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Background: Limited data on the correlation between estimated pulse 
wave velocity (ePWV) and chronic kidney disease (CKD) necessitate further 
investigation. This study aims to explore the association between ePWV and the 
prevalence of CKD.

Methods: A cross-sectional study was conducted with 41,411 participants from 
the 1999–2020 National Health and Nutrition Examination Survey (NHANES). 
ePWV was calculated using an established equation from the Reference Values 
for Arterial Stiffness Collaboration, incorporating age and mean blood pressure. 
CKD prevalence was assessed as the primary outcome. Weighted logistic 
regression and linear models were applied for statistical analysis, with Restricted 
Cubic Splines (RCS) used to evaluate potential nonlinear associations. Subgroup 
analyses were conducted to assess variations and ensure the robustness of 
results.

Results: Higher ePWV was consistently associated with an increased prevalence 
of CKD. RCS analysis identified a significant positive nonlinear relationship. 
Subgroup analyses revealed sex-based and glucose metabolism abnormality-
based differences, highlighting interactive correlations that provided further 
insights into the ePWV-CKD relationship.

Conclusion: This study demonstrates a strong positive association between 
ePWV and CKD prevalence, underscoring the importance of monitoring arterial 
stiffness. The use of RCS and subgroup analyses enriched the findings and 
offered valuable directions for future research.
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1 Introduction

Chronic kidney disease (CKD) is defined by persistent abnormalities in kidney structure 
or function lasting for more than 3 months (1). CKD is a progressive condition associated with 
significant morbidity and mortality and represents a critical public health challenge, affecting 
approximately 8–16% of the global population (2). By 2040, CKD is projected to become the 
fifth leading cause of death worldwide (3). Alarmingly, fewer than 10% of individuals with 
CKD are aware of their diagnosis, both in developed and developing nations (4). Early 
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identification of individuals at higher risk of CKD is therefore essential 
for timely intervention and improved outcomes.

The kidneys receive the highest blood flow per gram of tissue 
among all organs, supported by their unique microvascular structures, 
including the glomerular, peritubular, and renal medullary 
microcirculations (5). Fluctuations in renal blood flow significantly 
affect key renal functions, such as glomerular filtration, tubular 
reabsorption, and blood pressure regulation. Consequently, vascular 
health, particularly arteriosclerosis, has garnered increasing attention 
in the study of kidney diseases. Recent evidence indicates that 
heightened aortic stiffness exacerbates pressure and flow pulsatility, 
transmitting excessive pulsatile energy to the peripheral vasculature 
(6). This mechanism is particularly relevant to kidney injury, given the 
renal microvasculature’s unique susceptibility due to continuous 
passive renal perfusion, low input impedance, and diminished wave 
reflections. These features render the kidneys particularly vulnerable 
to pulsatile energy transfer, which contributes to glomerulosclerosis 
and the progressive deterioration of renal function (7, 8). Prospective 
observational studies have consistently demonstrated a strong 
association between increased arterial stiffness and reduced estimated 
glomerular filtration rate (eGFR), albuminuria, and an elevated risk 
of CKD (6, 9–22). However, there remains ongoing debate regarding 
the reliability of arterial stiffness as a predictor of CKD onset and 
progression, potentially due to the variability in arterial stiffness 
markers employed across studies (9, 12, 16–22).

