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Predictors of delayed
encephalopathy after acute
carbon monoxide poisoning: a
literature review

Yongjing Wang†, Zunzhen Zhou†, Dailiang Zhang* and

Yuan Jiang*

Clinical Medical College, The First A�liated Hospital of Chengdu Medical College, Chengdu, Sichuan,

China

Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP)

is one of the severe complications that can occur after acute carbon

monoxide poisoning (ACOP). The pathogenesis of DEACMP is complex, featuring

a delitescence onset and poor prognosis. As a result, many scholars are

concentrating on identifying predictors of DEACMP and evaluating their e�ects,

including clinical characteristics, laboratory indicators, neuroelectrophysiology,

imaging examination, and genetic susceptibility. However, current identified

predictors lack consensus and their clinical application is limited. Therefore, we

need to explore new predictors. Exosomes, the smallest extracellular vesicles

(EVs) with nano-size, participate in both the physiological and pathological

processes of the brain, and the changes in their content can provide valuable

information for clinical diagnosis and evaluation of neurodegenerative diseases,

suggesting that they may serve as a potential biomarker. However, the

practicability of exosomes as biomarkers of DEACMP remains unclear. In

the present review, we first introduced the pathogenesis of DEACMP and

the currently identified predictors. Then, we also discussed the possibility

of exosomes as the biomarkers of DEACMP, aiming to stimulate more

attention and discussion on this topic, thereby providing meaningful insights for

future research.
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Introduction

Acute carbon monoxide poisoning (ACOP) is a hypoxic disease caused by excessive
carbon monoxide (CO) inhalation and is one of the most common causes of poisoning-
related deaths worldwide (1). According to statistics, the global cumulative incidence
rate of ACOP is 137 cases per million, and mortality is 4.6 deaths per million (2). In
many countries, especially in winter, CO exposure increases due to stove heating, coal
gas leak from a water heater, or inhalation during a fire, resulting in a higher incidence
rate (1–4). CO is a tasteless, colorless, odorless, and nonirritating but highly toxic gas, so
the patients may not realize they are poisoned CO unless they experience symptoms such
as dizziness, headache, nausea, vomiting, consciousness change, or even coma (5). There
have been reports that mortality has significantly declined during the last 25 years due to
continued public education, enhanced efficacy of residential CO alarms, and more efficient
therapeutic management of patients with CO poisoning (2). However, inhaled CO mainly
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binds with hemoglobin to form carboxyhemoglobin (COHb),
leading to tissue hypoxia, oxidative stress, and inflammation in
the heart, brain, nerves, and other tissues after ACOP (3). About
10–30% of surviving patients may develop delayed encephalopathy
after acute carbon monoxide poisoning (DEACMP), with
symptoms including cognitive dysfunction, personality changes,
psychosis, and even Parkinsonism symptoms after a lucid interval
(also known as the pseudo-recovery period) ranging from a few
days up to months from the ACOP (5, 6).

So far, the pathogenesis of DEACMP is still unclear, involving
multiple aspects such as ischemia and hypoxia, oxidative stress
injury, reperfusion-oxygenation injury, and so on. As a result,
effective treatment options for DEACMP are limited. In addition,
the disability rate of DEACMP can be as high as 78%, and the
case fatality rate is 31%, causing a heavy burden to families and
society (7). DEACMP is characterized by neuronal apoptosis and
necrosis, leading to irreversible damage to neural function. Timely
identification of DEACMP can help patients receive treatment as
early as possible. Scholars have attempted to identify predictors of
DEACMP based on clinical characteristics, laboratory indicators,
neuroelectrophysiology, imaging examination, and even genetic
susceptibility. Although some valuable findings have emerged,
current identified predictors lack consensus and their clinical
application is limited due to specificity, feasibility, and cost.
Therefore, there is a need to explore new predictors for DEACMP.

Mounting evidence indicates that exosomes play a vital
role in the pathogenesis of various brain diseases, such as
neurodegenerative diseases, ischemic and hemorrhagic stroke, and
brain cancer (8–10). Exosomes, a subtype of extracellular vesicles
(EVs), are secreted from various cells and transport proteins, lipids,
and nucleic acids for intercellular communication. Brain cells can
release exosomes to regulate physiological and pathologic processes
in the brain (11). The contents of exosomes reflect the physiological
and pathological properties of the cell of origin, suggesting that
brain cell-derived exosomes may be a source of brain disease
biomarkers. Notably, these exosomes can cross the blood-brain
barrier (BBB) and circulate in peripheral blood and cerebrospinal
fluid, allowing researchers to isolate the exosomes from harvested
blood serum and cerebrospinal fluid for brain disease screening,
diagnosis, prognosis, and monitoring of therapeutic efficacy. For
example, many scholars suggest that peripheral blood neuronal-
derived exosomes may be the potential biomarkers for Alzheimer’s
disease (AD) (12, 13). By comparison, reports on exosomes
and DEACMP are scarce, indicating that this area has not yet
gained widespread attention. The practicality of exosomes as the
biomarkers of DEACMP remains unclear. Therefore, in the present
article, we will first introduce the pathogenesis of DEACMP and
discuss the advantages and disadvantages of the currently identified
predictors. Then, we also discussed the possibility of exosomes as
the biomarkers of DEACMP, aiming to stimulate more attention
and discussion on this topic, thereby providing meaningful insights
for future research.

