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Clinical and genetic features of 
CNGA3 achromatopsia in 
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into retinal architecture and 
therapeutic window for clinical 
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Purpose: Achromatopsia (ACHM) is a rare genetic disorder with an infantile onset 
that affects cone photoreceptors. This study aims to provide a comprehensive 
phenotyping of the retinal structure and identify novel genetic variants in a 
preschool cohort with ACHM in China.

Methods: We recruited patients with pathogenic genes (CNGA3, CNGB3, 
GNAT2, PDE6C, PDE6H, and ATF6) known to cause ACHM, all of whom had 
an age of symptom onset before 6 years of age. Whole exome sequencing, 
Sanger sequencing, and comprehensive ocular examinations, including optical 
coherence tomography (OCT), were conducted. Furthermore, retinal outer 
layer damage was evaluated using a novel modified classification system.

Results: Nystagmus (46.13%) and photophobia (46.13%) were the most common 
initial complaints/reports from parents of our patients. These symptoms are 
easily noticed early (mean age 0.88 ± 1.07 years at onset of initial symptom). 
OCT revealed a wide range of degeneration in the outer retina of the fovea, 
exactly in the interdigitation zone (IZ) and ellipsoid zone (EZ). Retinal outer layer 
damage was observed in 18 eyes (9 patients), with the modified classification 
distribution: grade 1  in 1 eye (5.6%), grade 2  in 9 eyes (50.0%), and grade 3  in 
8 eyes (44.4%). Eleven novel variants of CNAG3 were identified. The higher 
grade of outer retinal layer damage was shown in patients with genetic variants, 
potentially leading to structural changes in the cyclic guanosine monophosphate 
(cGMP) binding site of the synthesized protein (p = 0.046).

Conclusion: ACHM can manifest at very early stages of life. Mild damage to the 
outer layers of the retina is a typical change in early-stage ACHM. Patients with 
genetic variants potentially leading to structural changes in the cGMP binding 
site of the synthesized protein tend to exhibit more severe retinal phenotypes. 
Ultimately, our research may aid in formulating guidelines for selecting patients 
and determining the optimal timing for interventions in upcoming gene 
replacement therapies.
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1 Introduction

Gene-therapeutic interventions hold significant promise for 
revolutionizing medicine, with ophthalmologic diseases affecting 
retinal function leading the way in this transformative journey. This 
groundbreaking potential has already been realized in the case of 
RPE65-related Leber congenital amaurosis, culminating in the recent 
approval of voretigene neparvovec (Luxturna, Spark Therapeutics, 
Inc., Philadelphia, USA), marking a milestone as the first gene therapy 
drug for an inherited retinal disease (1, 2). Another condition 
currently under the spotlight for gene supplementation approaches is 
autosomal recessive achromatopsia (ACHM), with both animal 
studies and several human phase I/II trials underway for ACHM 
related to CNGA3 and CNGB3 variants (NCT03758404 and 
NCT03001310, Farahbakhsh et al., NCT02935517, NCT02599922, 
NCT0261058212) (3–12).

ACHM, a rare genetic disorder with autosomal recessive 
inheritance, manifests as congenital dysfunction of the retinal cone 
photoreceptors, resulting in reduced visual acuity, nystagmus, 
photophobia, and absent or severely impaired color vision (13–15). 
The disease is primarily caused by gene variants encoding functional 
components of the phototransduction cascade. When light shines, the 
level of cyclic guanosine monophosphate (cGMP) decreases, causing 
cyclic nucleotide-gated (CNG) channels to close, the receptor to 
hyperpolarize, and ultimately inhibiting the release of glutamate. 
Specifically, variants in CNGA3 and CNGB3, encoding the α and β 
subunits of the CNG channel in cone photoreceptors, collectively 
account for over 90% of cases. The remaining minority of cases are 
attributed to defects in genes regulating cGMP metabolism: GNAT2 
encodes cone transducin, a G-protein that activates phosphodiesterase 
6 (PDE6); PDE6C and PDE6H constitute catalytic and inhibitory 
subunits of PDE6, respectively, which hydrolyze cGMP; while ATF6, 
operating at the endoplasmic reticulum, mediates stress-response 
pathways critical for photoreceptor survival (16–18).

