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Purpose: The primary objective of this study is to develop a predictive model 
utilizing fundamental clinical and ocular measurements to predict the effect of 
overnight orthokeratology on myopia control. Accordingly, this study aims to 
assist ophthalmologists in selecting adolescent myopia control methods.

Methods: This retrospective study used one-year follow-up data of 225 myopia 
children treated with orthokeratology. Using the random sampling method, 
225 samples were randomly divided into a training set (n = 180) and a test 
set (n = 45). LASSO regression identified predictive factors correlated with 
controlling myopia. The final features are input into the machine learning model 
for prediction model construction to predict 1-year axial length elongation. The 
prediction performance was evaluated according to the accuracy and AUC of 
the training set and the test set. DCA was used to assess the clinical benefits of 
the model.

Results: Five features (age, diopter, flat keratometry, corneal higher-order 
aberrations (6 mm), and intraocular trefoil (6 mm) were used to build the 
machine learning model (p < 0.01)). Based on the accuracy, ROC, and DCA 
curves, the prediction performance and clinical practicability of five prediction 
models: KNN, SVM, RF, Extra Trees, and XGBoost were compared. In the DCA, all 
machine learning models consistently achieved greater net benefits within the 
clinical threshold range. SVM demonstrated the highest predictive quality with 
an AUC of 0.877 in the training and 0.828 in the external validation set.

Conclusion: We developed and validated several prediction models for 
individualized prediction of myopia control efficacy treated with overnight 
orthokeratology through machine learning, using easily obtained clinical and 
corneal topography features. This cost effective strategy helps ophthalmologists 
predict the effect of using orthokeratology in children, and make timely 
adjustments to myopia control methods. The differential features selected by 
this model can also provide insights for optimizing lens design.
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Introduction

In recent years, the prevalence of myopia in adolescents has been 
on the rise, especially in urbanized areas of Asia. In these areas, the 
myopia prevalence in young people is about 80 -90%, and the 
prevalence of high myopia is higher (10–20%) (1). Unfortunately, 
patients with high myopia have an increased risk of complications that 
can lead to irreversible blindness, such as glaucoma, myopic macular 
degeneration, and high myopia-related optic neuropathy (2). 
Therefore, it is very important to implement strategies to reduce the 
progression of low myopia to high myopia in adolescents, because low 
myopia is the main modifiable risk factor for pathological myopia (3).

One strategy is orthokeratology (ortho-k), which involves wearing 
a reverse geometric lens made of a rigid material with high oxygen 
permeability overnight to reshape the anterior surface of the cornea. 
This process effectively flattens the central cornea when the lens is 
removed in the morning, providing a temporary correction of 
refractive error (4). Recent randomized clinical trials have confirmed 
the validity of orthokeratology in controlling the progression of 
myopia in children (5). Orthokeratology has the potential to slow 
down the progression of myopia in children and adolescents, and the 
effect at an early age (6–8 years old) is more significant (6).

However, the exact mechanism by which ortho-k slows the 
progression of myopia remains unclear. Studies in primates have 
shown that visual signals from the periphery can override visual 
signals from the central retina and alter central refractive development 
(7). This leads to the hypothesis that peripheral treatment strategies 
are effective in slowing the progression of myopia (8). However, the 
role of the peripheral retina in regulating eye growth during ortho-k 
is still controversial. Longitudinal studies have shown that relative 
hyperopia defocus has nothing to do with the onset of myopia 
progression in children (9). In addition, recent studies have shown 
that higher-order aberrations may affect axial length growth and the 
therapeutic effect of myopia control interventions (10). Clinical 
studies have provided evidence to support the effectiveness of 
peripheral treatment strategies in slowing the progression of myopia.

As a matter of fact, during ortho-k treatment, there are significant 
differences in the control effect of myopia among different individuals. 
Clinical studies have shown that compared with the matched group 
with monovision glasses, the myopia progression of the ortho-k group 
was reduced by 33 -63% (11). This is mainly due to the lack of 
individualized design in ortho-k because the parameters affecting the 
mitigation of axial elongation are still poorly understood. To solve this 
problem, a series of predictors have been proposed to explain the 
individual differences in the efficacy of ortho-k including age, baseline 
axial length, central corneal thickness (12), baseline pupil area, 
zone-3 mm flat K (13) and corneal power change at different area (14).