Mechanism of DEACMP

DEACMP is a type of encephalopathy that occurs in
patients after ACOP. After exposure to excessive CO, brain cells
experience a series of changes, including ischemia and hypoxia,

reperfusion-oxygenation injury, oxidative stress injury, immune-
inflammatory cascade reaction, mitochondrial dysfunction,
cell apoptosis and necrosis, neurotransmitter disorder, and
microenvironment changes (14). It is hard to interpret the
pathogenesis of DEACMP from a single perspective. At present,
the following statements are mainly:

Ischemia and hypoxia

The close combination of CO and hemoglobin can reduce the
oxygen-carrying capacity of red blood cells and hinder oxygen
release, leading to hypoxia in the body. Notably, neurons in the
central nervous system are particularly susceptible to ischemia and
hypoxia. Hypoxia can induce cellular injury and death in neurons,
impairing neuronal function (15). In addition to neurons, CO
can damage myocardial and vascular endothelial cells, leading to
reduced cardiac ejection function and increased thrombosis. These
injuries worsen ischemia and hypoxia in brain tissues, which may
induce or aggravate DEACMP (16).

Oxygen free radical injury

Excessive exposure to CO can lead to mitochondrial
dysfunction, inhibition of mitochondrial respiration, and
increased generation of reactive oxygen species (ROS). ROS
include superoxide anion radical (O2.-), hydroxyl radical (.OH),
hydrogen peroxide (H2O2), singlet oxygen (1O2), and nitric oxide
(NO) (17, 18). High levels of ROS can elevate oxidative stress
in brain cells, especially in neurons of the CNS. Central system
neurons are rich in polyunsaturated fatty acids (PUFAs), which
interact with ROS and can lead to lipid peroxidation, making
those neurons more susceptible to the toxic effects of ROS (17).
In addition, intracellular hypoxia can lead to increased xanthine
oxidase (XO) to generate a large amount of O2.-, while O2.- can
react with NO to form a potentially harmful oxidant peroxynitrite,
exacerbating cell injury through oxidative stress (19). NO serves as
a messenger molecule and may play some role in neurotransmitter
release, neural development, and synaptic plasticity. However,
excessive NO may be neurotoxic and significantly harm the
function of nerve cells after ACOP (20–22). Moreover, it’s worth
noting that when hypoxic tissues receive sufficient oxygen again
(such as hyperbaric oxygen therapy), high oxygen saturation
facilitates ROS production, resulting in reperfusion injury and
potentially exacerbating the disease. A new research reveals
that ACOP induces iron accumulation in the white matter and
ferrostatin-1 can reduce iron and ROS deposition to alleviate
ferroptosis (23). Ferroptosis can cause lipid peroxidation and a
large amount of ROS, leading to cell death. Therefore, the role of
ferroptosis in the pathogenesis of DEACMP needs more attention
and investagtie in the future.

Immune injury and inflammatory factors

ACOP can cause inflammatory reactions and immune damage
in brain tissue, resulting in increased significant levels of
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interleukin-4 (IL-4), IL-6, IL-13, and tumor necrosis factor- α (TNF
- α) in the blood or cerebrospinal fluid (CSF) of patients after ACOP
(24–26, 125). In contrast, brain tissues of CO-poisoned rats has
a high interferon-gamma (IFN-γ) level (27). These inflammatory
factors play a crucial role in triggering the immune response.
Myelin basic protein (MBP), a major myelin protein of the CNS,
is synthesized by oligodendrocytes and neuromembrane cells, and
its levels can reflect the extent of damage to CNS, making it
represent a specific biochemical indicator of CNS damage and
acute demyelination (28). Some studies have reported that MBP
levels significantly increase in the CSF of ACOP patients (29,
30). CO-mediated oxidative stress induces changes in MBP and
promotes the formation of MDA-MBP adducts between MBP
and the product of lipid peroxidation malondialdehyde (MDA),
resulting in a triggered immunological cascade. In the brain
tissue of CO-poisoned rats, lymphocytes exhibited an auto-reactive
proliferative response to MBP and a significantly increased number
of activated microglia (31). In particular, M1 phenotype microglia
can cause neuronal damage due to excessive immune responses by
secreting proteolytic enzymes, reactive oxygen species (ROS), and
inflammatory cytokines (32, 33).

