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Machine learning models for
predicting survival in lung cancer
patients undergoing microwave
ablation
Yufan Liu, Zihang Wang, Xiaowen Cao, Miaoyan Liu and
Lou Zhong*

Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China

Objective: To develop and validate predictive models assessing survival

outcomes in patients with non-small cell lung cancer (NSCLC) treated with

microwave ablation (MWA), enabling clinical decision support and personalized

care.

Methods: This retrospective study analyzed data from 181 NSCLC patients who

underwent MWA between May 2013 and May 2023. Prognostic factors were

identified through univariate analysis, and predictive models were constructed

using machine learning techniques. The model validation was conducted using

cross-validation to ensure the model’s robustness and generalizability.

Results: Univariate analysis revealed several significant prognostic factors,

including tumor stage, serum phosphorus levels, patient age, average

hemoglobin levels, ground-glass opacities (GGO), and pleural traction. The

presence of GGO and pleural traction was associated with worse prognosis,

and these factors were incorporated into the model. After training, the

best-performing model achieved an area under the curve (AUC) of 0.742,

demonstrating a good balance between sensitivity and specificity. Cross-

validation and external validation further confirmed the robustness and

generalizability of the model, with similar AUC values observed in both validation

cohorts. The model effectively predicted the 1-, 3-, and 5-year survival rates for

NSCLC patients treated with MWA. These findings suggest that the model can

serve as a reliable tool for clinical decision-making and support individualized

treatment strategies.

Conclusion: The developed predictive model effectively assesses prognosis

in NSCLC patients treated with MWA, supporting individualized treatment

strategies and improving clinical decision-making.

KEYWORDS

lung cancer, machine learning, microwave ablation, survival, prognosis, predict model

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1561083
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1561083&domain=pdf&date_stamp=2025-05-07
https://doi.org/10.3389/fmed.2025.1561083
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1561083/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1561083 April 30, 2025 Time: 15:36 # 2

Liu et al. 10.3389/fmed.2025.1561083

Introduction

Lung cancer is the leading cause of cancer-related mortality
globally, with non-small cell lung cancer (NSCLC) accounting
for the majority of cases (1). Lung cancer ranks first in both
incidence and mortality in China (2). While surgical resection
remains the standard treatment, many patients are ineligible due
to medical contraindications, necessitating alternative treatments
such as microwave ablation (MWA) (3, 4).

Ablation techniques including MWA, RFA, and cryoablation
are widely used in the medical field (5, 6). MWA is a minimally
invasive technique that utilizes high-frequency microwave energy
to induce thermal necrosis in tumor tissues (7). Its advantages
include reduced surgical trauma, shorter recovery time, and
preservation of surrounding healthy tissues, making it a valuable
option for patient ineligible for surgery. However, while short-term
benefits of MWA are well-documented, its impact on long-term
survival remains unclear, necessitating further investigation.

Radiomics is an emerging multidisciplinary field that combines
medical imaging, computer science, and bioinformatics to extract a
large number of quantitative features from medical imaging data.
These features can reflect information about tissue morphology,
texture, and intensity, and can be used for disease diagnosis,
prognosis, and treatment evaluation. The basic process of
radiomics includes image acquisition, image processing, feature
extraction, and data analysis. High-quality imaging data is obtained
through imaging techniques such as CT, MRI, and PET, followed by
preprocessing to extract regions of interest, from which quantitative
features are extracted. Machine learning and data mining
techniques are then employed to analyze these features, revealing
patterns and relationships associated with clinical outcomes.
Radiomics has broad application prospects in oncology, as it can
predict the biological behavior of tumors, treatment response,
and patient prognosis. It can also be used in the study of other
diseases, such as cardiovascular and neurological disorders. Despite
significant progress, radiomics still faces challenges such as data
standardization, optimization of feature extraction methods, and
integration of multicenter data. With the continuous development
of technology and interdisciplinary collaboration, radiomics is
expected to play an increasingly important role in medical research
and clinical applications (8).

Recent advancements in machine learning (ML) have
revolutionized medical research, enabling the integration of
structured data, such as clinical parameters, and unstructured data,
including imaging features, for predictive modeling (9). Driven by
the wave of digitization, the rapid progress of artificial intelligence,
especially in tools related to machine learning and data mining,
allows doctors to make decisions more swiftly (10). By leveraging
these technologies, this study aims to address the unmet need for
accurate prognostic tools in NSCLC patients undergoing MWA.