It is well known that predictive models are effective tools for 
clinical risk assessment, decision selection, and benefit evaluation. In 
the medical and health system, it can play a guiding role in disease 
prevention, screening, diagnosis, severity, treatment efficacy, and 
prognosis (15). The purpose of machine learning is to improve the 
performance of the machine by using experience and existing large 
amounts of data. It can learn actively according to sample information 
and improve the accuracy of decision-making (16). At present, 
scholars have studied the prediction model for the therapeutic effect 
of orthokeratology, but the data collection is not 
comprehensive enough.

Based on the analysis of the above research status, to accurately 
predict the efficacy of orthokeratology, we developed and validated 
predictive models to accurately predict the myopia control effect of 
ortho-k by collecting corneal topography and demographic 
information collected at the first visit before treatment. In terms of 
clinical significance, the standardized model can provide a reference 
for ophthalmologists to choose the method of controlling myopia. On 
the other hand, the influence variables demonstrated by the models 
can provide valuable insights for lens designers to optimize lens design.

Materials and methods

Patient

This retrospective study was approved by the Ethics Committee of 
the Second Hospital of Dalian Medical University, following the 
principle of Helsinki Declaration and participants less than 8 years old 
we  obtained the informed consent of the legal guardian of the 
participants; informed consent was obtained from participants aged 
8 years and above and their legal guardians. The data of this study 
were derived from the institutional ophthalmology database, covering 
medical records from 2020 to 2023. A total of 225 subjects who 
underwent comprehensive ophthalmic examination and met the 
inclusion criteria were included in the study. Inclusion criteria: (1) 
spherical equivalent (SER) -1.00 ~ −6.00D; (2) astigmatism < 1.75D; 
(3) anisometropia ≤ 1.50D; (4) corrected distant vision ≥ 1.0; (5) 
individuals aged from 7 to 12 years old; (6) have finished 1-year visit. 
The exclusion criteria were as follows: (1) a previous history of ortho-k 
lens or soft contact lens wear, (2) discontinuation of ortho-k lens use 
during study period; (3) prescription modification beyond 1 month 
of ortho-k lens wear; (4) in addition to myopia, there were other eye 
or systemic diseases or ophthalmic operation; (5) use of anticholinergic 
or cholinergic drugs, such as atropine, pilocarpine, etc., within the past 
3 months that interfere with the control effect.

Group

This study was grouped according to the axial length. The axial 
length is an index recognized at home and abroad that is positively 
correlated with the progression of myopia (29). Baseline axial length 
(AL) and 1-year AL data were collected using a biometric instrument 
(LS 900). Each visit was continuously measured 5 times, and the 
average value was taken as the representative value. After 1 year of 
treatment, the axial/axial ratio before treatment was ranked from high 
to low, and the median value was divided into two groups: good effect 
and poor effect.

Lens

The orthokeratology lens selected in this study was Paragon CRT 
with HDS100 paflufocon D lens material, with the oxygen 
transmission coefficient of 100, the light transmittance of 95%, the 
refractive index of 1.442, wetting angle of 42°, a ratio of 1.1, average 
total lens diameter of 10.6 mm, BOZD of 6 mm and central thickness 
of 0.16 mm. The CRT lens is designed to be  consistent with 
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congruent anterior and posterior surfaces, and each surface consists 
of the following three zones: the central spherical zone, the 
mathematically designed sigmoidal cornea proximity the ‘return 
zone’ and the non-curving ‘landing area’. The lens also designs a 
convex elliptical edge terminal to smoothly connect the anterior and 
posterior surfaces.

The contact lenses are worn by three ophthalmologists. 
Participants were required to wear contact lenses for at least 8 
consecutive hours per night. We  plan to perform follow-up 
examinations at 1 month, followed by slit lamp examination and 
optometry every 3 months to monitor any potential adverse events.