Diagnosing ACHM hinges on the clinical presentation of 
symptoms, often evident from early infancy, including pendular 
nystagmus, photophobia, and diminishment or absence of color 
vision. While multimodal retinal imaging and electrophysiological 
assessments constitute standard diagnostic procedures, their 
implementation frequently encounters practical limitations in young 
children due to compliance challenges. Therefore, genetic testing 
supplements clinical diagnosis, aiding in identifying underlying 
genetic variants (19). Current management is limited to photophobia 
alleviation with tinted eyewear, low-vision aids, and genetic counseling 
(20). However, there is no curative treatment for ACHM, and gene 
therapy has proposed a new solution. Notably, the genetic landscape 
of ACHM exhibits significant regional and ethnic diversity, with 
variants in CNGA3 predominant in certain populations, such as East 
Asian populations. Despite traditionally being viewed as a stationary 
cone dysfunction, emerging evidence suggests a progressive nature for 
ACHM. Considering the non-regenerative nature of retinal tissue, 
understanding the natural history of the disease, especially in the very 
early stage of life, is crucial to identifying optimal windows for 
intervention. In addition, early-stage assessment of photoreceptor 
damage severity and extent is pivotal in predicting the efficacy of 
gene therapy.

Thus, in this study, we present comprehensive phenotyping of 
retinal structure and novel genetic variants within a toddler-aged 

ACHM pediatric cohort in China. Our findings, in conjunction with 
existing research, lay a robust foundation for elucidating essential 
elements of retinal structure and functionality in ACHM. This is vital 
for refining candidate selection criteria and timing of interventions in 
anticipation of forthcoming gene replacement therapies targeting this 
debilitating disorder.

2 Methods

2.1 Patients

Patients harboring pathogenic variants in CNGA3, CNGB3, 
GNAT2, PDE6C, PDE6H, and ATF6 genes, which are responsible for 
achromatopsia (ACHM), were recruited for this study. All 
participants were of Han ethnicity, and the age at symptom onset was 
less than 6 years. In total, 13 patients from 12 families were collected, 
among which patient 11 and patient 12 were from the same family. 
The study ran from January 2018 to January 2024 and was conducted 
in accordance with the Declaration of Helsinki. It received approval 
from the Medical Ethics Committee of Zhongshan Ophthalmic 
Center, Sun Yat-sen University (ID:2020KYPJ175). Informed consent 
was obtained from the parents or legal guardians of the participating 
children. The medical records were reviewed retrospectively. Due to 
the challenges posed by the non-cooperation of toddlers, conducting 
visual acuity and color testing was difficult. Therefore, diagnosis 
relied on clinical presentations, including early-onset infantile 
nystagmus, normal fundus appearance, optical coherence 
tomography (OCT) findings, and abnormal cone responses with 
normal or subnormal rod responses observed on flash 
electroretinogram (fERG) testing.

2.2 Ophthalmic examinations

Ophthalmic examinations, including the measurement of the 
best-corrected visual acuity (BCVA), refractive error, a biomicroscopy 
with a slit-lamp microscope, and fundus examinations, were 
performed. The wide-field fundus photographs were taken from each 
eye, centered on the optic nerve and macula (Optos 200Tx, Optos 
PLC, Dunfermline, Scotland, UK; RetCam, Clarity Medical Systems, 
Pleasanton, CA). The optical coherence tomography (VG200D; 
SVision Imaging, Ltd., Henan, China) was performed for children 
with dilated pupils. The fERG (Ret-eval, LKC, Gaithersburg, MD, 
USA) was recorded according to the International Guidelines of the 
International Society of Clinical Electrophysiology of Vision (ISCEV). 
For uncooperative pediatric patients, the OCT and fERG are 
conducted under sedation with chloral hydrate. Color vision tests 
were performed in some cases using an Ishihara pseudoisochromatic 
plate test.

2.3 Grading of outer retinal damage on 
OCT

According to the modified classification system (21, 22), the 
severity of outer retinal damage shown on the OCT was graded in 
three grades. Grade 1 was characterized by an unrecognizable 
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interdigitation zone (IZ). Grade 2 was characterized by an 
unrecognizable IZ and an indistinct ellipsoid zone (EZ). Grade 3 
was defined by both an unrecognizable IZ and an interrupted EZ.