Apoptosis and autophagy

Scholars observed neuronal apoptosis in the cerebral cortex,
parahippocampal gyrus, and other brain regions, leading to the
surviving rats after ACOP exhibited clinical symptoms similar
to those of DEACMP patients, such as defects in cognition,
learning, and memory (34, 35). When nerve cells are exposed
to CO, their mitochondrial membrane potential will decline
and release cytochrome c into the cytoplasm, activating the
mitochondrial apoptosis pathway (36). In addition, CO can
increase intracellular caspase-8 levels to activate the death receptor
apoptosis pathway (37). CO-induced apoptosis may be the reason
of the decline in the number of type 1 and type 2a neural
precursor cells, microglial cells, and oligodendrocyte precursor
cells in rats after CO exposure. Ochi et al. suggested that this
change in glial cell mount can induce the decrease in hippocampal
neurogenesis, leading to cognitive impairment in a rat model of
delayed CO encephalopathy (38). In addition to apoptosis, tissue
hypoxia would trigger autophagy (39, 40). Autophagy may act
as an endogenous protective mechanism against hypoxic/ischemic
injury, contributing to endogenous neuroprotective and neuro-
recovery (41, 42). CO can promote autophagy in the cytoplasm of
exposed cells through the increased generation of mitochondrial
ROS to activate HIF-1, p53, FOXO3, and NRF2 for triggering the
transcription of BNIP3 and NIX, TIGAR, LC3, and BNIP3 and
p62, respectively. Low concentrations of CO-induced autophagy
can inhibit cell death and inflammation, exhibiting protective
actions (43–46). However, excessive autophagy could lead to the
degradation of organelles by lysosomes, resulting in brain cell
damage or even cell death (47, 126). Some scholars have suggested
that apoptosis and autophagy can be activated by the same
upstream signal and are interconnected through various crosstalk
mechanisms (48, 49), leading to the coexistence of apoptosis and
autophagy in the CO-exposed brain cells. Although the mechanism

of transformation and coordination remains unclear, autophagy
and apoptosis play crucial roles in the pathogenesis of DEACMP.

Excitotoxicity

Pathological overactivation of excitatory neurotransmission
can cause excitotoxicity, leading to synaptic and neuronal
degeneration. Excitotoxicity is one of the primary mechanisms of
cell death in the central and peripheral nervous systems. It is now
regarded that the elevated Ca2+ influx induced by glutamatergic
synaptic transmission facilitates the accumulation of Ca2+

inside the cell through Ca2+-permeable (CP)-AMPA receptors
(AMPARs), a critical key factor in causing excitotoxicity (50).
For instance, the upregulation of CP-AMPARs triggers the Ca2+

influx excitotoxic signaling pathway, resulting in mitochondrial
injury, endoplasmic reticulum (ER) stress, activation of apoptotic
cascades, and even alterations in the ubiquitin-proteasome system,
ultimately causing neuronal cell death. In cases of brain damage
caused by hypoxia and ischemia, excitotoxicity causes neuronal
cell death, contributing to neurodegeneration and detrimental
neurological defects (51). In addition, Ochi et al. found that the
mRNA expression of nicotinic acetylcholine receptor (nAChR).
Chrna3 was significantly decreased in the hippocampal tissue,
while cerebellar Chrna7 expression was significantly increased
in the delayed CO encephalopathy rat model, indicating that
the change of nicotinic acetylcholine receptors (nAChRs) may
affect the cognitive status and play a role in the pathogenesis of
DEACMP (52).

Identified predictors of DEACMP

So far, scholars have identified several valuable predictors for
predicting DEACMP. These predictors originate from multiple
research fields, including clinical characteristics, laboratory
indicators, neuro-electrophysiology, imaging examination, and
genetic susceptibility (Table 1). They may assist physicians in
assessing the risk of developing DEACMP.

Clinical characteristics

Some retrospective analyses have identified several clinical
characteristics as independent predictors of DECAMP, including
age (>45 years), CO exposure duration, Glasgow coma scale
(GCS) score (≤9 points), pathological neurological examination,
the timing of starting hyperbaric oxygen therapy (HBOT), source
of CO, and a history of hypertension and seizures [51–55; Mu et al.,
(127)]. Among these predictors, age, CO exposure duration, and
GCS score are often mentioned in many studies. Mu et al. observed
that older patients are vulnerable to DECAMP, and suggested that
cardiopulmonary function declines in older patients increase the
comorbidities after ACOP (127). Zhang et al. suggested that the
tolerance of nerve tissue to hypoxia is weakened in the elderly
population, and their gradually degraded central nervous system
function will aggravate the condition of DEACMP patients (77). A
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TABLE 1 List of the identified predictors of DEACMP.