Aortic pulse wave velocity (PWV) is widely regarded as the 
non-invasive gold standard for assessing arterial stiffness, with 
carotid-femoral pulse wave velocity (cfPWV) being the most 
extensively validated and reliable indicator of aortic stiffness (23–25). 
Despite standardized protocols for measuring PWV and cfPWV (26), 
their assessment requires costly, specialized equipment, limiting their 
application in routine clinical practice, particularly in primary care 
settings. To address these limitations, estimated pulse wave velocity 
(ePWV) has emerged as a more accessible alternative, demonstrating 
predictive accuracy comparable to cfPWV. ePWV can be  easily 
derived using age and mean arterial pressure (MAP) based on 
formulas developed by the Reference Values for Arterial Stiffness 
Collaboration (27, 28). Notably, ePWV has been shown to 
independently predict composite cardiovascular outcomes, 
outperforming traditional risk scores such as the Systemic Coronary 
Risk Evaluation (SCORE) and the Framingham Risk Score (FRS), as 
well as cfPWV. For example, the MORGAM Prospective Cohort 
Project demonstrated that ePWV predicts all-cause mortality (ACM) 
independent of standard cardiovascular risk factors, highlighting its 
role as more than just a cardiovascular risk marker (29). Recent 
studies further support the utility of ePWV as a predictor of CKD. For 
instance, a study involving 4,838 participants from the Vitamin D 
Assessment (ViDA) cohort, with a follow-up of 10.5 years, found that 
higher ePWV was associated with an increased risk of CKD 
development, even in participants without prior CKD (21). Building 
on this evidence, the present study aims to investigate the association 
between ePWV and CKD prevalence using a comprehensive dataset 
from the National Health and Nutrition Examination Survey 
(NHANES) covering 1999–2020. By leveraging a large, representative 
population sample, this study seeks to provide findings with 
broad generalizability.

In conclusion, we hypothesize that there is a positive association 
between ePWV levels and CKD prevalence. The results of this study 

may offer a practical and reliable approach to CKD risk assessment, 
contributing to the development of innovative strategies for early 
clinical intervention and improved disease management.

2 Methods

2.1 Study design and population

The National Health and Nutrition Examination Survey 
(NHANES) is an ongoing annual survey conducted by the National 
Center for Health Statistics (NCHS), a division of the Centers for 
Disease Control and Prevention (CDC) in the United States. NHANES 
uses a stratified, multistage probability sampling design to select 
households nationwide. Within selected households, a subset of adults 
is randomly chosen to participate. Data are collected on demographics, 
lifestyle factors, and health outcomes through standardized interviews, 
physical examinations, and laboratory tests. All participants provided 
informed consent in compliance with the Declaration of Helsinki, and 
the study protocol was approved by the NCHS Research Ethics 
Committee. Detailed information about NHANES is publicly available 
on the official website1.

Data for this study were obtained from NHANES cycles spanning 
1999–2020. Among a total of 64,313 participants aged 20–85 years, 
22,902 individuals were excluded due to missing data. As a result, 
41,411 participants were included in the final analysis. The selection 
process is illustrated in Figure 1.

2.2 Diagnosis of CKD

CKD was defined using the KDIGO 2021 guidelines. Briefly, data 
on urinary albumin-to-creatinine ratios (ACRs) and estimated 
glomerular filtration rate (eGFR) were extracted from NHANES. ACR 
categories were classified as <30 mg/g (A1), 30–300 mg/g (A2), and 
>300 mg/g (A3). eGFR was calculated using the Chronic Kidney 
Disease Epidemiology Collaboration (CKD-EPI) equation and 
classified into the following stages: G1 (≥90 mL/min/1.73 m2), G2 
(60–89 mL/min/1.73 m2), G3a (45–59 mL/min/1.73 m2), G3b 
(30–44 mL/min/1.73 m2), G4 (15–29 mL/min/1.73 m2), and G5 
(<15 mL/min/1.73 m2). CKD was diagnosed in participants with 
eGFR <60 mL/min/1.73 m2 or ACR > 30 mg/g.

CKD patients were further stratified into three prognostic risk 
categories based on their likelihood of disease progression: moderate 
risk (G3a and A1, or G1–G2 and A2), high risk (G3b and A1, G3a and 
A2, or G1–G2 and A3), and very high risk (G4–G5, G3b and A2–A3, 
or G3a and A3) (KDIGO 2021 Clinical Practice Guidelines for 
Glomerular Diseases).

2.3 Calculation of ePWV

The Equation 1 derived from the Reference Values for Arterial 
Stiffness Collaboration was used to calculate ePWV. According to the 

1 www.cdc.gov/nchs/nhanes/
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Equation 1, ePWV is calculated from age and mean blood 
pressure (MBP):

 

3 2

5 2 3

2

9.587 0.402 age 4.560 10 age
2.621 10 age MBP 3.176 10
age MBP 1.832 10 MBP

−

− −

−

− × + × ×

− × × × + ×

× × − × ×  (1)

MBP is calculated as diastolic blood pressure + 0.4 × (systolic 
blood pressure - diastolic blood pressure).