2.4 DNA sample collection and whole 
exome sequencing

DNA was extracted from the peripheral whole blood of each 
child and their family members using the methods described in our 
previous study (23). Whole exome sequencing (WES) was 
performed on probands. Sanger sequencing was used to verify the 
genetic variants via next-generation sequencing and segregation 
analysis of available family members. Pathogenicity predictions 
were performed using SIFT1, Polyphen-22, and REVEL. Allele 
frequencies were retrieved from the Genome Aggregation Database 
(gnomAD)3. Based on the genetic results and the clinical features, 
the etiological factors were reviewed, and the final diagnosis was 
provided. The pathogenicity of variants was defined based on the 
criteria of the American College of Medical Genetics and Genomics 
(ACMG) (24).

2.5 Statistical analysis

Statistical analyses were performed using the SPSS software (IBM, 
Armonk, NY, version 26). Continuous variables are reported as means 
± standard deviations (SDs) or medians with interquartile ranges, 
depending on the distribution of the data. Generalized Estimating 
Equations (GEEs) were performed to adjust the inter-eye consistency 
in evaluating the correlation between the degree of outer retinal layer 
damage and genetic variants.

3 Results

3.1 Demographics and clinical features of 
ACHM in preschool children

Thirteen patients diagnosed with ACHM were included in the 
study, all involving both eyes. Table 1 provides an overview of their 
demographic and clinical characteristics. Among the participants, five 
were boys and eight were girls. The median age at the initial visit was 
3 years (IQR 2.0–6.0), with a mean age at symptom onset of 0.88 ± 1.07 
years. During their initial consultation, parents reported primary 
complaints, including nystagmus (46.15%, 6/13), photophobia 
(46.15%, 6/13), and poor visual acuity (30.8%, 4/13), with one patient 
presenting with reduced visual acuity (7.69.%, 1/13). The median 
spherical equivalent (SE) refraction was +2.13 diopter (D) (range: 
−5.50 ~ +4.38D). Six children can complete vision testing; the mean 
BCVAs, converted to LogMAR, were 1.02 ± 0.11. Color vision testing 
revealed complete color blindness.

1 http://sift.jcvi.org/www/SIFT_enst_submit.html

2 http://genetics.bwh.harvard.edu/pph2/

3 http://www.gnomad-sg.org

3.2 Retinal phenotypes

All patients exhibited unremarkable anterior segment findings. 
Fundus photography detected no significant abnormalities except in 
patient 9, who presented bilaterally pale optic discs with a cup-to-disc 
ratio of 0.5. However, OCT imaging demonstrated variable foveal 
structural anomalies across the cohort. Four young children were 
excluded from OCT analysis due to non-compliance, leaving nine 
cooperative patients (18 eyes) for retinal layer evaluation. OCT 
revealed diffuse outer retinal disruptions localized to the foveal region, 
specifically affecting the IZ and EZ. Quantitative analysis of the 18 
evaluated eyes demonstrated universal outer retinal layer involvement, 
stratified as grade 1 (5.6%, n = 1), grade 2 (50.0%, n = 9), and grade 3 
(44.4%, n = 8) abnormalities (Table  1), with representative 
morphological features shown in Figure 1.

3.3 Genotypes

We identified 20 variants among the 13 patients. Notably, 
we found pathogenic variants in two common causative genes for 
ACHM (Table 2; Figures 2, 3). The causes of ACHM were defects in 
CNGA3 in 12 patients (92.3%) and CNGB3 in one patient (7.7%). Of 
these 13 patients, 12 were compound heterozygotes, and just one was 
a homozygote. Among the 20 identified variants, 55% (11/20) 
represented novel findings, with six classified as pathogenic/likely 
pathogenic per ACMG guidelines and five remaining variants of 
uncertain significance (VUS). The CNGA3 variant spectrum 
comprised predominantly missense variants (68.4%, 13/19), followed 
by stop gain (21.1%, 4/19), frameshift (5.3%, 1/19), and splicing 
variants (5.3%, 1/19). We  also found that three CNGA3 variants 
showed up in multiple patients. The c.830G > A variant was in patients 
#6 and #9, c.1706G > A was in patients #1 and #9, and c.1585G > A 
was in patients #8, #11, and #12 (who is patient #11’s younger brother). 
Additionally, the sole patient with CNGB3-ACHM harbored a 
homozygous canonical splicing variant (c.129 + 1G > A).