Dataset preparation

In this study, a total of 54 features were collected based on 
measurements obtained from the OPD Scan III instrument and 
Biometer. These measurements focused on higher-order aberrations 
(HOAs): total/corneal/internal: spherical aberration, coma aberration, 
trefoil, and total HOAs were collected under mesopic, 6 mm, and 
4 mm pupil, respectively. In addition to higher-order aberrations, the 
comprehensive characteristics of the patients were also collected. 
Including age, gender, diopter, anterior corneal surface curvature, 
photopic/ mesopic pupil diameter, corneal thickness (CCT), lens 
thickness (LT), aqueous humor depth (AD), white to white distance 
(WTW), modulation transfer function (MTF) and other related 
parameters. The total sample size consisted of 225 participants, and 
these samples were divided into training and test sets in an 8:2 ratio 
to facilitate model development and evaluation.

Refraction: 0.5% tropicamide was used every 5 min for a total of 
6 times after waiting 30 min so that the ciliary muscle is completely 
paralyzed to get accurate dilated pupils after the optometry results, 
such as the pupil return to the normal size of the pupil and then test 

with orthokeratology. The diopter was measured by a TOPCON 
KR-800 refractometer.

The corneal topography and wavefront aberration were analyzed 
by the OPDIII-SCAN corneal topography instrument (NIDEK, 
Japan). The Zernike polynomial is used to convert the corneal 
elevation contour data into corneal wavefront aberration data. The 
root mean square (RMS) values were used to calculate the RMS values 
under three different pupil diameters (4.0 mm, 6.0 mm, and 
mesopic pupil).

Research roadmap

The research pipeline is shown in Figure 1.

Feature selection

The Spearman algorithm is used to calculate the correlation 
between the features. We set the threshold to 0.9 and retain the 
features with a correlation coefficient less than 0.9 as the input 
features of the LASSO (Least Absolute Shrinkage and Selection 
Operator) regression model. Interestingly, the correlation 
coefficients of all the features generated in this step are below 0.9, 
so we incorporate all the features into further analysis. The LASSO 
regression model using the minimum absolute shrinkage and 
selection operator is applied to discover data sets to construct 
signatures. The LASSO regression model reduces the regression 
coefficient to zero by regularizing the weight λ and accurately sets 
the regression coefficients of many unrelated features to zero. To 
determine the optimal λ, a 10-fold cross-validation method is used 
to select the λ value with the smallest cross-validation error. We use 
the retained non-zero coefficient features to fit the regression 

FIGURE 1

Shows the flow chart of the graphical description of the research design.
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model. LASSO regression modeling using Python scikit-
learn package.

Individualized prediction model building

After using Lasso regression for feature screening, the selected 
features are input into machine learning models such as K-Nearest 
Neighbor (KNN), Support Vector Machines (SVM), random forest 
(RF), Extra Tree, and eXtreme Gradient Boosting (XGBoost) to 
construct prediction models.

KNN is a supervised learning classification algorithm, which 
determines the nearest neighbor data points by comparing the 
distance, and then uses the K nearest sample points to determine the 
category of the data points to be classified, similar to the voting rule 
that the minority obeys the majority. It classifies the unknown samples 
and the K nearest neighbor samples into one category, and its 
prediction capability is excellent.

SVM is a kind of generalized linear classifier for binary 
classification of data. It operates according to the supervised learning 
method and is the linear classifier with the largest interval in the 
feature space. It is to find an optimal hyperplane to separate the 
different categories of samples. It maps the feature vector of the 
instance (taking two-dimensional as an example) to some points in 
the space. The purpose is to draw a line to ‘best’ distinguish the two 
types of points so that the line can also effectively classify any new 
points in the future. When linearly separable, the optimal classification 
hyperplane of two types of samples is found in the original space. 
When linearly inseparable, slack variables are added, and the samples 
in the low-dimensional input space are mapped to the high-
dimensional space by using nonlinear mapping to make it linearly 
separable, so that the optimal classification hyperplane can be found 
in the feature space.

RF is an integrated algorithm composed of decision trees, and 
there is no correlation between different decision trees. Each decision 
tree is a classifier. Each data set randomly selects some features as 
input, which means that each sample will be judged and classified by 
each decision tree in the forest. Each decision tree will get a 
classification result. The classification with the most results is the final 
result of random forest.

