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Background: Predicting clinical improvement after hospital admission in patients 
with COVID-19 is crucial for effective resource allocation. Machine-learning 
tools can help identify patients likely to show clinical improvement based on 
real-world data. This study used two approaches—least absolute shrinkage and 
selection operator (LASSO) and CombiROC—to identify predictive variables at 
hospital admission for detecting clinical improvement after 7 days.

Methods: A secondary analysis was conducted on the modified intention-to-treat 
placebo group from a previous randomized clinical trial (RCT, NCT04561219) of 
patients with COVID-19. The analysis assessed clinical, laboratory, and blood 
markers at admission to predict clinical improvement, defined as a two-point 
increase on the World Health Organization clinical progression scale after 7 days. 
LASSO and CombiROC were used to select optimal predictive variables. The 
Youden criteria identified the best threshold for different variable combinations, 
which were then compared based on the highest area under the curve (AUC) 
and accuracy. AUCs were compared using DeLong’s algorithm.

Results: Overall, 203 patients were included in the analysis, and they were divided 
into two groups; clinical improvement (n = 154) and no clinical improvement 
(n = 49). The median age was 55 years (interquartile range, 46–66 years); 65% 
were male. LASSO identified three predictive variables (SaO2, hematocrit, and 
interleukin [IL]-13) with high sensitivity of 98% (95% confidence interval [CI], 
92–100%) but low specificity of 26% (95% CI, 10–48%) for clinical improvement. 
CombiROC selected a broader set of variables (T cell–attracting chemokine, 
hemoglobin, hepatocyte growth factor, hematocrit, IL-3, PDGF-BB, RANTES, 
and SaO2), achieving balanced sensitivity of 82% (95% CI, 69–91%) and specificity 
of 74% (95% CI, 49–91%). LASSO and CombiROC showed comparable accuracy 
(82 and 80%, respectively) and similar area under the ROC curves (LASSO: AUC, 

OPEN ACCESS

EDITED BY

Qinghe Meng,  
Upstate Medical University, United States

REVIEWED BY

Wenzheng Bao,  
Xuzhou University of Technology, China
Changjing Zhuge,  
Beijing University of Technology, China

*CORRESPONDENCE

Pedro Leme Silva  
 pedroleme@biof.ufrj.br

RECEIVED 16 January 2025
ACCEPTED 21 April 2025
PUBLISHED 02 May 2025

CITATION

Conceição CCS, Martins CM, Medeiros 
Silva M, Neto HCCF, Chiumello D, 
Rocco PRM, Cruz FF and Silva PL (2025) 
Predicting clinical outcomes at hospital 
admission of patients with COVID-19 
pneumonia using artificial intelligence: a 
secondary analysis of a randomized clinical 
trial.
Front. Med. 12:1561980.
doi: 10.3389/fmed.2025.1561980

COPYRIGHT

© 2025 Conceição, Martins, Medeiros Silva, 
Neto, Chiumello, Rocco, Cruz and Silva. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 02 May 2025
DOI 10.3389/fmed.2025.1561980

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1561980&domain=pdf&date_stamp=2025-05-02
https://www.frontiersin.org/articles/10.3389/fmed.2025.1561980/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1561980/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1561980/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1561980/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1561980/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1561980/full
mailto:pedroleme@biof.ufrj.br
https://doi.org/10.3389/fmed.2025.1561980
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1561980


Conceição et al. 10.3389/fmed.2025.1561980

Frontiers in Medicine 02 frontiersin.org

0.704; 95% CI, 0.571–0.837; CombiROC: AUC, 0.823; 95% CI, 0.708–0.937; 
p = 0.185).

Conclusion: For patients hospitalized with COVID-19 pneumonia, predictive 
variables identified by LASSO and CombiROC analyses demonstrated similar 
accuracy and AUCs in predicting clinical improvement. LASSO, with fewer 
variables (SaO2, hematocrit, and IL-13) showed high sensitivity but low specificity, 
whereas CombiROC’s broader selection of variables provided balanced 
sensitivity and specificity for predicting clinical improvement.

Clinical trial registration: Brazilian Registry of Clinical Trials (REBEC) number 
RBR-88bs9x and ClinicalTrials.gov number NCT04561219.
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1 Introduction

The COVID-19 pandemic reshaped thinking around prevention 
and treatment strategies for emerging diseases, as well as approaches 
to health resource allocation (1). In most cases, the symptoms of 
COVID-19 are mild and improve within days, but a small subgroup 
of patients develop severe disease, marked by significant multi-organ 
dysfunction (2). Predicting whether a patient will progress to clinical 
improvement or deterioration can help with the allocation of 
equipment and human resources; however, advances in this field have 
been modest. Worldwide, clinicians and researchers have been 
developing prognostic tools, including risk scores, biomarker 
screening, and machine-learning models, to better predict the clinical 
course of COVID-19 and the outcomes (3, 4). Despite the promise of 
artificial intelligence (AI) in this domain, appropriate statistical 
comparisons between different predictive methods are still lacking (5).

