatory diseases; HE, heart

failure; HFpEE heart failure with preserved ejection fraction; AF, atrial fibrillation; ILD, interstitial lung disease.

SGTL2 inhibitors treatment

modulate endothelial

Improved myocardial energetics
Decreased preload and afterload

Anti-inflammatory and
antifibrotic properties

dysfunction

\

decreased low-grade
systemic inflammation

Risks of
genital infections
volume depletion

ketoacidosis,

FIGURE 3

Clinical benefits in HFpEF

SGLT2 inhibitors have demonstrated clinical benefits in HFpEF, reducing the risk of heart failure hospitalization and cardiovascular death by modulating
endothelial dysfunction and low-grade systemic inflammation, leading to improve myocardial energetics, decrease preload and afterload, and thought

anti-inflammatory and antifibrotic properties. Nonetheless, adverse effects include genital infections, volume depletion, and ketoacidosis. SGLT2,
sodium-glucose cotransporter 2; HFpEF, heart failure with preserved ejection fraction.

receptor antagonist, demonstrated improvements in left ventricular
ejection fraction in rheumatoid arthritis patients without overt cardiac
symptoms, reinforcing the potential benefits of targeting IL-6 (95).

However, the results of targeting inflammation in HFpEF have
been mixed. Anakinra, an IL-1 receptor antagonist targeting IL1o/f,
failed to improve cardiac function in obese HFpEF patients, despite
successfully lowering CRP and NT-proBNP levels (96). Similarly, the
CANTOS trial, which investigated canakinumab (an anti-IL1p
therapy), found that higher IL-6 levels 3 months post-initiation were
associated with a substantial increase in major adverse cardiovascular
events (MACE) and all-cause mortality (97), complicating the role of
IL-1p inhibition in this context.

The link between inflammation and NT-proBNP levels provides
additional insight. Among participants in the MESA study, IL-6 levels
were significantly correlated with NT-proBNP levels, although it
remains unclear whether these increases directly reflect the risk of
incident HFpEF (98).

Of particular interest is the emerging evidence regarding IL-17. A
preliminary study indicated that secukinumab, an IL-17A inhibitor,
improved inflammation and diastolic dysfunction, which was present
in nearly 39% of patients (99). If confirmed, this finding is especially
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significant given the central role of IL-17 in autoimmune inflammatory
diseases (100) and its established involvement in inducing ventricular
arrhythmias in ischemic heart failure (101). In addition, both IL-17
and IL-6 were identified as independent predictors of DD progression
in patients with normal left ventricular ejection fraction who
underwent invasive hemodynamic assessment (102).

Conclusions and research agenda

Compelling evidence underscores the pivotal role of inflammation
in the development of HFpEE Endothelial dysfunction emerges as a
critical early biomarker, signaling the onset of microvascular damage
that can progress to diastolic dysfunction and ultimately
HFpEE. Despite these insights, there is a notable absence of clinical
trials focused on identifying the optimal diagnostic approach for early
detection of DD and stratifying patients for targeted therapeutic
protocols based on the type and intensity of underlying inflammation.

No long-term studies have yet evaluated whether tailored
treatments can reduce HFpEF incidence in patients with autoimmune
chronic inflammatory diseases such as RA, SLE, or SSc. Additionally,
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TABLE 3 H2FPEF score to evaluate the possible presence of HFpEF in
patients with symptomatic dyspnea.

Clinical variables Points

Weight (BMI > 30) 2
Hypertension (antihypertensive medications) 1
Atrial fibrillation (history or presence) 3
Pulmonary hypertension (RVSP at rest >35 mmHg) 1
Age (age >60 yrs) 1
Filling pressure (Rest E/€ > 9) 1

Score 0-1

Score 2-5

HFpEF possible: assess rest/

Score 6-9

HFpEF ruled out Very likely HFpEF

stress RHC or Echo stress

BMI, body mass index; RVSP, right ventricle systolic pressure; E/¢; ratio of early diastolic
mitral inflow blood velocity to mitral annular tissue velocity; RHC, right heart
catheterization.