3.4 Genotype-phenotype correlation 
analysis

Eighteen eyes with OCT were included in further analysis of the 
association between genetic variants and outer retinal layer damage. 
Patients with genetic variants of CNGA3 were divided into two groups 
based on whether their genetic variants could potentially lead to 
structural changes in the cyclic guanosine monophosphate (cGMP) 
binding site of the synthesized protein. In the cGMP group, none of 
the eyes were classified as grade 1 (0 eyes, 0.0%), while six eyes (42.9%) 
were classified as grade 2 and eight eyes (57.1%) were classified as 
grade 3, resulting in a total of 14 eyes. In contrast, among the other 
genetic variant groups, one eye (25.0%) was categorized as grade 1, 
three eyes (75.0%) were categorized as grade 2, and none of them fell 
into grade 3 (0.0%), with a total of four eyes. There were no statistically 
significant differences in the median age, BCVA, and SE between the 
two groups. The higher grade of outer retinal layer damage was shown 
in patients with genetic variants, potentially leading to structural 
changes in the cGMP binding site of the synthesized protein 
(p = 0.046, Table 3).
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TABLE 1 Main clinical findings in each achromatopsia patient.

ID Gender Age at 
symptom 

onset 
(years)

Age at initial 
presentation 

(years)

Reported 
major 
symptom

SE (D) BCVA Fundus Outer retinal 
damage on 

OCT

Color vision test

OD OS OD OS OD OS OD OS OD OS

1 F 0.3 6 Nystagmus 1.125 1.375 0.80 1.00 Normal Normal 3 3 Complete Complete

2 F 0.2 1 Nystagmus 2.125 1.375 NA NA Normal Normal 3 2 NA NA

3 M 2.0 6 Photophobia 3.125 2.625 1.00 1.00 Normal Normal NA NA Complete Complete

4 M 0.2 3 Nystagmus NA NA NA NA Normal Normal NA NA NA NA

5 M 1.0 2 Photophobia NA NA NA NA Normal Normal NA NA NA NA

6 F 0.2 3 Nystagmus 2.125 2.25 1.00 1.22 Normal Normal 1 2 NA NA

7 F 0.2 3 Nystagmus NA NA NA NA Normal Normal 2 2 NA NA

8 F 1.0 7 Photophobia 2.125 1.625 1.00 1.00 Normal Normal 2 2 Complete Complete

9 M 4.0 16 Poor vision −2.875 −5.5 1.22 1.00

Pale optic 

disc, C/D 

0.6

Pale optic 

disc, C/D 

0.5

2 3 Complete Complete

10 F 1.0 2 Nystagmus 4.375 4.25 NA NA Normal Normal 3 3 NA NA

11 F 0.5 6 Photophobia NA NA 1.00 1.00 Normal Normal 2 2 Complete Complete

12 M 0.5 3 Photophobia NA NA NA NA Normal Normal 3 3 NA NA

13 F 0.3 2 Photophobia NA NA NA NA Normal Normal NA NA NA NA

SE, spherical equivalent; D, diopter; BCVA, best-corrected visual acuity; F, Female; M, Male; NA, not applicable; C/D, cup-to-disc ratio. Outer retinal damage grade: Grade 1 was characterized by an unrecognizable interdigitation zone (IZ). Grade 2 was characterized by 
an unrecognizable IZ and an indistinct ellipsoid zone (EZ). Grade 3 was defined by both an unrecognizable IZ and an interrupted EZ.
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4 Discussion

In the present study, we analyzed the genotypes and phenotypes 
of 13 Chinese children with ACHM. This study described detailed 
clinical characteristics in much younger populations, especially the 
detailed outer retinal architecture. Compared to previous studies, this 
is crucial given the rapid and ongoing advancements in gene therapy 
for ACHM.