Research fields Identified predictors References

Clinical characteristics CO exposure duration > 5 h, History of hypertension (53)

Pathological neurological examination (54)

Age > 40.5 years, CO exposure duration > 4.8 h, GCS score on-site (55)

GCS score < 9 (56)

CO exposure duration >6 hours, GCS score <9, seizures, systolic blood pressure <90 mmHg (57)

Age, Source of CO, GCS score, HBOT (127)

GCS score≤ 13 (58)

Age >50 years, GCS score≤ 12, History of shock, no use of HBOT (59)

Laboratory indicators Increased IL-6 in CSF (24)

Increased serum S100B, NSE, and GFAP (60)

Increased serum S100B and NSE (61, 62)

Serum S100B > 0.165 µg/L (63)

Serum S100B > 0.67 µg/L (64)

Increased serum NSE (65)

Serum NSE level of >20.98 ng/mL at 48 h after presentation at hospital (66)

Increased serum S100B and GFAP (67)

Increased MBP in CSF (24)

Decreased serum netrin-1 (68)

Plasma copeptin >40.5 pmol/L (69)

Neuro electrophysiology SEP, VEP, and BAEP (70)

Imaging examination Computed tomography (71)

Magnetic resonance imaging (72)

Genetic susceptibility NSE gene SNPs (rs2071419 and rs3213434) (73)

LRCH1 gene polymorphisms (rs9534475) (74)

MBP SNPs (rs764529994) (75)

PARK2 SNPs (rs1784594) (125)

MBP 5′-side TGGA n gene polymorphism (76)

longer duration of CO exposure means that inhaled CO can cause
severe brain tissue hypoxia. The cerebral cortex, white matter, basal
ganglia, and the globus pallidus, are the most affected areas in brain
tissue. Some scholars considered that patients who are exposed to
CO for >5 h have a 1.7 times higher risk of DEACMP compared
to those exposed for <5 h (53). GCS score can reflect the degree
of consciousness impairment in patients, especially those with
traumatic brain injury (TBI). The lower scores indicate a severe
coma state and a higher risk for future complications in patients.
Many retrospective studies confirmed that lower GCS scores are
associated with the occurrence of neurological sequelae in ACOP
patients. Some scholars suggested that GCS score is a sensitive,
specific, rapid, and valuable parameter in case of assessment on-
site compared with that evaluated at the emergency room (55,
78). Recently, Kim et al. developed and tested a clinical scoring
system (COGAS), which incorporates five factors associated with
poor neurocognitive outcome: age, GCS score, serum creatine
kinase (CK), hyperbaric oxygen therapy, and shock. This prediction
model has demonstrated excellent discrimination performance for

DECAMP and may offer significant clinical predictive value (59).
However, most of the identified clinical characteristics are from
retrospective studies. These studies have several limitations, such
as small sample size, selection or information bias, and incomplete
medical records, that can influence the sensitivity and specificity
of specific clinical characteristics using logistic regression analysis,
resulting in inconsistent conclusions regarding the predictive value
in different studies (50, 56). Therefore, current identified clinical
characteristics need validation through larger sample sizes and
multicenter studies in various populations and regions.

Laboratory indicators

Interleukin-6 (IL-6) is a pro-inflammatory cytokine involved
in chronic inflammation and auto-immune disorders. Previous
studies have confirmed significantly increased IL-6 levels in the
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serum and CSF of patients with ACOP. Meanwhile, the level of IL-
6 in CSF may be a predictor of DECAMP rather than the serum
IL-6 level (24, 26, 30). Ide et al. suggested that the changes in IL-6
levels in CSFmay reflect the degree of demyelination in the cerebral
white matter in the early phase of ACOP. The high IL-6 levels in
CSF will return to normal, so early CSF sampling is crucial for
predicting DECAMP (24). However, lumbar puncture is a relatively
invasive technique for CSF sampling. Scholars need to consider
its invasiveness and operational risk in the clinical application of
measuring IL-6 levels in CSF.

S100B is a calcium-binding protein produced primarily by
astrocytes in the CNS. A high level of S100B promotes the
expression of inducible nitric oxide synthase (NOS) or pro-
inflammatory cytokines, resulting in cytotoxicity to neurons in
some neurodegenerative disorders (79, 80). S100B can be measured
in CSF and blood and its concentration can reflect the severity of
pathogenetic conditions and brain injury prognosis (60, 81). S100B
in the blood of patients with ACOP also increased significantly,
especially in patients with severe poisoning or suffering from
DEACMP (61, 63). Previous studies have shown that S100B can
reflect the early neurotoxicity of CO poisoning and is related to
the degree of consciousness damage. Therefore, it can serve as a
predictor of the development of DEACMP with high sensitivity
and specificity (64, 82). However, some scholars suggested that the
existing evidence makes it difficult to establish a clear correlation
between the severity of brain disease and concentrations of S100B
in CSF or serum. In addition, the extra-astrocytic and extracerebral
expression of S100B involves various potential confounding factors
that may induce a lack of disease specificity in predicting
neurodegenerative disorders (83–85).