the field lacks consensus on key diagnostic thresholds, such as the
cutoff values for assessing DD or levels of natriuretic peptides (e.g.,
NT-proBNP) indicative of imminent HFpEF (103). Research should
prioritize defining whether NT-proBNP levels warrant routine annual
evaluation, particularly in older patients. The importance of early
biomarker evaluation is further highlighted by data from the
U.S. National Inpatient Sample Database (2016-2020), which showed
that SLE patients hospitalized with acute decompensated heart
failure—whether HFpEF or HFrEF—had a mean age of 61 years,
compared to 72 years for non-SLE patients. SLE patients also exhibited
higher in-hospital mortality rates, emphasizing the need for timely
identification of predictive biomarkers to guide early
interventions (104).

This approach gains urgency in the context of ACIDs coexisting
with metabolic comorbidities such as type 2 diabetes or obesity,
particularly in aging populations, where the cumulative risk of HF
increases significantly (103). These scenarios reflect the additive
impact of metabolic dysfunction and chronic inflammation on cardiac
damage. Addressing this, a cardio-immuno-rheumatologic framework
should be integrated into clinical practice (105, 106), ensuring that
patients with persistent active inflammation are systematically
monitored for HFpEF risk.

For diagnostic precision, the H2FPEF score—a composite tool
combining clinical and echocardiographic parameters—offers a
valuable approach. This scoring system can predict HFpEF with up to
95% probability when the score exceeds 5/9 (Table 3). Implementing
such algorithms could revolutionize screening and management
strategies in ACIDs, ensuring timely intervention for patients at
elevated cardiovascular risk.

Future research must focus on:

1. Longitudinal studies evaluating the impact of targeted anti-
inflammatory therapies on HFpEF incidence across RA, SLE,
and SSc.

2. Establishing evidence-based thresholds for biomarkers like
NT-proBNP to guide routine screening.

3. Developing and validating diagnostic algorithms that integrate
inflammatory markers, clinical parameters, and imaging data
to improve early identification and risk stratification.
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By addressing these gaps, we can move closer to a personalized,
proactive approach in preventing HFpEE particularly in high-
risk populations.

Finally, considering the heterogeneity of the available studies,
particularly regarding HFpEF definitions, patient populations, and
outcome measures, as well as the scarcity of randomized controlled
trials in autoimmune settings, our conclusions should be interpreted
with caution. These limitations further underscore the urgent need for
disease-specific, prospective investigations.
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Glossary

HFpEF - Heart Failure with Preserved Ejection Fraction
HFrEF - Heart Failure with Reduced Ejection Fraction
LVEF - Left Ventricular Ejection Fraction

LV - Left Ventricle

DD - Diastolic Dysfunction

ED - Endothelial Dysfunction

IL-6 - Interleukin-6

CRP - C-reactive Protein

RA - Rheumatoid Arthritis

SLE - Systemic Lupus Erythematosus

SSc - Systemic Sclerosis

APS - Anti-Phospholipid Syndrome

FMD - Flow-Mediated Dilation

ECM - Extracellular Matrix

TGEF-p - Transforming Growth Factor Beta

NF-xB - Nuclear Factor Kappa-light-chain-enhancer

activated B cells
AP-1 - Activator Protein 1

ROS - Reactive Oxygen Species
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eNOS - Endothelial Nitric Oxide Synthase
NO - Nitric Oxide
o-SMA - Alpha Smooth Muscle Actin

CCR2 - C-C Chemokine Receptor Type 2

STATS3 - Signal Transducer and Activator of Transcription 3

AMI - Acute Myocardial Infarction

DM2 - Type 2 Diabetes Mellitus

hsCRP - High Sensitivity C-Reactive Protein
MACE - Major Adverse Cardiovascular Events
BNP - B-type Natriuretic Peptide
NT-proBNP - N-terminal pro B-type Natriuretic Peptide
TNF - Tumor Necrosis Factor

OSM - Oncostatin M

BITE - Bispecific T-cell Engager

FDR - False Discovery Rate

WHS - Women’s Health Study

PMR - Polymyalgia Rheumatica

UC - Ulcerative Colitis

IBD - Inflammatory Bowel Disease

CFR - Coronary Flow Reserve
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