Extra Trees is also an integrated model of decision trees, but it 
is more random than random forests. Each split uses a random 
threshold to select a subset for branch feature selection. It randomly 
selects a feature subset at each node and randomly splits to obtain 
the optimal branch attributes and branch thresholds. This 
randomness is conducive to creating more independent decision 
trees, reducing the model’s variance, and improving 
its performance.

XGBoost is a machine-learning algorithm based on a gradient 
boosting tree. It combines the gradient boosting framework and the 
decision tree model, and gradually improves the prediction 
performance by iteratively training a series of decision trees. It uses 
the addition model to construct multiple base learners and learns the 
deviation between the results of the previous base learners and the 
true value. XGBoost continuously reduces the difference between 
model values and actual values through the learning of multiple 
learners. The prediction result of the final model is the sum of the 
prediction results of all base learners. At the same time, XGBoost can 

optimize the loss function and minimize the error between the 
predicted value and the actual value.

Performance evaluation of predictive 
models

In order to evaluate the performance of the model, we considered 
the accuracy and area under the curve (AUC) of the training set and 
the test set. In addition, we used decision curve analysis (DCA) to 
evaluate the clinical utility of the model.

AUC is the area under the ROC curve, which uses the positive 
correlation law to convert the predicted control effectiveness into the 
predicted probability. Then a series of true positive rates (TPR) and 
false positive rates (FPR) can be obtained and used to construct the 
receiver operating characteristic curve (ROC). The AUC is derived 
from the area between the ROC curve and the FPR axis, the abscissa 
axis. TPR was defined as sensitivity and FPR was defined as 
1-specificity. In terms of performance evaluation, the externally 
validated AUC is often used as an indicator of the performance of 
ensemble learning systems. The closer to 1, the better the performance 
of the classifier it represents.

Confusion matrix is a summary table used to evaluate the 
performance of classification models in machine learning. It presents 
the results predicted by the classification model in the form of a 
matrix, in which the records in the data set are summarized by their 
real and predicted class labels. The rows of the matrix represent the 
true value and the columns represent the predicted value. The 
confusion matrix can help us to evaluate the prediction performance 
of different models.

In addition, we  also use Decision Curve Analysis (DCA) to 
evaluate the clinical practicability of the model. The DCA curve is the 
calculation of the clinical ‘net benefit’ of one or more predictive 
models or diagnostic tests compared to the default strategy of treating 
all patients or untreated patients. The net benefit is calculated within 
a range of threshold probabilities, which are defined as the minimum 
probability of disease requiring further intervention. Net 
benefit = sensitivity × prevalence- (1-specificity) × (1-prevalence) × w, 
where w is the ratio of threshold probabilities. For the prediction 
model that gives the disease prediction probability p, the sensitivity 
and specificity under a given threshold probability pt. are calculated 
by defining the test positive as p ≥ pt.

Statistical methods

All of these operations are implemented using Python version 3.9.

Results

Feature selection and prediction model 
building

A total of 54 features were collected from a sample of 225 cases in 
this study, and Table  1 shows the descriptive analysis of all the 
collected features. Heatmap shows the correlations between each 
clinical feature, it is indicated that Long Diameter, Short Diameter, 
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TABLE 1 Basic statistical information of all the features in this study.