Abbreviations: NSCLC, non-small cell lung cancer; MWA, microwave
ablation; MAE, mean absolute error; MSE, mean squared error; 0.9 QAE,
0.9 quantile absolute error; RFA, radiofrequency ablation; EMR, electronic
medical record; ML, machine learning; LR, logistic regression; RF, random
forest; SVM, support vector machine; XGB, XGBoost; NER, named entity
recognition; OS, overall survival; CIRSE, Cardiovascular and Interventional
Radiological Society of Europe; GGO, ground glass opacity; MCH, mean
corpuscular hemoglobin; T, tumor stage.

This study uniquely integrates structured clinical data and
machine learning techniques to develop a predictive model for
NSCLC prognosis following MWA, providing insights into patient-
specific risk factors and supporting clinical decisions (11).

Materials and methods

Sequence chart

In our research, we used a timeline-based sequence chart
to divide the ablation process into four parts: PART I involves
pre-admission information, including non-structured data such
as patient demographics and medical history; PART II covers
the preoperative phase, encompassing structured data such as
preoperative blood tests and imaging examinations; PART III
focuses on the intraoperative phase, including structured data
such as intraoperative imaging and surgical plans; and PART IV
addresses the postoperative phase, gathering structured data such as
postoperative review imaging and follow-up assessments, including
survival data. PARTs II and III represent the hospitalization
phase, with a typical hospital stay of 4–7 days. This study
aims to utilize artificial intelligence technology to construct a
comprehensive predictive model by analyzing EMRs collected
throughout the inpatient process. Figure 1 provides a detailed
depiction of these PARTs, including the types of data involved
in each PART and their placement within the entire ablation
process.

Model development

In terms of data preprocessing, we conducted preprocessing
steps such as handling missing values and standardizing structured
data. For unstructured data, we employed NER technology
to extract crucial factors, enhancing their integration into the
model. The dataset was divided into training and testing
sets to ensure the effectiveness and generalization of the
model. Regarding feature engineering, we identified key factors
related to patient prognosis through data mining at each
PART.

We utilized constructed temporal graph models for modeling,
predicting IV separately using I, II, III, and combining I+II,
I+III, II+III, I+II+III. Seven different machine learning models
were created for 10-fold cross-validation, employing a multi-
model comparison approach. Comprehensive evaluations of each
model were conducted through ten-fold cross-validation and ROC
curves, providing a deeper understanding for survival prediction
in the entire process of MWA for lung cancer. Compared to
single-PART models, the combined prediction of multiple models
demonstrated superior overall performance, possibly reflecting the
synergistic effect of information from different PARTs, offering
richer information for improving survival outcome prediction.

Based on these factors, we applied machine learning to train
the seven different models. After training, model parameters were
optimized to enhance performance. This process ensured that
the experience gained and optimization results during model
construction were thoroughly considered.

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2025.1561083
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1561083 April 30, 2025 Time: 15:36 # 3

Liu et al. 10.3389/fmed.2025.1561083

FIGURE 1

Sequence chart of MWA PART.

Patient criteria

Figure 2 illustrates the selection of patients who underwent
microwave ablation treatment at the Affiliated Hospital of Nantong
University between May 2013 and May 2023. Patients were
randomly assigned to training or validation groups in a 4:1 ratio.
A total of 341 patients were included in the study, excluding
13 patients treated with radiofrequency ablation, 30 patients lost
to follow-up, and 17 patients with incomplete data, resulting in
the inclusion of 181 patients in the model. These 181 patients
were randomly selected in a 4:1 ratio, with 145 patients included
in the training group and 36 patients in the validation group.
Subsequently, seven different models were constructed for the
training group based on temporal graph selection criteria. Table 1
shows the selection criteria, each model underwent four machine
learning ten-fold validations, and the model with the highest
accuracy was selected and validated using the validation set.
Figure 1 shows the validation process. Table 2 describes the baseline
data of the patients, including basic characteristics and clinical
information for both the training and validation set.