2.4 Covariates

Potential confounders influencing the association between ePWV 
and CKD were accounted for in multivariable adjustment models. 
Covariates included baseline demographic data and physical 
examination measurements, such as age (years), sex (male, female), 
ethnicity (Non-Hispanic White, Non-Hispanic Black, Mexican 
American, Other Hispanic, Other race, including multiracial), marital 
status (married, living with a partner, separated, divorced, widowed, or 
never married), educational attainment (<9th grade, 9–11th grade, high 
school graduate, some college or associate degree, college graduate or 
higher), smoking status (never, former, or current), income level (high, 
middle, or low), hypertension (yes/no), cardiovascular disease (yes/no), 
diabetes mellitus (yes, impaired fasting glucose, impaired glucose 
tolerance, or no), CKD stages (by ACR and eGFR), and CKD prognosis 
(low, moderate, high, or very high risk). These data were obtained 
through participant self-reports. Detailed measurement techniques are 
available on the NHANES website (see text footnote 1).

2.5 Statistical analysis

Descriptive analyses were conducted to compare categorical and 
continuous variables. Chi-squared (χ2) tests were used for categorical 

variables, while continuous variables were analyzed using Student’s 
t-tests and analysis of variance (ANOVA) for normally distributed 
data. Categorical variables were expressed as numbers and weighted 
proportions, and continuous variables were presented as weighted 
means with standard errors.

Three binary logistic regression models were constructed to 
estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the 
association between ePWV and CKD:

Model 1: Unadjusted.
Model 2: Adjusted for age (continuous), sex, ethnicity, marital 

status, poverty-income ratio, and educational attainment.
Model 3: Further adjusted for the body mass index, smoke status, 

cardiovascular disease, diabetes mellitus.
Restricted cubic spline (RCS) curves were applied to evaluate 

potential nonlinear relationships between ePWV and 
CKD. Multivariable-adjusted ORs (red solid line) with 95% CIs (pink 
shaded area) were plotted, adjusting for all covariates included in 
Model 3. Subgroup analyses were performed using Model 3 to 
examine potential effect modifications across stratified populations. 
Each subgroup analysis controlled for all covariates in Model 3, except 
the stratification variable. All statistical analyses were conducted using 
R software (version 4.3.3). A two-tailed p-value <0.05 was considered 
statistically significant.

3 Results

3.1 Characteristics of study participants

A total of 41,411 participants were included in this study, with 
a mean age of 46.91 ± 0.21 years. Of these, 50.77% were male, and 
49.23% were female. The weighted baseline characteristics of the 
participants are summarized in Table 1. The mean estimated pulse 
wave velocity (ePWV) was 8.08 ± 0.02 m/s. Participants were 
categorized into quartiles based on ePWV values: 4.103–6.521 
(Q1), 6.521–7.829 (Q2), 7.829–9.990 (Q3), and 9.990–19.159 (Q4), 

FIGURE 1

Flowchart showing the selection of the studied population.
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TABLE 1 Characteristics of study participantsa.

Characteristic Overall ePWVQ1 ePWVQ2 ePWVQ3 ePWVQ4 p value

n = 41,411 (%) n = 10,350 
(%)

n = 10,352 
(%)

n = 10,357 
(%)

n = 10,352 
(%)

Age 46.91 (0.21) 29.93 (0.13) 40.33 (0.19) 55.17 (0.14) 71.18 (0.15) < 0.0001

ePWV (m/s) 8.08 (0.02) 6.10 (0.00) 7.10 (0.01) 8.78 (0.01) 11.61 (0.02) < 0.0001

BMI (kg/m2) 28.90 (0.07) 26.89 (0.10) 29.69 (0.12) 30.19 (0.12) 28.88 (0.09) < 0.0001

Sex < 0.0001

  Female 20,709 (50.77) 6,046 (57.67) 4,655 (44.32) 4,971 (48.45) 5,037 (53.64)