Feature Mean SE M SD Var Range

Age 9.182 0.096 9 1.442 2.078 7–12

Gender 1.524 0.033 2 0.501 0.251 1–2

Diopter 2.566 0.083 2.25 1.239 1.535 0.5–6.25

Pre-AL 24.469 0.052 24.49 0.780 0.608 22.38–26.75

AL-6M 24.610 0.051 24.68 0.767 0.588 22.54–26.78

AL-1Y 24.762 0.051 24.85 0.768 0.589 22.59–26.81

CCT 549.044 2.090 550 31.357 83.275 474–627

AD 3.234 0.015 3.26 0.219 0.048 2.63–3.82

LT 3.366 0.017 3.38 0.262 0.068 0.39–3.87

WTW 12.071 0.027 12.08 0.398 0.159 11.25–13.64

Photopic pupil diameter 4.288 0.064 4.05 0.958 0.917 2.79–7.66

Mesopic pupil diameter 6.641 0.049 6.61 0.736 0.541 4.63–8.74

K1 Flat 42.842 0.074 42.78 1.114 1.241 39.02–46.3

K2 Steep 44.075 0.088 44.06 1.316 1.732 39.66–47.14

AST 1.235 0.040 1.14 0.603 0.363 0.1–3.1

T.Sph (M) 0.159 0.009 0.118 0.133 0.018 0.002–0.824

T.Sph (6 mm) 0.109 0.005 0.094 0.077 0.006 0.006–0.4

T.Sph (4 mm) 0.030 0.002 0.023 0.036 0.001 0–0.46

T.Coma (M) 0.268 0.012 0.226 0.185 0.034 0.017–1.309

T.Coma (6 mm) 0.180 0.006 0.162 0.097 0.009 0.031–0.597

T.Coma (4 mm) 0.056 0.002 0.051 0.030 0.001 0.007–0.204

T.Tre (M) 0.320 0.013 0.284 0.197 0.039 0.042–0.99

T.Tre (6 mm) 0.249 0.010 0.216 0.143 0.021 0.028–0.805

T.Tre (4 mm) 0.111 0.005 0.094 0.076 0.006 0.011–0.54

T.HOA (M) 0.548 0.019 0.492 0.284 0.081 0.129–1.748

T.HOA (6 mm) 0.399 0.011 0.365 0.169 0.029 0.166–1.323

T.HOA (4 mm) 0.161 0.006 0.139 0.090 0.008 0.009–0.636

C.Sph (M) 0.370 0.014 0.322 0.207 0.043 0.052–1.183

C.Sph (6 mm) 0.241 0.007 0.235 0.101 0.010 0.047–0.712

C.Sph (4 mm) 0.051 0.002 0.048 0.032 0.001 0.004–0.3

C.Coma (M) 0.358 0.018 0.271 0.269 0.072 0.019–1.679

C.Coma (6 mm) 0.230 0.009 0.21 0.130 0.017 0.019–0.678

C.Coma (4 mm) 0.066 0.003 0.059 0.042 0.002 0.01–0.335

C.Tre (M) 0.244 0.012 0.203 0.182 0.033 0.034–1.218

C.Tre (6 mm) 0.170 0.006 0.155 0.094 0.009 0.029–0.573

C.Tre (4 mm) 0.062 0.003 0.054 0.039 0.002 0.006–0.312

C.HOA (M) 0.636 0.023 0.563 0.339 0.115 0.143–2.283

C.HOA (6 mm) 0.419 0.009 0.381 0.137 0.019 0.196–1.199

C.HOA (4 mm) 0.120 0.003 0.11 0.049 0.002 0.042–0.459

I.Sph (M) 0.347 0.015 0.301 0.225 0.051 0.025–1.5

I.Sph (6 mm) 0.199 0.008 0.182 0.120 0.014 0.015–1.107

I.Sph (4 mm) 0.036 0.002 0.031 0.026 0.001 0.002–0.208

I.Coma (M) 0.370 0.015 0.316 0.230 0.053 0.061–1.34

I.Coma (6 mm) 0.247 0.008 0.227 0.122 0.015 0.048–0.853

(Continued)
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and Diameter have maximum correlation coefficient (Figure 2). The 
depth of the color block represents the correlation between the two 
features. The closer the correlation coefficient is to 1, the deeper the 
blue color will appear, while the closer it is to 0, the lighter yellow the 

color will be. The algorithm removed some features with low 
correlation to the predicted outcome.

Based on the results obtained by the Lasso method, we were 
able to reduce the total number of features (including basic 

FIGURE 2

The heat map shown in figure illustrates the correlation between different clinical features. The color gradient in the heat map represents the intensity 
of the correlation. Specifically, the bluer the color, the stronger the positive correlation, indicating that the variables tend to increase or decrease 
together. On the other hand, the yellower the color, the weaker the correlation or the negative correlation.