The mutational profiles of ACHM patients exhibit significant 
global heterogeneity. In the Netherlands, the prevalence of CNGB3 
gene variants in ACHM patients is substantial (87%) (13). CNGA3 
(38.1%) and PDE6C (38.1%) are the most prevalently mutated genes 
in Korean patients with ACHM. In the US and the UK, the main 
genetic variants in ACHM patients are CNGA3 and CNGB3, with 

CNGA3 being more prevalent, but the difference between the two is 
not significant. However, in our patient cohort, CNGA3 variants were 
presented in 92.3% of patients, accounting for an extremely high 
proportion, of which missense and truncating variants accounted for 
75% (18/24) and 25% (6/24), respectively. Zhang et  al. have also 
documented that CNGA3 was identified as the most common 
pathologic gene in Chinese ACHM patients (81.5%) (25). Phase I/II 
clinical trials for CNGA3-ACHM and CNGB3-ACHM are underway 
in the United  States. The aforementioned results underscore the 
necessity for CNGA3-ACHM gene therapy.

We reported 11 novel gene variants in CNGA3, which are not 
documented in population databases, expanding the catalog of known 
potentially pathogenic variants. The genetic variants in the CNGA3 
gene were localized in the cytoplasmic NH2 terminus, the 

FIGURE 1

Representative images of multimodal ophthalmic imaging of patients showing outer retinal damage. (A) The healthy control. (B) Grade 1 was 
characterized by an unrecognizable interdigitation zone (IZ). (C) Grade 2 was characterized by both an unrecognizable IZ and an indistinct ellipsoid 
zone (EZ). (D) Grade 3 was defined by an unrecognizable IZ and an interrupted EZ.
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TABLE 2 Genetic findings in the achromatopsia patients.

ID Gene Exon Variants Location Allele Type ACMG Criteria ACMG 
Result

SIFT Polyphen-2 REVEL gnomAD Inheritance Reference

1 CNGA3 exon2
NM_001298: c.62C > G (p. 

Ser21*)
chr2:98986500 stopgain PVS1, PM2, PM3 P – – – 0.00002033 Mother (31–33)

1 CNGA3 exon8
NM_001298: c.1706G > A (p. 

Arg569His)
chr2:99013339 missense PM1, PM3, PP3, PP1 LP PD PD PD 0.00002166 Father (34)

2 CNGA3 exon7
NM_001298: c.633T > A (p. 

Asp211Gly)
chr2:99008393 missense PM1, PM2 VUS D D D 0 Father Novel

2 CNGA3 exon8
NM_001298: c.1544T > G (p. 

lle515Ser)
chr2:99013177 missense PM1, PM2 VUS D D D 0 Mother Novel

3 CNGA3 exon6
NM_001298: c.553C > G (p. 

Leu185Val)
chr2:99006224 missense PM1, PM2, BP4 VUS – – – 0.000004 Mother Novel

3 CNGA3 exon8
NM_001298: c.1001C > T (p. 

Ser334Phe)
chr2:99012634 missense PM1, PM2, PP3 VUS PD PD PD 0 Unknown (18, 32)

4 CNGA3 exon7
NM_001298: c.608G > A (p. 

Trp203*)
chr2:99008368 stopgain PVS1, PM2, PP3 P – – – 0 Unknown Novel

4 CNGA3 exon8
NM_001298: c.870_871del (p. 

Thr291Argfs*77)
chr2:99012502 frameshift PVS1, PM2, PP4 P – – – 0 Mother Novel

5 CNGA3 exon6
NM_001298: c.513G > T (p. 

Trp171Cys)
chr2:99006184 missense PM1, PM2, PP3 VUS D D D 0.000004 Mother (31, 32)

5 CNGA3 exon8
NM_001298: c.833T > C (p. 

Leu278Pro)
chr2:99012466 missense PM1, PM2, PP3 VUS D D D 0.000004 Father Novel

6 CNGA3 exon8
NM_001298.2: c.830G > A (p. 

Arg277His)
chr2:99012463 missense

PS1, PM2, PM3, PP3, 

PP5
P D D D 0.000024 Father (14, 35)

6 CNGA3 exon8
NM_001298.2: c.1074G > A (p. 

Trp358*)
chr2:99012707 stopgain PVS1, PM2, PM3 P – – – 0.000012 Mother Novel

7 CNGA3 exon8
NM_001298.2: c.952G > A(p. 

Trp358*)
chr2:99012585 missense PM1,PM2, PP3,PP4 LP D D D 0.000012 Father (14, 35)