  Male 20,702 (49.23) 4,304 (42.33) 5,697 (55.68) 5,386 (51.55) 5,315 (46.36)

Race/ethnicity < 0.0001

  Mexican American 6,998 (8.07) 2,130 (11.91) 1815 (9.06) 1721 (5.87) 1,332 (3.81)

  Non-Hispanic Black 8,447 (10.49) 1978 (11.04) 2,128 (10.74) 2,376 (10.63) 1965 (9.07)

  Non-Hispanic White 18,842 (69.19) 4,159 (61.58) 4,502 (67.06) 4,429 (72.79) 5,752 (78.94)

  Other Hispanic 3,303 (5.10) 962 (7.21) 788 (5.13) 902 (4.24) 651 (3.07)

  Other race - including multi-racial 3,821 (7.15) 1,121 (8.27) 1,119 (8.01) 929 (6.47) 652 (5.11)

Marital status < 0.0001

  Married 21,539 (55.31) 4,102 (41.16) 5,599 (58.36) 6,180 (64.87) 5,658 (58.37)

  Living with partner 2,988 (7.65) 1,363 (13.39) 922 (8.39) 495 (4.60) 208 (2.13)

  Separated 1,322 (2.32) 289 (2.17) 379 (2.74) 427 (2.71) 227 (1.31)

  Divorced 4,296 (10.17) 488 (4.73) 1,012 (10.25) 1,599 (14.93) 1,197 (11.49)

  Widowed 3,241 (5.46) 37 (0.31) 143 (1.22) 565 (3.82) 2,496 (22.31)

  Never married 8,025 (19.09) 4,071 (38.24) 2,297 (19.03) 1,091 (9.07) 566 (4.38)

Education status < 0.0001

  College graduate or above 9,197 (29.17) 2,459 (29.69) 2,545 (31.30) 2,297 (29.25) 1896 (24.92)

  Some college or AA degree 12,148 (31.78) 3,398 (33.13) 3,287 (33.03) 2,977 (31.75) 2,486 (27.81)

  High school graduate 9,620 (23.68) 2,356 (22.72) 2,314 (22.10) 2,447 (24.60) 2,503 (26.28)

  9–11th grade 5,885 (10.19) 1,479 (10.65) 1,418 (9.55) 1,424 (9.38) 1,564 (11.63)

  Less than 9th grade 4,561 (5.19) 658 (3.80) 788 (4.03) 1,212 (5.03) 1903 (9.36)

Smoke status < 0.0001

  Never 22,354 (54.27) 6,373 (59.80) 5,825 (55.75) 5,111 (50.43) 5,045 (49.07)

  Former 10,264 (24.84) 1,292 (14.31) 1843 (20.25) 2,959 (29.66) 4,170 (41.12)

  Current 8,793 (20.89) 2,685 (25.90) 2,684 (24.00) 2,287 (19.91) 1,137 (9.80)

Income level < 0.0001

  High income 13,041 (43.28) 2,835 (35.55) 3,537 (46.33) 3,935 (52.48) 2,734 (37.04)

  Middle income 15,750 (35.89) 3,895 (37.49) 3,710 (33.64) 3,583 (31.20) 4,562 (43.74)

  Low income 12,620 (20.83) 3,620 (26.96) 3,105 (20.03) 2,839 (16.33) 3,056 (19.22)

CKD < 0.0001

  No 34,056 (86.18) 9,809 (94.93) 9,528 (93.33) 8,645 (86.18) 6,074 (61.70)

  Yes 7,355 (13.82) 541 (5.07) 824 (6.67) 1712 (13.82) 4,278 (38.30)

CKD prognosis < 0.0001

  Low risk 34,056 (86.18) 9,809 (94.93) 9,528 (93.33) 8,645 (86.18) 6,074 (61.70)

  Moderate risk 5,091 (10.14) 478 (4.52) 696 (5.81) 1,268 (10.62) 2,649 (24.79)

  High risk 1,427 (2.46) 51 (0.48) 95 (0.70) 285 (2.20) 996 (8.62)

  Very high risk 837 (1.21) 12 (0.07) 33 (0.17) 159 (1.00) 633 (4.89)

(Continued)
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with Q1 serving as the reference group (Figure  1). The overall 
prevalence of chronic kidney disease (CKD) among participants 
was 13.82%.