TABLE 1 (Continued)

Feature Mean SE M SD Var Range

I.Coma (4 mm) 0.073 0.003 0.065 0.038 0.001 0.01–0.323

I.Tre (M) 0.272 0.013 0.228 0.192 0.037 0.037–1.331

I.Tre (6 mm) 0.209 0.009 0.171 0.138 0.019 0.019–0.725

I.Tre (4 mm) 0.097 0.005 0.078 0.071 0.005 0.005–0.459

I.HOA (M) 0.680 0.023 0.596 0.350 0.123 0.163–2.011

I.HOA (6 mm) 0.457 0.014 0.396 0.206 0.043 0.204–1.647

I.HOA (4 mm) 0.166 0.006 0.138 0.090 0.008 0.075–0.619

Q −0.195 0.011 −0.21 0.158 0.025 −0.85-0.4

e 0.400 0.018 0.45 0.263 0.069 −0.63-1.83

MTF (6 mm) 0.167 0.002 0.159 0.026 0.001 0.137–0.328
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clinical features and corneal topography) of the original cohort to 
five potential predictors, as shown in Figure 3C. These predictors 
included age, diopter, flat keratometry (K), corneal higher-order 
aberrations (6 mm) (C.HOA 6 mm), and intraocular trefoil 
(6 mm) (I.Tre 6 mm). The model incorporating these predictors 
can achieve a minimum mean square error (MSE), as shown in 
Figure 3B. All variables showed non-zero coefficients in the Lasso 
linear regression model, and the p-values were all less than 0.05. 
Figure 3A shows the 10-fold validation coefficient and the mean 
standard error (MSE). These weights come from clinical variables. 
The ensemble learning system can determine the weight of 
different features based on the analysis of all samples. For a visual 
representation of the weights assigned to different features, see 
Figure 3C.

Performance evaluation of predictive 
models

In order to transform predictive control validity into 
predictive probability, we apply the law of positive correlation. 
This allowed us to obtain a series of true positive rates (TPR) and 
false positive rates (FPR), which were then used to construct the 

receiver operating characteristic curve (ROC). The area under the 
ROC curve (AUC) was calculated as the area between the ROC 
curve and the FPR (false positive rate) axis. Based on the 
evaluation indexes of these models, five models with the best 
performance are selected, which are SVM, KNN, RF, Extra Trees 
and XGBoost. In terms of performance evaluation, the externally 
verified AUC is used as an indicator of the performance of the 
ensemble learning system. In Figure 4, we compare the AUC of 
various prediction models on the training set and test set. The 
AUC value of the SVM model reached 0.877 in the training cohort 
and 0.828 in the test cohort. The AUC value of the KNN model 
was 0.855 in the training cohort and 0.773 in the test cohort. The 
AUC value of the RF model was 1.000 in the training cohort and 
0.857 in the test cohort. The AUC value of the Extra Trees model 
was 1.000 in the training cohort and 0.773 in the test cohort. The 
AUC value of the KNN model was 0.855 in the training cohort 
and 0.773 in the test cohort. The ROC curves of the test queues of 
the five models are shown in the figure. Taking into account the 
unity of the training and test queues and the AUC value, the SVM 
model performs best.

Confusion matrix is a valuable tool for evaluating the performance 
of classification models in machine learning. It compares real and 
predicted class labels in a matrix format, thus providing a summary of 

FIGURE 3

Lasso feature selection: Select non-zero coefficients to build a logistic regression model with minimum absolute shrinkage and selection operator 
(Lasso). (A) Shows the coefficients obtained by Lasso feature selection using a 10-fold validated logistic regression model. The coefficient represents 
the strength and direction of the relationship between each feature and the result variable. (B) Shows the average standard error results obtained in the 
Lasso feature selection process when lambda is set to 0.0518(MSE). (C) Shows a bar graph that shows all the features used in the Lasso feature 
selection process and their corresponding p-values. The p-value represents the significance level of each feature associated with the outcome 
variable.
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model predictions. The rows of the matrix represent the true values, 
and the columns represent the predicted values. By analyzing the 
confusion matrix, we  can evaluate the prediction performance of 
different models. We  observed that all the prediction models 
performed well. The true positive rate and true negative rate of 
XGBoost are 0.77 and 0.83, respectively (Figure  5). These values 
indicate the ability of the model to correctly identify positive and 
negative samples.