7 CNGA3 exon8
NM_001298.2: c.1117G > A (p. 

Val373Met)
chr2:99012750 missense PM2,PM3,PM5, PP3 LP D D D 0.00004 Mother Novel

8 CNGA3 exon8
NM_001298.2: c.1062C > A (p. 

Tyr354*)
chr2:99012695 stopgain PVS1, PM2, PM3 P – – – 0 Mother Novel

8 CNGA3 exon8
NM_001298.2: c.1585G > A (p. 

Val529Met)
chr2:99013218 missense PM1, PM2, PP3, PP5 LP D D D 0.000067 Father (32, 36–38)

(Continued)
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TABLE 2 (Continued)

ID Gene Exon Variants Location Allele Type ACMG Criteria ACMG 
Result

SIFT Polyphen-2 REVEL gnomAD Inheritance Reference

9 CNGA3 exon8
NM_001298.3: c.830G > A (p. 

Arg277His)
chr2:99012463 missense

PS1, PM2, PM3, PP3, 

PP5
P D D D 0.000024 Mother (14, 35)

9 CNGA3 exon8
NM_001298.3: c.1706G > A (p. 

Arg569His)

chr2:99013339 missense PS1, PP3, PP5 LP PD PD PD 0.00002166 Father (34)

10 CNGA3 intron4 NM_001298.3: c.396-

11C > G(p.?)

– splicing PVS1, PM2, PM3, 

PP3

P – – – 0 Father (32)

10 CNGA3 exon8 NM_001298.3: c.989T > C (p. 

Phe330Ser)

– missense PS1, PM2, PM3, PP3, 

PP5

P – – – 0 Mother Novel

11 CNGA3 exon8 NM_001298.3: c.1585G > A (p. 

Val529Met)

chr2:99013218 missense PS4, PM3, PP1, PP3 LP D D D 0.0006 Father (32, 36–38)

11 CNGA3 exon8 NM_001298.3: c.1595G > A (p. 

Asp532Gly)

chr2:99013228 missense PM2, PM3, PP3 VUS D D D 0 Mother Novel

12 CNGA3 exon8 NM_001298.3: c.1585G > A (p. 

Val529Met)

chr2:99013218 missense PS4, PM3, PP1, PP3 LP D D D 0.0006 Father (32, 36–38)

12 CNGA3 exon8 NM_001298.3: c.1595G > A (p. 

Asp532Gly)

chr2:99013228 missense PM2, PM3, PP3 VUS D D D 0 Mother Novel

13 CNGB3 exon1 NM_019098.4: c.129 + 1G > A 

(p.?)

chr8:87755726 splicing PVS1, PS1, PM3 P – – – 0.000008 Father And 

Mother

(39)

D, damaging; PD, probably damaging; P, pathogenic; LP, likely pathogenic; VUS: Variants of Uncertain Significance. ACMG, American College of Medical Genetics and Genomics.
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transmembrane helices, and the cGMP binding domain of the CNGA3 
protein, and all caused an amino acid change (26) (Table 3; Figure 3). 
Interestingly, the phenotypic consequences were severe in patients 
with variants, potentially leading to structural changes in the cGMP 
binding site of the synthesized protein. The possible mechanism might 
involve the overactivation of the CNG channel, which is reliant on the 
regulation of cGMP binding. Choi et al. reported similar findings, 
where patients with PDE6C variants exhibited more severe 
abnormalities in the outer retinal layer than those with variants in 
CNGA3, CNGB3, and GNAT2 (27). PDE6C has been identified as the 
gene encoding the alpha-prime subunits of cone cell 
phosphodiesterase, which is crucial in regulating cGMP synthesis (28).