Compared to those in Q1, individuals in Q4 were more likely to 
be  older, non-Hispanic White, married, have lower educational 
attainment, and exhibit a higher prevalence of hypertension, 
cardiovascular disease, and diabetes mellitus.

3.2 Association between ePWV and CKD

Binary logistic regression analysis identified ePWV as a significant 
risk factor for CKD (Table  2). After adjusting for all potential 
confounders, each unit increase in ePWV was associated with a 50% 
higher risk of CKD (OR = 1.50; 95% CI: 1.47–1.54; p < 0.0001). This 
finding highlights a strong positive association between elevated 
ePWV levels and CKD.

In the fully adjusted model, participants in Q4 demonstrated a 
significantly higher likelihood of CKD compared to those in Q1 
(OR = 7.61; 95% CI: 6.49–8.92; p < 0.0001). Additionally, a significant 
trend was observed across ePWV quartiles (p for trend < 0.0001).

3.3 Nonlinear relationship between ePWV 
and CKD

A restricted cubic spline (RCS) model was used to investigate the 
nonlinear relationship between ePWV and CKD among all 
participants. After adjusting for confounders, the RCS model revealed 
a significant nonlinear dose–response relationship (p < 0.05 for both 
significance and nonlinearity). When ePWV exceeded 7.829 m/s, the 
relative risk of CKD increased, with odds ratios (ORs) surpassing 1. 
The results are visualized in Figure 2.

3.4 Subgroup analysis

Subgroup analyses were conducted to evaluate potential 
differences in the association between ePWV and CKD across various 
population subgroups. Stratified analyses revealed that older 
participants, males, individuals without diabetes mellitus, and those 
without hypertension were more sensitive to changes in 
ePWV. Significant differences were observed among groups stratified 
by sex and glucose metabolism abnormalities (p < 0.0001 for both).

TABLE 1 (Continued)

Characteristic Overall ePWVQ1 ePWVQ2 ePWVQ3 ePWVQ4 p value

n = 41,411 (%) n = 10,350 
(%)

n = 10,352 
(%)

n = 10,357 
(%)

n = 10,352 
(%)

CKD stages by ACR < 0.0001

  A1 36,398 (90.80) 9,835 (95.13) 9,615 (94.22) 9,053 (90.18) 7,895 (79.75)

  A2 4,166 (7.87) 463 (4.44) 635 (5.13) 1,060 (8.15) 2008 (16.99)

  A3 847 (1.33) 52 (0.43) 102 (0.65) 244 (1.67) 449 (3.25)

CKD stages by eGFR < 0.0001

  G1 24,484 (60.53) 9,247 (87.27) 7,934 (72.97) 5,439 (48.99) 1864 (16.91)

  G2 13,370 (33.01) 1,064 (12.41) 2,292 (25.89) 4,303 (45.50) 5,711 (57.59)

  G3a 2,363 (4.57) 28 (0.25) 94 (0.97) 426 (4.30) 1815 (17.14)

  G3b 859 (1.41) 4 (0.02) 14 (0.12) 120 (0.75) 721 (6.47)

  G5 92 (0.12) 1 (0.00) 12 (0.04) 29 (0.22) 50 (0.27)

  G4 243 (0.37) 6 (0.05) 6 (0.02) 40 (0.24) 191 (1.62)

Hypertension < 0.0001

  No 24,042 (62.88) 9,644 (93.03) 7,693 (74.63) 4,506 (46.17) 2,199 (22.61)

  Yes 17,369 (37.12) 706 (6.97) 2,659 (25.37) 5,851 (53.83) 8,153 (77.39)

CVD < 0.0001

  No 36,969 (91.59) 10,194 (98.67) 9,960 (96.63) 9,117 (89.89) 7,698 (75.35)

  Yes 4,442 (8.41) 156 (1.33) 392 (3.37) 1,240 (10.11) 2,654 (24.65)