NSCLC tumor staging was determined based on the 8th edition
of the clinical TNM staging system by the International Union for
Cancer Control (UICC). All NSCLC patients underwent chest CT
scans before MWA surgery to assess tumor location, quantity, and
size. All laboratory tests were conducted 4 days before MWA.

Evaluation

The primary outcome measures include the patient’s survival
status and survival time, defined as the interval from the initiation

of MWA to death or the last follow-up. For patients who passed
away during the follow-up, OS is calculated as the interval from the
MWA procedure to the date of death. For patients who are still alive
or lost to follow-up, OS is calculated as the interval from the MWA
procedure to the date of the last follow-up. In cases where patients
have neither died nor progressed, the review date is defined as the
date of the last clinical assessment. The patient’s survival status is
determined during the regular follow-up in May 2023, reflecting
the patient’s survival status at that specific time.

Procedure and peripheral management

The indications and procedures for MWA adhere to the
standards set by CIRSE and are implemented by experienced
interventional radiologists. The MTC-3C MWA system (Vision
Medicine) is utilized for MWA, with a microwave emission
frequency of 2450 ± 30 MHz and adjustable continuous wave
output power ranging from 5 to 120 W. The MWA needle has
an effective length of 10–18 cm, an outer diameter of 13–17 g,
and an effective tip of 15 mm. Preoperative CT provides necessary
information for treatment planning, including identification of
suitable ablation sites, puncture site locations, optimal puncture
trajectories, and the required number of MWA needles. Local
anesthesia or intravenous anesthesia is administered as needed. The
needles are introduced to the planned sites, and their positions are
confirmed via CT. Subsequently, MWA is performed according
to the planned power and duration, with adjustments made if
necessary. The procedure is terminated when the ablation zone
exhibits a 5–10 mm margin. MWA parameters are selected based
on the recommended production ablation zone of the MWA
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FIGURE 2

Flowchart of this study.

system. Finally, repeat chest CT scans are conducted to assess
the ablation zone and detect potential complications. Follow-up
MWA visits are scheduled 1–5 days post-hospitalization, with the
first follow-up at 3–4 weeks, followed by subsequent visits every
3 months. These follow-ups include physical examinations and
chest CT or PET/CT scans to evaluate treatment efficacy and detect
recurrence or distant metastasis.

Natural language processing

In this study, we utilized NER technology to extract relevant
medical history and symptoms from unstructured data in patients’
EMRs. The NER, implemented in Python (version 3.7), employed
the LERT-BiLSTM-CRF model, integrating LERT pre-trained
models, BiLSTM, and CRF layers. LERT utilized a language-
informed pre-training strategy on three types of language features
(word position in the sentence, NER labels, word part-of-speech)
for pre-training tasks (12). BiLSTM further utilized LERT’s vector

representation to extract richer contextual features. The CRF
layer utilized the contextual features extracted by BiLSTM to
determine the label for each word. To enhance training efficiency,
we divided excessively long sentences in electronic medical
records, averaging 128 characters per sentence, and conducted
masked language model training tasks. NER experiments on EMRs
from five hospitals considered variations in format and lack
of standardization, addressing these through punctuation-based
sentence segmentation for standardized input. The current average
F1 score for the tested EMRs is 90.67%, with an accuracy of
94.44% (13).

Integration of EMR and radiomics

Integrating EMR and radiomics provides complementary
information for more accurate prognosis prediction. Radiomics
parameters, such as standard deviation and inertia, quantify
tumor heterogeneity and texture features, revealing microstructural
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TABLE 1 Model-outcome prediction matrix.

Predict data Predict outcome

Model 1 PART I PART IV

Model 2 PART II PART IV

Model 3 PART III PART IV

Model 4 PART I+II PART IV

Model 5 PART I+III PART IV

Model 6 PART II+III PART IV

Model 7 PART I+II+III PART IV

changes; for instance, higher standard deviation often correlates
with ineffective treatments, while lower inertia values post-
treatment suggest successful tumor ablation. Meanwhile, EMRs
provide detailed patient histories, treatment records, lab results,
and follow-up data, offering a macroscopic view of disease
progression and treatment response. This study demonstrates that
larger tumor sizes and shallower GGO margins are linked to
ineffective treatments, highlighting the importance of combining
clinical and imaging data. By integrating radiomics features with
EMR data, predictive models can dynamically monitor treatment
effects, validate imaging biomarkers, and guide personalized
strategies, improving survival rates and quality of life.