In addition to using the confusion matrix evaluation model, 
this study also included decision curve analysis (DCA). The x-axis 
of the DCA diagram corresponds to the threshold probability, 
while the y-axis represents the net income. Figure 6 illustrates the 
decision curve analysis of the five models. Interestingly, all five 
models showed that interventions had significant benefits in 

patients with predictive probabilities compared to those without 
predictive models (such as full treatment or no treatment 
regimen). Among them, the SVM and RF model showed greater 
clinical benefits in terms of net benefits. This shows that the SVM 
and RF model can provide patients with more effective 
intervention or treatment decisions based on the patient’s 
predictive probability.

We also compared the accuracy of the five models, as shown in 
Figure 7, the KNN model showed the most consistency in accuracy 
between the training set and the test set, and the RF model performed 
the best in terms of consistency and accuracy.

Based on the analysis of this study, among these models, the SVM 
model has good predictive ability and is the most reliable and 
accurate model to predict the myopia control effect of ortho-k.

FIGURE 4

(A–E) This figure provides a comparison of five different prediction models: Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Random 
Forest, Extra Trees, and XGBoost. (F) The figure displays the AUC (Area Under the Curve) values for each model on both the training and test cohorts.

FIGURE 5

(A–E) The confusion matrix of the five prediction models is used to demonstrate their predictive ability.
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Discussion

Ortho-k has become popular among parents as a more 
effective measure to slow myopia progression. However, studies 
have found that there are still some patients using ortho-k to 
control myopia is not effective (17). Moreover, it usually takes 
1–2 years of follow-up duration to evaluate ortho-k efficiency 

and determine whether the treatment has successfully slowed 
myopia progression (11). In the health system, the prediction 
model is an effective tool for risk assessment, decision-making, 
and benefit evaluation. In our study, we developed and internally 
validated five prediction models by non-invasive examinations to 
predict the control effect of ortho-k, and it can provide a 
reference for ophthalmologists to determine whether the child is 

FIGURE 6

In our evaluation, we use decision curve analysis (DCA) to evaluate the performance of each model. (A–E) The figure shows the results of DCA. The 
x-axis of the graph represents the threshold probability, indicating the probability of considering treatment intervention. The y-axis represents the net 
benefit and quantifies the clinical utility of the model. The figure shows that compared with the absence of any predictive model (i.e., the use of full 
treatment or no treatment regimen), all five models showed significant benefits of interventions in patients with predictive probabilities. This shows that 
the use of prediction models can improve the accuracy of treatment decisions. In addition, the SVM model showed the highest clinical benefit.
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suitable for ortho-k to control myopia, to improve the satisfaction 
of children and their parents.

Considering that the current examination for ortho-k in our 
hospital has been very comprehensive, we proposed to construct 
multi-feature clinical prediction models to predict ortho-k efficacy 
by retrospectively analyzing these data. The models established in 
this study exhibited great predictive performance in both the 
training set and the test set, based on the AUC and DCA curves. This 
indicates that the models can accurately predict the therapeutic 
effect of ortho-k. In the process of model development, combined 
with mRMR and LASSO methods, the initial 54 candidate features 
are reduced to 5 features. These characteristics, including age, 
diopter, flat keratometry, corneal higher-order aberrations, and 
internal trefoil aberration, were found to be  associated with 
ortho-k effect.

In previous studies, the effect of ortho-k may have been different 
for patients of different ages (5). Wang et al. proved that younger 
individuals have better myopia control (18), which may be because 
younger children show faster axial growth, so they can benefit more 
from early ortho-k intervention (19). However, other studies have 
shown that better myopia control occurs at older ages. It is difficult to 
prove whether this is due to the ortho-k effect or if it occurs naturally 
as children age and myopia progresses later in life due to slower axial 
elongation (20).

The initial diopter is also supported by studies as a differential 
feature. Fu et al. proposed that a higher baseline spherical equivalent 
may provide an advantage for ortho-k by reducing axial growth and 

effectively controlling myopia (21). This may be  due to the large 
corneal steepness in the middle and periphery of high myopia, and the 
resulting peripheral retinal defocus, which leads to the deceleration of 
axial growth. However, contrary to these findings, some studies did 
not observe a significant correlation between initial diopter and axial 
changes (5). Given these conflicting results, further prospective 
studies are needed to fully investigate the relationship between these 
two variables.