Twelve of our patients (92.3%) showed normal manifestation in 
fundus photography, with notable abnormalities in OCT. With the aid 
of sedation, we were able to obtain OCT results in younger patients 
(the minimum examining age is 1.10 years). In Korean CNGA3-
ACHM patients, 37.5% (3/8) displayed EZ disruption. Conversely, 
more severe photoreceptor degenerations were noted in Italian 
populations, where OCT identified the absence of EZ, the presence of 
a hypo-reflective zone, and outer retinal atrophy of 42.9% CNGA3-
ACHM patients (3/7). This finding aligns with results from another 
study on American CNGA3-ACHM populations, where 44.4% (8/18) 
showed similar OCT findings, including the absence of EZ, hypo-
reflective zone presence, and outer retinal atrophy (18). Compared to 
previous research, our cohort exhibited a milder degree of damage to 

the outer layers of the retina (21, 27). The reason for this observation 
might be  attributed to the relatively younger age of our study 
population (median age 2.84 years old vs. 24.50 in X, 19.00 in X). With 
the continuous development of optical coherence tomography (OCT), 
we have detected more subtle OCT changes. Compared to previous 
studies (21, 22), our OCT grading system focuses on the IZ, which was 
not considered in past OCT grading systems. IZ, its location at the 
interface of the RPE and photoreceptor outer segments, implies a 
possible role in visual signal-related processes such as enhancing 
substance exchange for proper photoreceptor operation and visual 
signal transduction (29). We noted that when the ellipsoid zone is 
continuous, the IZ can be unrecognizable, which we designated as 
Grade 1. In Grade 2, besides the ellipsoid zone indistinct, patients also 
show IZ changes. Moreover, in Wu et  al.’s case report, they also 
detected the interdigitation zone changes (30). Therefore, we propose 
a novel OCT grading system designed specifically for the evaluation 
of outer retinal damage in preschool children.

Our findings indicated that ACHM might progressively worsen 
with age, contrary to the previously held belief that it remains 
“stationary.” Crucially, in Chinese CNGA3-ACHM, OCT revealed 
structural damage of the outer retinal layers in early life, particularly 
in IZ and EZ, detectable as early as 1.0 years of age (median onset: 3.0 
years; IQR 2.0–6.0). Early detection of subtle pathological changes in 
OCT scans and accurate grading can enable timely diagnosis and early 
identification of the disease, allowing children to start treatment 

FIGURE 2

The pedigree of the families with genetic variants in CNGA3 and CNGB3 genes. F, father; GF, grandfather; GM, grandmother; M, mother; S, sister.
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immediately. Furthermore, in a mouse model with human CNGB3 
packaged in an AAV8 capsid, functional rescue was demonstrated by 
ERG testing across different ages, yet older mice showed a poor 
response to the treatment (9). Collectively, these observations 
collectively underscore the critical need to advance the therapeutic 
window for gene therapy interventions.

This study has some limitations in its retrospective design. First, 
despite patients being encouraged to attend annual follow-up visits, 
the duration of follow-up varied among participants. Consequently, 
only cross-sectional data were obtainable for some patients or certain 
tests. Furthermore, due to the low prevalence of CNGA3 and CNGB3 
patients, the sample size of 13 patients was relatively low. As a result, 

it was difficult to perform subgroup comparisons between the two 
genes. Finally, it is hard to conduct certain subjective tests, including 
color vision tests and visual acuity assessments, because of the young 
age of our cohort.

5 Conclusion

A better understanding of the disease course and progression is 
crucial for patient management. Our findings sustain the onset of 
ACHM in early life. OCTs are effective diagnostic tools for disease and 
can be conducted under sedation when necessary. A mild degree of 

FIGURE 3

The CNGA3 gene locus with its eight exons (GRCh38/hg38, NM_001298.2) was depicted at the top of the figure. Exons were indicated by the yellow 
rectangles. Introns were indicated by the black line. The locations of variants are shown in one of the diagrams of the CNGA3 gene structure. To 
localize the genetic variants with respect to the proposed topological model of the CNGA3. The location of missense (black), stop gain (red), and 
frameshift (green) variants were shown on the protein. The yellow star indicated the novel variants; cGMP: cyclic guanosine monophosphate.
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damage to the outer layers of the retina and macular hypoplasia are 
typical changes in early-stage ACHM. Moreover, we reported 11 new 
genetic variants, contributing to the expansion of the disease variant 
spectrum; the severe degree of outer retinal damage was observed in 
patients with genetic variants, potentially leading to structural changes 
in the cGMP binding site of the synthesized protein. Ultimately, our 
research may aid in formulating guidelines for selecting patients and 
determining the optimal timing for interventions in upcoming gene 
replacement therapies.
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