DM < 0.0001

  DM 7,044 (13.14) 307 (2.54) 1,094 (8.96) 2,552 (19.57) 3,091 (26.55)

  IFG 1877 (4.66) 197 (2.12) 427 (4.14) 605 (6.21) 648 (7.08)

  IGT 1,155 (2.95) 161 (1.63) 297 (3.09) 301 (3.25) 396 (4.31)

  No 31,335 (79.26) 9,685 (93.71) 8,534 (83.81) 6,899 (70.97) 6,217 (62.06)

Data are expressed as number (weighted proportions) for categorical variables and as weighted means (standard error) for continuous variables. ACR, urinary albumin-to-creatinine ratio; 
BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular disease; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; ePWV, estimated Pulse Wave Velocity; 
IFG, impaired fasting glucose; IGT, impaired glucose tolerance.
aTwo-sided p values show results of univariate comparisons among four groups according to the quartile of ePWV. All categorical variables were tested with the χ2 test.
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In the overall analysis, the combined OR was 1.50 (95% CI: 1.47–
1.54; p < 0.0001), indicating that each unit increase in ePWV was 
associated with a 50% increase in CKD incidence. These findings are 
illustrated in Figure 3.

4 Discussion

To the best of our knowledge, this is the first study to evaluate the 
association between estimated pulse wave velocity (ePWV) and 
chronic kidney disease (CKD) using NHANES data spanning 1999 to 

2020. Our findings demonstrate a non-linear positive correlation 
between ePWV and CKD prevalence. Additionally, we observed that 
as ePWV quartiles increased, the risk of CKD rose proportionally. 
These results suggest that ePWV, a simple surrogate for aortic stiffness, 
could serve as a valuable risk indicator to improve CKD identification 
in primary care settings.

In 2020, the Global Burden of Disease Group identified CKD as 
one of the top  10 adverse prognostic factors worldwide. Among 
CKD-related complications, cardiovascular disease (CVD) is the 
leading cause of mortality (30, 31). Emerging research highlights that 
arteriosclerosis, historically considered an independent risk factor for 

TABLE 2 Crude and adjusted association between chronic kidney disease with estimated Pulse Wave Velocity Values are expressed as OR (95% CI).

Model Model 1 (OR) p values Model 2 (OR) p values Model 3 (OR) p values

ePWV (m/s) 
(Continuous)

Per 1 m/s 
Increase

1.58 (1.55, 1.61) <0.0001 1.58 (1.54, 1.61) <0.0001 1.50 (1.47, 1.54) <0.0001

ePWV levels Q1 [4.103, 6.521) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 [6.521, 7.829) 1.34 (1.15, 1.56) <0.001 1.46 (1.25, 1.71) <0.0001 1.26 (1.08, 1.48) 0.003

Q3 [7.829, 9.990) 3.00 (2.60, 3.48) <0.0001 3.33 (2.84, 3.90) <0.0001 2.39 (2.03, 2.80) <0.0001

Q4 [9.990, 19.159) 11.63 (10.22, 13.22) <0.0001 11.44 (9.80, 13.35) <0.0001 7.61 (6.49, 8.92) <0.0001

p for trend <0.0001 <0.0001 <0.0001

Model 1: unadjusted model.
Model 2: adjusted for age (continuous), sex (Male, Female), ethnicity (Non-Hispanic White, Non-Hispanic Black, Other Hispanic, Mexican American, Other Race - Including Multi-Racial), 
marital status (living with a spouse / partner, or living without a spouse / partner), poverty income ratio, and educational level (divided into less than 9th grade, 9–11th grade, high school 
graduate, some college or AA degree, college graduate or above).
Model 3: Further adjusted for the body mass index, smoke status, cardiovascular disease, diabetes mellitus.
CI, confidence interval; ePWV, estimated Pulse Wave Velocity; OR, odds ratio.