Statistical analysis and machine learning

Four machine learning algorithms—logistic regression (LR),
random forest (RF), support vector machine (SVM), and extreme
gradient boosting (XGB)—were employed to develop predictive
models. Seven models were constructed using combinations of
input data (e.g., pre-operative factors, intra-operative factors). Each
model was trained and validated using 10-fold cross-validation.

In this experiment, we utilized SPSS 25.0 for Windows.
Categorical variables were described as frequencies and
percentages, while continuous variables were described as
SD ± median/mean. Continuous variables were compared using
Student’s t-test or Mann-Whitney U test, and categorical variables
were compared using the chi-square test between the two cohorts.
Univariate analysis of potential predictors for patient survival was
conducted in the training cohort, with variables having p < 0.05
in the univariate analysis inputted as candidate variables into the
multivariate Cox regression analysis. In the multivariate analysis,
variables with p < 0.05 were considered statistically significant.
The results of the multivariate analysis were presented using R
(R version 4.3.1).

Results

Patient characteristics and clinical
outcomes

The characteristics of the enrolled patients are presented in
Table 1, comprising a total of 181 individuals (64 females, 177
males; mean age: 54.5 years ± 34.5 years). The average follow-up

TABLE 2 Patient demographics and baseline characteristics.

Variables Overall
(181)

Training
cohort
(145)

Validation
cohort

(36)

p-value

Age (y) <0.001

<60 29 22 7

>60 152 114 38

Gender

Male 117 87 30

Female 64 48 16

Tumor stage <0.001

I 117 87 30

II 48 36 12

III 30 23 7

IV 5 4 1

Tumor
diameter (cm)

0.362

<3 16 12 4

>3 165 124 41

Treatment
numbers

<0.01

1 169 127 42

>1 12 9 3

Underlying
pulmonary
diseases

Pneumothorax 21 16 5

Pleural
effusion

37 31 9

MCH 83 47 16 <0.01

Serum
phosphorus

45 34 11 <0.01

Tumor
position

0.665

Upper left
lobe

46 34 12

Left lower
lobe

38 29 9

Right upper
lobe

60 45 15

Right middle
lobe

5 4 1

Right lower
lobe

42 32 10

Atrial
fibrillation

4 3 1 0.017

GGO 23 16 7 0.247

Pleural
retraction

11 8 3 0.058

Mortality 118 88 30

Median OS
(months)

21.94
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duration was 30.5 months. Factors such as age, tumor stage, serum
phosphorus, atrial fibrillation, and average hemoglobin levels
exhibited significant differences among baseline characteristics.

Selection of radiomics factors

Based on relevant literature, we selected GGO, vascular
invasion, and pleural retraction as key features for our study.
These features hold significant clinical importance in various lung
diseases, particularly lung cancer. GGO appears on CT images as a
localized haziness that does not obscure the underlying pulmonary
vessels and bronchial structures. It is closely associated with the
occurrence of lung cancer, especially early-PART adenocarcinoma.
The presence and characteristics of GGO can help assess the
malignancy and progression of lesions (14). Pleural retraction refers
to the localized indentation or deformation of the pleura due to
tumor or lesion pulling or adhesion. This feature is significant in
assessing local tumor invasiveness and is often linked to higher
tumor stages and poorer prognosis (15). The selection of these
features is based on their high relevance and clinical importance
documented in the literature. They not only aid in more accurate
evaluation and diagnosis of lung lesions but also provide critical
prognostic information, helping to develop personalized treatment
plans. Analyzing these features comprehensively is expected
to enhance the predictive performance of the model, thereby
improving patient management and treatment in clinical practice.

Predictive factors for the prognostic
model

In constructing the final prognostic prediction model, key
factors were incorporated, including tumor stage (T), patient
age, serum phosphate levels, and mean corpuscular hemoglobin
(MCH). Additionally, three critical imaging and clinical features—
GGO and pleural retraction—were selected due to their significant
impact on patient prognosis and their contribution to enhancing
the model’s predictive accuracy. Atrial fibrillation, present in only
four patients (2.2% of the total), was excluded from the analysis.
The final model includes seven predictive factors, categorized based
on the different PARTs they belong to. Factors in PART I are age
and tumor stage, PART II includes average hemoglobin and serum
phosphorus, and PART III accounts for the number of puncture
surgeries performed during the operation. All relevant factors and
their respective time points are described in Table 3.