Neuron-specific enolase (NSE), a cell-specific isoenzyme of the
glycolic enolase in nerve and neuroendocrine tissue, is involved
in human glucose metabolism. NSE exhibits high activity in brain
tissue and cells and is released when axons are injured. In contrast,
it is lower in non-neural tissues, serum, and spinal fluid. The
detection of NSE can provide a quantitative measurement of
neuronal damage, reflecting the extent of primary injury to the
brain and the progression of secondary damage (86). Many studies
have found significantly elevated serum levels of NSE in patients
after ACOP, suggesting that serum NSE could be an effective
predictor of DEACMP in the early stage with better sensitivity
than S100B. Notably, the detection of serum NSE enhances the
prediction accuracy of initial GCS and the diagnosis accuracy for
DEACMP (62, 65, 66, 87). However, scholars still are unable to
confirm a clear correlation between serum NSE levels and the
risk of DECAMP due to the change in serum NSE levels are also
closely linked to other conditions such as neuroendocrine tumor
(NET), small cell lung cancer (SCLC), melanoma and other diseases
(88–90). Therefore, further large-scale studies are necessary to
confirm the specificity of serum NSE as an independent factor for
predicting DECAMP.

Other studies have reported several predictors for predicting
DEACMP, such as glial fibrillary acid protein (GFAP), netrin-
1, BMP, and plasma copeptin (67–69, 91). However, these
laboratory indicators are easily influenced by the physiological
and pathological conditions of the patient’s body, leading to the
correlation between them and DECAMP also requires further
experimental discussion.

Neuro electrophysiology

Electroencephalography (EEG) is a simple, non-invasive, and
low-cost neurophysiological detection method for reflecting the
functional status of the nervous system (92). Because of the
persistent injury of the cerebral cortex and subcortical area,
DEACMP patients’ EEG may have irregular low to medium
amplitude θ Wave or high amplitude δ Wave and other abnormal
EEG in the pseudo-recovery period, even if they have no clinical
manifestation. The abnormal rate of EEG has a positive correlation
with the severity of DEACMP. By dynamically observing the EEG
of patients with CO poisoning, we can gain timely insights into
their brain damage and then predict whether they have DEACMP.

Brain-evoked potential (BEP) monitoring can reflect the
brain function by detecting the electrical signals generated by
specific stimuli (e.g., sound, light, etc.), which includes visual
evoked potential (VEP), somatosensory evoked potentials (SEP),
brain stem auditory evoked potentials (BAEP), etc. BAEP can
sensitively evaluate the degree of brainstem functional injury. The
demyelinating lesions caused by DEACMP can cause damage to
brainstem function. Abnormal changes in peak and inter-peak
latency of BAEP exist in patients with DEACMP. He et al. suggested
that multimodality-evoked potentials based on VEP, SEP, and
BAEP are sensitive indicators for evaluating brain dysfunction and
predicting DEACMP in patients with ACOP (70, 93).

However, EEG or evoked potential results require expertise
from professionals. Different professionals may have their
perspectives on the results of multiple tests, resulting in
inconsistencies in the findings. In addition, few studies have
been concerned with using neurophysiological detection methods
to predict DEACMP in recent years, leading to a lack of specific
evaluation criteria for predicting DEACMP.

Imaging examination

DEACMP is one uncommon subtype of acquired
leukoencephalopathy with typical pathological changes, including
symmetrical softening of globus pallidus, generalized or focal
degeneration and necrosis of the cerebral cortex, and generalized
demyelination of white matter. The low-density area of globus
pallidus is the most commonly affected site of hypoxia after ACOP,
especially the bilateral symmetric lesions, which are significant for
diagnosing DEACMP. In addition, other affected regions, such as
the hippocampus, cerebellum, and substantia nigra, also exhibit
characteristic changes. Imaging examination is a crucial method
for assessing the central nervous system, and scholars have found
valuable information in AOCP patients’ computed tomography
(CT) or magnetic resonance imaging (MRI) scans.

The head computed tomography (CT) scan can reveal diffuse
low-density lesions in bilateral white matter and globus pallidus,
while Gray-matter—white-matter ratio (GWR) and the ratio of
gray matter attenuation to white matter attenuation can be used
to predict poor neurological outcomes in patients with hypoxic-
ischemic encephalopathy. Wang et al. suggested that GWR-basal
ganglia could serve as an indicator for predicting DEACMP with
high sensitivity (93.8%) and high specificity (68.7%) (94). Du
et al. have reported a brain-integrated CT score designed to
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identify DEACMP. The patient underwent a brain CT scan within
24 h of admission. Three experienced radiologists calculated the
integrated CT score based on the characteristics of the regions
of abnormal density, such as the distribution of lesions for each
brain region, extent of the lesion, lesion severity, swelling of
parenchyma, and others. The integrated CT score can assess the
pathologic changes in the brain to semi-quantify lesion severity
and may help predict the risks of developing DEACMP. Notably,
the integrated CT score could be suitable for application in various
medical institutions (95). However, some scholars suggest that CT’s
sensitivity to recognize acute ischemic lesions is relatively low,
limiting its effectiveness in detecting early pathological changes of
DEACMP (71).