Studies have shown that ortho-k can make the central cornea 
flatter and the paracentral cornea steeper. The heterogeneity of corneal 
morphological changes may affect the peripheral refractive 
distribution, which is considered to be related to myopia control (22). 
The main mechanism for ortho-k to reduce myopia is to flatten the 
curvature of the anterior surface of the cornea (23). It is worth noting 
that the steeper cornea may lead to a smaller central corneal flattening 
area after treatment (20). However, it should be emphasized that there 
is no study to determine the direct relationship between pre-treatment 
anterior corneal curvature and myopia control.

Higher-order aberrations (HOAs) are optical defects that cannot 
be corrected by conventional sphero-cylinder lenses (24). Animal 
studies have shown that higher-order aberrations can reduce the 
quality of retinal images and cause changes in the intensity of the light 
at the pupil of the eye. These aberrations provide optical signals that 
help regulate the growth of the eyeball and refractive error 
development (10). A study by Liu et al. found that after controlling for 
age, baseline diopter and other known factors affecting axial 
elongation, the spherical aberration and HOA RMS values in eyes with 

FIGURE 7

The bar graphs and line chart show a comparison of the accuracy of all the models we used to predict the effect of ortho-k on myopia control.
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slower axial development were higher, indicating that higher-order 
aberrations were negatively correlated with myopia progression (25). 
Another study showed that the control of myopia by ortho-k increased 
the Zernike coefficient, thus increasing the RMS value of the total 
higher-order aberration range in children. However, it is also found 
that the visual quality decreases after wearing the lens, which is 
manifested by the increase of higher-order aberrations such as 
spherical aberration, horizontal coma vertical coma, and MTF 
equivalent value (26). These changes usually stabilize after a 
month (27).

The relationship between higher-order aberrations and axial 
growth before ortho-k has not been widely studied. The Lasso 
regression screening of corneal HOAs and intraocular trefoil at 6 mm 
pupil diameter as predictors of decreased axial elongation is a more 
groundbreaking finding and may provide a reference for future 
research directions.

We found that most studies were prospective longitudinal 
studies, and the selection of variables by different researchers was 
based on empirical and scientific assumptions, often resulting in 
incomplete selection and opposite results. There are also fewer 
studies on the correlation between eye axial elongation and 
ortho-k pre-treatment indicators and multiparametric modal 
prediction models for ophthalmic use have been explored in a 
series of studies (28). Our multi-feature prediction model 
provides a comprehensive and objective analysis method. It 
shows great prediction accuracy on both the training set and the 
test set. In addition, the results of this study lay the foundation 
for the design of more extensive longitudinal studies.

Nevertheless, we  must admit that our research has some 
limitations. First of all, this is a retrospective study conducted 
only within our institution and it should be noted that our sample 
size is small, suggesting that prospective studies with larger 
sample sizes are needed in the future to provide more reliable 
evidence. In addition, external validation is required in other 
centers to confirm and verify the performance of the model. In 
addition, some factors related to the progression of myopia, such 
as parents’ myopia status and outdoor time, should also be taken 
into account. However it is difficult to standardize and unify the 
time of different sports and intensity in outdoor sports, and also 
difficult to count the myopia of parents, so the above two 
characteristics are not included in the study. These features can 
be explored in future studies to better understand their impact 
and significance on myopia.

Conclusion

In conclusion, we developed and validated several prediction 
models of the effect of individualized prediction of myopia control 
efficacy treated with overnight ortho-k based on clinical and 
corneal topography features which can predict the efficacy of 
ortho-k before prescribing ortho-k, which is to provide a reference 
for ophthalmologists to determine whether children are suitable 
for ortho-k to control myopia, and can also improve patient 
satisfaction. Optimizing the optical design of the higher-order 
aberrations of the ortho-k lens can improve the myopia control 
effect without significantly affecting the visual function. This 
study may provide designers with directions to optimize 
lens design.
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