Machine learning model validation
results

Based on significant risk factors identified through multivariate
Cox regression analysis on the training cohort, four machine
learning algorithms—LR, RF, SVM, and XGB—were employed to
construct predictive models. These models were evaluated using
ten-fold cross-validation, and their performance was compared
through ROC curve analysis and AUC values, with higher AUC

TABLE 3 Prognostic model predictors.

PART Type of
data

Time
point

Factors

Part I Unformatted
data

Before
admission

Patient demographics

Patient tumor stage

Part II Formatted data Before
MWA

Testing parameters

Inspection parameters

Part III Formatted data During
MWA

Puncture times

Surgical site

Surgery time

Part IV Formatted data After MWA Survival status

Survival time

values indicating better accuracy in predicting patient survival
outcomes. The evaluation results are illustrated in Figure 3.

Among all the models, Model 7 demonstrated the highest AUC
of 0.716, indicating its strong performance in predicting prognosis
risk for patients with NSCLC undergoing MWA treatment. This
model was selected for its superior accuracy in survival prediction.

In constructing the final prognostic prediction model, the
following key factors were incorporated: T, patient age, serum
phosphate levels, and MCH. Additionally, two critical imaging and
clinical features—GGO and pleural retraction—were included due
to their significant impact on patient prognosis and contribution
to enhancing the model’s predictive accuracy. Table 4 provides a
detailed overview of these factors and their contributions to the
final model.

Model performance

Among the four machine learning models, the XGB model
demonstrated the best performance, achieving an AUC of 0.742
in the validation cohort, indicating superior predictive accuracy.
Table 5 provides a detailed comparison of the models’ AUC values
and performance metrics.

Calibration curve for model validation

The XGBoost model calibration curve (Figure 4) demonstrated
excellent agreement between predicted and observed probabilities,
with MAE = 0.066 and MSE = 0.0067. Feature importance analysis
revealed tumor stage and serum phosphorus levels as the most
critical predictors, followed by patient age and average hemoglobin
levels.

Patient feature importance ranking

Additionally, we constructed a feature importance ranking
using the XGB algorithm. Based on Figure 5, we selected predictive
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FIGURE 3

10-fold CV mean AUC of 4 ML algorithms. LR, logistic regression; RF, random forest; XGB, extreme gradient boosting; SVM, support vector machines.

TABLE 4 Mean AUC of 10-fold cross validation with 4 ML algorithms in 7 prediction models.

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

LR-EMR 0.591 0.595 0.458 0.624 0.512 0.593 0.624

LR-EMR+Img 0.572 0.657 0.657 0.767 0.651 0.643 0.727

RF-EMR 0.597 0.591 0.461 0.683 0.492 0.564 0.683

RF-EMR+Img 0.641 0.663 0.555 0.756 0.584 0.653 0.731

SVM-EMR 0.584 0.592 0.500 0.661 0.589 0.583 0.661

SVM-EMR+Img 0.541 0.649 0.547 0.656 0.670 0.642 0.665

XGB-EMR 0.586 0.732 0.556 0.684 0.597 0.732 0.684

XGB-EMR+Img 0.669 0.712 0.513 0.680 0.539 0.790 0.742

Mean-auc- EMR 0.589 0.627 0.493 0.663 0.547 0.618 0.663

Mean-auc- EMR+Img 0.657 0.672 0.568 0.714 0.611 0.682 0.716

Bold values represent the highest AUC, while underlined values represent the lowest AUC.

TABLE 5 Mean AUC of 10-fold cross validation for 4 machine learning
algorithms in 7 prediction models.

Model AUC (training) AUC (validation)

Logistic regression 0.727 0.715

Random forest 0.731 0.783

Support vector
machine

0.665 0.552

XGBoost 0.742 0.711

factors deemed valuable. The importance scores of features reflect
their significance and contribution within the model. Features with
higher importance scores are considered to have a greater impact
on the model’s predictions and should be prioritized for further
in-depth research and analysis to understand their relationship
with the target variable. Conversely, features with lower importance
scores have a lesser impact on the model results and may be
considered for exclusion during model training or feature selection
processes, potentially simplifying the model without significantly
reducing its predictive performance.