FIGURE 2

Association between chronic kidney disease with estimated pulse Wave Velocity in a restricted cubic spline model. Multivariable adjusted odds ratios 
(red solid line) with 95% confidence interval (pink shaded area) for the association between chronic kidney disease with estimated Pulse Wave Velocity. 
Adjusted for sex (Male, Female), ethnicity (Non-Hispanic White, Non-Hispanic Black, Other Hispanic, Mexican American, Other Race - Including Multi-
Racial), marital status (living with a spouse / partner, or living without a spouse / partner), poverty income ratio, educational level (divided into less than 
9th grade, 9–11th grade, high school graduate, some college or AA degree, college graduate or above), body mass index, smoke status, cardiovascular 
disease, and diabetes mellitus.
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CVD, also contributes to CKD onset and progression (32). 
Arteriosclerosis increases arterial rigidity, amplifying pressure wave 
reflection and oscillations in blood flow. These effects are particularly 
pronounced in the kidneys, which are high-flow, low-impedance end 
organs. Such amplified hemodynamic forces damage the renal 
microvasculature, impairing glomerular filtration rate (GFR) and 
reducing renal function (6, 33). Furthermore, arteriosclerosis triggers 
microvascular remodeling in the kidneys, including an increased 
media-to-lumen ratio, which raises peripheral resistance and 
diminishes renal autoregulatory capacity. This remodeling, coupled 
with arterial stiffness, leads to cortical artery loss and vascular damage, 
further reducing GFR and impairing renal function (34). This 
remodeling, coupled with arterial stiffness, leads to cortical artery loss 
and vascular damage, further reducing GFR and impairing renal 
function (6). Imaging studies corroborate these findings, 
demonstrating that aortic stiffening and excessive flow pulsatility 
cause microvascular injury and functional decline in the kidneys (23).

Arterial stiffness, often quantified by pulse wave velocity (PWV), 
is widely recognized as a key biomarker of vascular health. The 
carotid-femoral PWV (cfPWV) is considered the gold standard for 
assessing aortic stiffness, as recommended by the European Society of 
Hypertension/European Society of Cardiology (ESH/ESC) and the 
American Heart Association (AHA) guidelines (5, 24, 35). However, 
evidence on the association between PWV and CKD has been 
inconsistent. For instance, a prospective cohort of 7,154 Chinese 
adults without baseline CKD found that higher cfPWV (≥16.7 m/s) 
was significantly associated with increased CKD risk over 3 years (20). 
Similarly, other studies, including the AGES-Reykjavik study and the 
Rotterdam Study, demonstrated that elevated cfPWV predicted GFR 

decline and renal function deterioration over follow-up periods of 5.3 
and 11 years, respectively, though no association was observed with 
albuminuria (6, 11, 14).

Conversely, Madero et al. found that aortic PWV was associated 
with CKD incidence but not with rapid kidney function decline in a 
cohort of 2,129 older adults over 8.9 years (12). Similarly, the 
Framingham Heart Study linked cfPWV to albuminuria but not to 
mild-to-moderate CKD (16).

Alternative methods, such as brachial-ankle PWV (baPWV), are 
commonly used in Asia but demonstrate inconsistent correlations 
with CKD. For instance, a Japanese study found that for every 1 m/s 
increase in baPWV, the likelihood of GFR decline increased by 36% 
(p < 0.01) (17), whereas another study in 913 CKD patients found no 
significant association between baPWV and GFR decline (22). 
Additionally, baPWV is poorly correlated with cfPWV, limiting its 
utility as a surrogate for aortic stiffness (36).

Despite its clinical relevance, aortic stiffness has not been widely 
adopted in routine practice, largely due to technological and logistical 
challenges. For example, cfPWV measurement requires specialized 
equipment and expertise, limiting its accessibility. In contrast, ePWV 
offers a simple, cost-effective alternative with comparable predictive 
value. Derived from age and mean arterial pressure (MAP), ePWV 
requires no specialized equipment and can be easily implemented in 
clinical settings (27, 28). Recent studies, including one based on the 
Vitamin D Assessment (ViDA) cohort, support the utility of ePWV as 
a predictor of CKD risk (21).