In contrast to traditional head CT, brain MRI offers high
resolution and better recognition ability for intracranial soft
tissue and does not involve radiation exposure (96). Brain MRI
can effectively detect the early pathological changes associated
with DEACMP, such as long T1 and long T2 signals in the
bilateral white matter and symmetrical globus pallidus, as well
as extensive demyelination of white matter (97, 98). A recent
systematic review and meta-analysis reported that brain MRI is
a good predictor for DEACMP with 72% sensitivity and 80%
specificity (72). Ahn et al. suggested that using MRI to detect
abnormal brain damage within 72 h after ACOP patients arrive
at the emergency department may assist in predicting DEACMP
(71). The conventional head MRI only reflects the changes in
the tissue and cell structure of the brain area and has a poor
display effect ofmicro-structural lesions. At present, the application
of diffusion-weighted imaging (DWI), diffusion tensor imaging
(DTI), and diffusion kurtosis imaging (DKI) have overcome
this shortcoming. DWI is a new-generation MRI based on the
translational movement of water. It can detect early changes in
cerebral ischemia and is sensitive to cytotoxic or vasogenic edema.
The apparent diffusion coefficient (ADC) value can quantify the
movement of different water molecules at the microscopic level.
After ACOP, cerebral hypoxia can cause cytotoxic brain edema,
which limits the movement and diffusion of water molecules,
resulting in decreased ADC values and relatively increased DWI
signals. Therefore, DWI can reflect the typical pathological changes
of DEACMP more sensitively and earlier than conventional MRI
(99). DTI can show the directionality of water molecule diffusion,
and low fractional anisotropy (FA) values can sensitively reflect
the slight pathologic changes from progressive demyelination
in patients after ACOP, making DTI more suitable than DWI
for predicting DEACMP (99). Indeed, pathological changes of
DEACMP in the acute phase are too slight to observe using
the conventional MRI and DWI or DTI in most cases (100),
while DKI can be preferred. DKI is a straightforward extension
of the DTI with greater sensitivity to detect damages to the
microstructure of the brain than DWI or DTI. Even if there are
no abnormal lesions in the brain white and gray matter after
ACOP, the high mean kurtosis values of DKI may indicate a poor
prognosis (71).

In short, brain CT andMRI all exhibited good application value
in the research of DECAMP prediction (101, 102, 128). However,
from the perspectives of equipment, cost, and patient compliance,
medical institutions may face limitations in utilizing serial imaging
examinations to predict DEACMP.

Genetic susceptibility

The influence of toxic substances on human DNA maps has
attracted many scholars’ attention. ACOP can induce acute DNA
changes in the globus pallidus of the brain, which may also
be genotoxic (128). Oztürk et al. suggested that the mutagenic
compounds found in coal or wood smoke and ash, as well as
hypoxic and reperfusion injury, may primarily contribute to the
individual genotoxic of carbon monoxide exposure (103). In recent
years, more and more studies have found that the polymorphism
of some genes is closely related to the genetic susceptibility of
DEACMP, indicating that these genes are susceptibility sites of
DEACMP. Mutations in their expression could raise the risk of
DEACMP and may act as potential predictors. Xu et al. conducted
a screening of 6 NSE single nucleotide polymorphisms (SNPs)
and compared the genotype frequencies and alleles of the 6 NSE
SNPs (rs2071074, rs2071417, rs2071419, rs11064464, rs11064465,
and rs3213434) by different genetic models. They found significant
differences in the genotypes and allele frequencies of rs2071419
and rs3213434 in the DEACMP patients and ACOP patients,
suggesting that rs2071419 and rs3213434 may be susceptible sites
of DEACMP. They speculated that the C allele of the rs2071419
polymorphism and the T allele of the rs3213434 polymorphism
in NSE could increase the risk of developing DEACMP, serving as
potential risk factors for DEACMP (58). Gu et al. found that four
leucine-rich repeats and calponin homology domain containing 1
(LRCH1) gene polymorphisms have a significant association with
DEACMP, such as rs1539177 (G/A), rs17068697 (G/A), rs9534475
(A/C), and rs2236592 (T/C). Notably, the allelic A of rs9534475
polymorphism in LRCH1 may provide good early prognostic value
for DEACMP (73). Zhang et al. investigated the association of MBP
SNPs (rs470555, rs470724, rs4890785, rs595997, rs76452994, and
rs921336) with DEACMP. They found that the MBP rs76452994
and rs921366 polymorphisms were associated with DEACMP,
especially the G allele of rs76452994 and T allele of rs921336, which
may serve as risk factors for DEACMP (74). Other studies have also
found that the genetic susceptibility of some gene polymorphisms
in DECAMP can vary between sexes. For example, Liang et al.
suggested that the allelic variant of PARK2 SNPs rs1784594 is a
risk factor for DECAMP, especially in females (75). In contrast,
Li et al. (125) found that the allele L of MBP 5′-side TGGA
n gene could increase the risk of developing DECAMP in male
patients. In addition, some scholars believe that DEACMP results
from the combined effects of environmental and genetic factors
(104). Exploring genetic susceptibility-related gene loci offers a new
perspective for predicting DECAMP. However, only focusing on
the susceptibility genes of a specific ethnic group within a specific
region may lead to inconsistent research results.