Based on the feature importance ranking shown in the diagram,
the importance of each feature decreases sequentially within the

model. The ranking reflects the contribution of each feature to
the model’s predictions, with higher-ranked features having a more
significant impact and thus warranting more attention in further
research, while lower-ranked features might be considered for
exclusion to simplify the model.

Nomogram and Kaplan-Meier analysis

A nomogram was developed incorporating tumor stage, serum
phosphorus levels, age, and hemoglobin levels to predict survival
probabilities (Figure 5). Risk stratification based on the nomogram
divided patients into low-risk, medium-risk, and high-risk groups.
Kaplan-Meier survival curves showed significant differences in
survival among these groups (p < 0.001), with the high-risk group
exhibiting the poorest survival outcomes (Figure 6).

Clinical implications

The findings suggest that the XGB-based predictive model and
nomogram are robust tools for assessing prognosis in NSCLC
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FIGURE 4

Calibration curve for OS prediction after MWA.

FIGURE 5

Nomogram used to predict OS after MWA.

patients undergoing MWA. These tools can support personalized
treatment planning and improve patient management (Figure 7).

Discussion

Microwave ablation has become an important treatment
modality for NSCLC due to its minimally invasive nature
and efficacy in tumor control. By creating a thermal necrotic
zone that encompasses the tumor with a safety margin, MWA
ensures effective tumor destruction while minimizing damage to
surrounding tissue. Prior studies have demonstrated favorable
survival outcomes with MWA, making it a viable alternative

for patients ineligible for surgery due to tumor location or
comorbidities (16).

Tumor staging remains a cornerstone in determining the
prognosis of NSCLC patients.By assessing key factors such as tumor
size, extent of local invasion, and distant metastasis, the staging
system provides important information regarding the severity and
potential progression of the disease. It plays a crucial role in guiding
treatment decisions and predicting patient outcomes.

For early-stage (I–II) non-small cell lung cancer (NSCLC)
patients, surgical treatment, including procedures such as lung
lobe resection and lymph node excision, remains the preferred
approach, offering high long-term survival rates (17). However, for
patients with advanced (III–IV) or inoperable tumors, microwave
ablation (MWA) combined with radiation therapy provides a

Frontiers in Medicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2025.1561083
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1561083 April 30, 2025 Time: 15:36 # 9

Liu et al. 10.3389/fmed.2025.1561083

FIGURE 6

Kaplan-Meier survival curves by risk category.

FIGURE 7

The importance ranking of different factors.

promising alternative. Our Kaplan-Meier survival analysis results
indicate a significant difference in survival outcomes between
early-stage (I–II) and advanced-stage (III–IV) patients undergoing
MWA treatment (p = 0.036), suggesting that disease stage plays
an important role in prognostic evaluation. Figure 8 displays the
Kaplan-Meier survival curves, comparing the survival of early-stage

and advanced-stage NSCLC patients. These curves clearly illustrate
the survival differences between the two groups, further supporting
our analysis results.

Moreover, MWA offers distinct advantages for specific
patient populations. For elderly patients or those with severe
cardiopulmonary dysfunction, surgical treatment may pose higher
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FIGURE 8

Kaplan-Meier survival curves for early-stage and advanced-stage NSCLC patients.

perioperative risks. In contrast, MWA, as a minimally invasive
therapy, presents fewer complications, quicker recovery, and lower
risks compared to other localized treatments like radiofrequency
ablation (RFA). Future studies evaluating the efficacy of MWA in
treating NSCLC should involve larger-scale prospective trials to
optimize patient stratification strategies and improve personalized
treatment approaches.

Tumor staging alone, while crucial, does not fully account
for all variables that influence the prognosis of NSCLC patients.
Various other factors, such as serum phosphorus levels, age,
and hemoglobin concentration, play significant roles in shaping
patient outcomes.

Elevated circulating phosphorus has been implicated in cancer
pathogenesis through its role in promoting cell proliferation,
angiogenesis, and chromosomal instability. Research has shown
that high phosphorus levels correlate with an increased risk
of developing lung cancer and poorer survival outcomes. This
emphasizes the potential role of serum phosphorus as a prognostic
marker in the management of NSCLC (18).