Our study confirms these findings. Logistic regression analysis 
revealed that each 1 m/s increase in ePWV was associated with a 50% 
higher risk of CKD (OR = 1.50; 95% CI: 1.47–1.54; p < 0.0001). A 

FIGURE 3

The association between chronic kidney disease with estimated pulse Wave Velocity in subgroups Each stratification was adjusted for sex (Male, 
Female), ethnicity (Non-Hispanic White, Non-Hispanic Black, Other Hispanic, Mexican American, Other Race - Including Multi-Racial), marital status 
(living with a spouse / partner, or living without a spouse / partner), poverty income ratio, educational level (divided into less than 9th grade, 9–11th 
grade, high school graduate, some college or AA degree, college graduate or above), body mass index, smoke status, cardiovascular disease, and 
diabetes mellitus, except the stratification factor itself. OR, odds ratio; CI, confidence interval.
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restricted cubic spline (RCS) model further demonstrated a notable 
rise in CKD prevalence when ePWV exceeded 7.829 m/s. These 
results suggest that ePWV may be a risk factor for CKD and a valuable 
biomarker for monitoring CKD progression.

Subgroup analyses revealed that the association between ePWV and 
CKD was consistent across age and hypertension subgroups, suggesting 
that arteriosclerosis impacts CKD prevalence independently of blood 
pressure levels. This suggests that even in patients with well-controlled 
blood pressure, those with CKD should remain vigilant regarding the 
risk of arterial stiffness. Interestingly, significant interactions were 
observed between ePWV and sex, as well as glycemic status. Male 
participants exhibited higher susceptibility to ePWV-related CKD risk 
(OR = 1.59 in men vs. OR = 1.44 in women; p for interaction < 0.0001), 
consistent with prior research showing that men have higher PWV 
levels than women (37). Stratification by glycemic status suggested 
potential synergistic effects between elevated blood glucose and arterial 
stiffness on CKD risk, warranting further investigation.

This study has several limitations. First, as a cross-sectional 
analysis, our findings can only establish associations, not causal 
relationships, between ePWV and CKD. Longitudinal studies are 
needed to explore the role of ePWV in CKD onset and progression. 
For instance, a recent study has revealed that vascular and metabolic 
dysfunctions accumulate gradually over time even in genetically 
predisposed individuals (38), supporting the necessity of longitudinal 
assessments in investigating the relationship between ePWV and 
CKD. Second, NHANES data may not capture all potential 
confounders, and reliance on self-reported data introduces the risk 
of residual confounding. Third, our findings are based on a 
U. S. population and may not be generalizable to other regions or 
populations with differing socioeconomic or racial/ethnic 
characteristics. The strong association between APOL1 risk variants 
and renal damage in populations of African ancestry, along with the 
specific eQTL signals of the NFATC1 pathway in individuals of 
African or Americas ancestry, suggests that genetic variations across 
different ethnic groups may synergistically influence renal function 
and vascular compliance through unique molecular mechanisms, 
including salt sensitivity and immune-inflammatory responses (39). 
Consequently, this can lead to population-specific differences in the 
association between ePWV and CKD. Finally, there are limitations to 
using ePWV as a surrogate for PWV, as it is estimated solely based 
on age and mean arterial pressure. This approach may overlook subtle 
vascular alterations and fail to adequately reflect the impact of 
immune status on blood vessels (40), potentially hindering early 
disease diagnosis.

Future research should focus on the longitudinal relationship 
between ePWV and CKD, accounting for time-varying factors. 
Simultaneously, further prospective studies are necessary to develop 
and validate a multi-parameter risk prediction model that integrates 
assessments of vascular function, metabolism, and inflammation. 
Such a model will enhance the predictive power for cardiovascular 
events and renal outcomes in patients with CKD. Additionally, studies 
in diverse populations could enhance the generalizability of our 
findings and further validate the utility of ePWV in assessing vascular 
and renal health. Finally, given the complexity of the ePWV 
calculation equation, our research team intends to develop a 
web-based ePWV calculator in HTML format, or a WeChat mini 
program, to facilitate its use by primary care practitioners.

5 Conclusion

In general, this study demonstrates a strong positive association 
between ePWV and CKD prevalence, indicating the potential utility 
of ePWV monitoring in predicting CKD prevalence. Prospective 
investigations are essential to substantiate these findings and to 
ascertain the presence of causal links.
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