Exosomes and DEACMP

Given their specificity, feasibility, cost, and other
considerations, the above predictive indicators for DEACMP
have not yet gained expert consensus or widespread clinical use. As
a result, there is still a need to explore new predictors for predicting
DECAMP. The existing knowledge indicates that brain cells can
secrete exosomes, which have become a hot field for evaluating
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brain function and diagnosing brain diseases. For example,
neuronal-derived exosomes participate in the physiological and
pathological processes of the brain, and changes in their content
could provide valuable information for clinical diagnosis and
disease evaluation of neurodegenerative diseases, as well as predict
the occurrence of diseases at an early stage. Neuronal-derived
exosomes could serve as potential biomarkers (105). Scholars
have elucidated the process of exosome biogenesis, as illustrated
in Figure 1, but the mechanisms behind the sorting of exosomal
contents remain unclear. Changes in both intracellular and
extracellular environments can influence the contents of exosomes
and induce different biological functions. Indeed, intracellular
hypoxia, ROS, and Ca2+ can significantly affect exosome biogenesis
and their contents (76, 106, 107), while they play crucial roles in
the pathogenesis of DEACMP.

Hypoxia promotes the release of exosomes and changes the
composition of the exosomal contents, especially miRNAs (108).
Chiang et al. harvested the exosomes from the rat cortical
primary neuronal cells under normoxic or oxygen and glucose
deprivation (OGD) conditions. They compared the exosomal
miRNA expression levels in normoxic and OGD conditions
using next-generation sequencing. They found that 45 exosomal
miRNAs were significantly different in their expression levels.
The expression levels of 18 exosomal miRNAs were significantly
higher, but those in 27 exosomal miRNAs were lower than those
of normoxic, respectively. These exosomal miRNAs may play a
role in cellular survival or death processes, as well as neuronal
signaling (109). In the upregulated exosomal miRNAs, miRNA-
34a-5p and miR-10a-5p have caught our attention. Previous
studies have found that increased miRNA-34a facilitates neuronal
injury and death in ischemic brain injury (110), while miR-10a
induces apoptosis and inflammatory responses in neurons by
inhibiting the PI3K/Akt/mTOR pathway (111, 112). In contrast,
in the downregulated exosomal miRNAs, miR-25-5p and miR-
532-3p have caught our attention, due to their neuroprotective
effects in ischemic brain injury (113, 127). CO can cause cerebral
hypoxia after prolonged exposure, resulting in affecting the
sorting mechanisms of exosomal miRNAs, and the above changed
exosomal miRNA profiles may reflect the risk of DECAMP.

Oxidative stress influences exosome biogenesis through
different pathways, showing both prompt or inhibit effects on
the release of exosomes (114, 115). On one hand, ROS inhibits
the release of calcium ions from lysosomes through the transient
receptor potential mucin 1 (TRPML1) channel and blocks the
fusion between multivesicular bodies (MVBs) and lysosomes
(114). ROS also affects the function of normal lysosomes to
form nonfunctional lysosomes by inhibiting the activity of
mTOR, resulting in reduced degradation of MVBs (116), further
upregulating exosomal release. On the other hand, ROS enhances
the biogenesis of autophagosomes, and MVBs can be selectively
degraded by autophagosomes, further downregulating exosomal
release (117). In simple terms, low oxidative stress restrains MVBs
from being degraded in lysosomes, thereby prompting the release
of exosomes. In contrast, high oxidative stress promotes the
degradation of MVBs by activating cellular autophagy, thereby
inhibiting the release of exosomes (118). Indeed, these effect of
oxidative stress also depend on donor cell type and extracellular

stimulus conditions. In addition, oxidative stress may affect the
sorting mechanisms of exosomal content, leading to changes in
exosomal miRNA profiles. In turn, exosomal miRNAs can regulate
various genes associated with oxidative stress. This crosstalk
between exosomal miRNAs and oxidative stress plays a significant
role in the pathophysiological process of neurodegenerative
diseases (105). Several exosomal miRNAs have been associated
with neurodegenerative disorders, such as exosomal miRNA-
34a. It is well known that CO can promote the production of
mitochondrial ROS, leading to intracellular oxidative stress in
brain cells, that can influence the release and the molecular cargo
of brain cell-derived exosomes after ACOP. Special exosomal
miRNAs could be involved in the development of DEACMP and
their changes in quantity can provide dynamic information for
predicting DEACMP.