Age is a fundamental factor in assessing the overall health and
prognosis of lung cancer patients. As patients age, the decline in
physiological function, immune responsiveness, and the ability to
recover from injury can worsen disease outcomes. Studies have
consistently shown a strong association between advancing age
and both higher incidence and poorer prognosis of lung cancer.
Older patients often face additional challenges, including a reduced
ability to tolerate aggressive therapies and an increased risk of
comorbidities, which further complicates treatment and impacts
survival (19).

Hemoglobin is critical for oxygen transport, and its role
in cancer prognosis cannot be overstated. Low hemoglobin
levels, indicative of anemia, are associated with poorer tumor
oxygenation, impaired immune function, and reduced metabolic
capacity. These factors contribute to a diminished ability to respond
to therapies such as ablation. Studies have found that lung cancer
patients with anemia have worse survival rates following ablation
treatment, underscoring the importance of maintaining optimal
hemoglobin levels for better therapeutic outcomes (20).

Imaging plays an indispensable role in assessing lung cancer.
Ground-glass opacities (GGOs), often identified on chest CT
scans, represent areas of early tumor infiltration or inflammatory
change. GGOs are typically associated with less aggressive forms
of lung cancer, and patients with GGOs tend to have better
survival outcomes compared to those with solid nodules. However,
the persistence or progression of GGOs can indicate tumor
progression, necessitating more aggressive treatment and careful
monitoring (21, 22).

Pleural retraction, another radiological finding, indicates that
the tumor has invaded or adhered to the pleural surface, often
complicating treatment. Tumors exhibiting pleural retraction are
usually indicative of advanced disease and may require more
extensive surgical resection or multimodal therapies. Furthermore,
the presence of pleural retraction may impair respiratory function,
directly affecting a patient’s quality of life and prognosis (22).

GGOs are radiological findings seen on chest CT scans,
characterized by hazy areas of increased attenuation that do not
obscure underlying structures. GGOs often represent areas of early
tumor infiltration or inflammatory changes and can be associated
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with both benign and malignant conditions. In the context of lung
cancer, the presence and extent of GGOs can provide insights into
the tumor’s biological behavior. Studies have shown that patients
with GGOs in their imaging may have a better prognosis compared
to those with solid nodules, as GGOs often indicate a less aggressive
form of cancer. However, the persistence or growth of GGOs can
signal tumor progression, necessitating careful monitoring and
potentially more intensive treatment strategies.

Pleural Retraction refers to the pulling in or distortion
of the pleural surface caused by tumor invasion or fibrosis.
This sign on imaging can indicate significant local disease
progression or adherence of the tumor to the pleura. The
presence of pleural retraction is often associated with more
advanced disease and can complicate surgical interventions.
Tumors with associated pleural retraction may require more
extensive surgical resection or multimodal treatments to manage
the disease effectively. Additionally, pleural retraction can impact
respiratory function and patient quality of life, highlighting the
importance of addressing this factor in treatment planning and
patient management.

Accurate prognosis in NSCLC requires an integrated approach
beyond tumor staging alone. This study demonstrates that
combining tumor staging with biochemical markers (serum
phosphorus), age, hemoglobin levels, and radiological findings
(GGO, pleural traction) enhances survival prediction for patients
undergoing MWA. By capturing complex interactions among
these factors, our machine learning-based model provides
a more comprehensive assessment, improving individualized
treatment strategies.

Machine learning enables the identification of intricate
prognostic patterns, overcoming the limitations of single-factor
analyses. Our model achieved robust predictive performance,
validated internally and externally, reinforcing its clinical
applicability. It allows for personalized risk assessment, helping
clinicians optimize treatment decisions and resource allocation.

Despite promising results, limitations exist. The retrospective
design introduces potential bias, and the single-institution dataset
may limit generalizability. Additionally, the absence of long-
term follow-up constrains assessment of prediction durability.
Future studies should incorporate larger, multicenter cohorts
with extended follow-up to validate the model’s reliability and
applicability in broader clinical settings.

In conclusion, this study highlights the value of integrating
multiple prognostic factors using machine learning to improve
survival prediction in NSCLC patients treated with MWA. With
further validation, this model holds potential as a clinical tool for
personalized decision-making and optimized patient management.
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