Intracellular Ca2+ also regulates exosome biogenesis, and
increasing intracellular Ca2+ stimulates the release of exosomes
(106). Hettiarachchi et al. found that CO stimulates the generation
of NO and ROS, leading to the formation of peroxynitrite in brain
tissue, aggravating oxidative stress, and disrupting neuronal Ca2+

homeostasis (119), which may inhibit the release of exosomes.
Some scholars suggested that exosomes play a role as the bridge
between the inflammasome and autophagy activation under CO
exposure conditions (120).

Therefore, gaining an in-depth and comprehensive
understanding of the role of exosomes in ACOP can clarify
the pathogenesis of DECAMP and provide theoretical support
for the research of exosomes as biomarkers to predict DECAMP.
To date, there are few reports focused on the relationship
between exosomes and DECAMP, as well as the potential use of
exosomes as clinical indicators for DEACMP. This scarcity may
stem from the blood or cerebrospinal fluid samples containing
exosomes derived from various tissues or cells except brain cells.
Existing isolation and purification methods of exosomes (e.g.,
ultracentrifugation, exosome isolation reagent, ultrafiltration,
immunoprecipitation/affinity capture, etc.) do not effectively
isolate large quantities of pure and specific brain cell-derived
exosomes from in blood or cerebrospinal fluid samples. Hence, it
is not easy to identify the exosomes needed to predict DECAMP
under the current research conditions.

Summary and outlook

DEACMP is a serious complication of ACOP that often shows
poor therapeutic responses to current clinical treatment methods.
Evaluating the risk of the development of DEACMP becomes very
important. So far, some valuable predictors have emerged in clinical
characteristics, laboratory indicators, neuroelectrophysiology,
imaging examination, and genetic susceptibility. Recent research
has confirmed that imaging examination (High cranial DWI signal
within 24 h) and clinical characteristics (duration of CO >5.5 h)
can serve as independent predictors of DEACMP (121). Some
scholars highlighted the importance of the period of inability to
walk in the acute stage and suggested that the clinical score of
peak CK (U/L) and 40 × WALK (time for which walking was
impossible during the acute stage of intoxication, days) is an early
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FIGURE 1

Schematic representation of exosome biogenesis. In short, exosome biogenesis begins with the inward budding of the plasma membrane to form

endosomes. Then endosomes encapsulate nucleic acids, proteins, and other bioactive molecules to form intraluminal vesicles (ILVs) and

multivesicular bodies (MVBs). Finally, the MVBs not fused by lysosomes are released into the extracellular environment to form “exosomes” after the

fusion with the plasma membrane.

predictor for predicting DEACMP with 100% sensitivity and 82%
specificity (122). More independent factors will also emerge in
the future. Given the pathogenesis of DEACMP is diverse and
complex, we need some new insights to explore the independent
predictors. The studies on the unique role of exosomes in
neurodegenerative diseases may offer new candidates to us. First,
changes in both intracellular and extracellular environments of
brain tissue after ACOP will influence the biogenesis and selection
of contents in brain cell-derived exosomes, and exosomal contents
may play roles in the pathogenesis of DEACMP, particularly
miRNA. Identifying specific exosomal miRNA can reflect the
development process of DEACMP. Second, brain cell-derived
exosomes can cross the blood-brain barrier (BBB) and present
in cerebrospinal fluid and blood circulation, facilitating us
to collect them for serial determination about their amount
and cargo. At last, CSF exosomal miRNAs can reflect brain
pathophysiology while plasma exosomal miRNAs are not as easily
degraded (123), which provides the samples to detect specific
miRNA sequences using the ddPCR-based method. Based on this,
exosomes have a potential advantage over currently identified
predictors. Developing an effective isolation and purification
method for wanted exosomes is a significant challenge in the
current research on identifying specific exosomes for predicting
DECAMP. Encouragingly, scholars have found that neuronal-
derived exosome membranes are rich in the neuronal cell adhesion
molecule and the L1 cell adhesion molecule (L1CAM). They
utilized immunoprecipitation with biotinylated antibodies against
neuronal surface markers to isolate neuronal-derived exosomes.
This isolation method for separating will provide specific exosomes
needed for DECAMP research (115, 124). With advancements in
technology and increased research investment, we are optimistic
that scholars will gain deeper insights into the role of exosomes
in DECAMP and develop exosome-based detection methods for
predicting DECAMP.
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