Working with numerous predictive variables is challenging with 
traditional analyses when seeking robust predictions. In this context, 
least absolute shrinkage and selection operator (LASSO) regression 
has emerged as a tool for predicting outcomes in patients with 
COVID-19 (4, 6–10). A key advantage of LASSO is its capacity to 
reduce the number of explanatory variables in a model and to address 
multicollinearity within the data (11). Another approach, CombiROC, 
offers a flexible method for managing complex data in discriminative 
analyses (12). A key advantage of CombiROC is the combinatorial 
analysis and ROC curves. Both methods have been used in medicine 
and other areas for many decades, but they generally lack an easy-
to-use interface that researchers without programming skills can use 
to analyze data and create plots. With CombiROC, it is possible to 
select the combinations of optimal markers and obtain immediate 
visual feedback, such as graphs and ROC curves, through a simple 
and interactive, yet statistically rigorous, workflow (12). CombiROC 
was initially developed to refine marker combinations from diverse 
omics data and has since been applied to other outcomes, such as the 
detection of lung overload (13), plasma biomarkers (14), and gene 
markers (15). CombiROC was recently applied in COVID-19 
research to improve classification by optimizing biomarker 
combinations (16). However, to date, no study has used CombiROC 
to identify the best combinations of variables to predict clinical 
improvement in COVID-19. Moreover, a direct comparison of 
CombiROC with machine-learning methods such as LASSO has yet 
to be performed. Therefore, this study aimed to compare LASSO and 

CombiROC approaches for selecting predictive variables at hospital 
admission that detect clinical improvement after 7 days in patients 
with COVID-19.

2 Methods

2.1 Study design

This study is a secondary cross-sectional analysis of the placebo 
group in a previous randomized clinical trial (RCT) (17) involving 
patients with COVID-19. The analysis aimed to identify clinical, 
laboratory, and blood markers at hospital admission that predict 
clinical improvement after 7 days. Clinical improvement was defined 
as a 2-point or greater increase on the World Health Organization 
(WHO) clinical progression scale. Two methods were used for the 
analysis: LASSO (11) and CombiROC (12). The study adheres to the 
Declaration of Helsinki and was approved by the Brazilian National 
Commission for Research Ethics (CAAE: 30662420.0.1001.0008) and 
the individual Ethics Committees of all participating sites. This trial is 
registered with the Brazilian Registry of Clinical Trials (REBEC: 
RBR-88bs9x) and ClinicalTrials.gov (NCT04561219), registration date 
April 19, 2020. The study design and reporting follow the STROBE 
guidelines (18). The data were assessed retrospectively on May 17, 
2023, and the authors did not have access to information that could 
identify individual participants after data collection.

2.2 Patients

The analysis included consecutive patients with COVID-19 
pneumonia admitted to 19 hospitals in Brazil from April 20 to October 
15, 2020. Inclusion criteria were as follows: adult patients (≥18 years) 
requiring supplemental oxygen (SpO2 < 93%), admitted with 
COVID-19 symptoms, chest computed tomography findings 
suggestive of viral pneumonia, or a positive reverse transcriptase-
polymerase chain reaction test for SARS-CoV-2. Available clinical, 
laboratory, and blood marker data were collected. Exclusion criteria 
were a history of severe liver disease, chronic kidney disease with 
estimated glomerular filtration rate <30 ml/min/1.73 m2, severe heart 
failure (New York Heart Association classes 3 and 4), severe chronic 
obstructive pulmonary disease (GOLD classes 3 and 4), cancer within 
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the last 5 years, known autoimmune disease, or clinical suspicion of 
tuberculosis or bacterial pneumonia.

2.3 Data sources/measurements

2.3.1 Demographic, clinical, and laboratory data 
at hospital admission

Demographic data (age and sex), clinical data (temperature, 
respiratory rate, heart rate, SpO2), and laboratory markers (hematocrit, 
hemoglobin, leukocytes, neutrophils, lymphocytes, platelets, 
C-reactive protein, ferritin, lactate dehydrogenase, troponin, and 
D-dimer) at admission were collected.

2.3.2 Blood biomarkers at hospital admission
Blood samples were taken at admission, labeled with each patient’s 

unique identifier, and analyzed in local laboratories. Blood biomarkers 
were analyzed using a 48-plex cytokine screening panel (Bio-Plex Pro 
Human Cytokine Screening Panel, 48-Plex). The following mediators 
were analyzed: basic fibroblast growth factor, eotaxin, granulocyte 
colony-stimulating factor, granulocyte-macrophage colony-
stimulating factor, interferon (IFN)-γ, interleukin (IL)-1β, IL-1ra, 
IL-1α, IL-2Rα, IL-3, IL-12 (p40), IL-16, IL-2, IL-4, IL-5, IL-6, IL-7, 
IL-8, IL-9, growth-related oncogene alpha, hepatocyte growth factor 
(HGF), IFN-α2, leukemia inhibitory factor, monocyte chemotactic 
protein (MCP)-3, IL-10, IL-12 (p70), IL-13, IL-15, IL-17A, IP-10, 
MCP-1, monokine induced by IFN-γ, nerve growth factor-β, stem cell 
factor, stem cell growth factor-β, stromal cell-derived factor-1α, 
macrophage inflammatory protein-1α and-1β, platelet-derived growth 
factor (PDGF)-BB, RANTES (regulated upon activation, normal T cell 
expressed and secreted), tumor necrosis factor (TNF)-α, vascular 
endothelial growth factor, T cell–attracting chemokine (CTACK), 
macrophage migration inhibitory factor, TNF-related apoptosis-
inducing ligand, IL-18, macrophage colony-stimulating factor, 
and TNF-β.

2.4 Outcome variable

The outcome variable was clinical improvement at 7 days, defined 
as an increase of at least two points on the WHO scale (17).

2.5 Statistical analysis

No formal sample size calculation was conducted given the 
exploratory nature of the study. All data meeting the inclusion criteria 
were analyzed. Descriptive statistics (mean ± standard deviation or 
median with interquartile range) were used for clinical, laboratory, 
and blood biomarker data, classified into groups with and without 
clinical improvement. The Shapiro–Wilk test assessed normality 
between groups. Parametric variables were analyzed using Student’s t 
test, and non-parametric variables were analyzed with the Mann–
Whitney test.

Predictor selection for LASSO and CombiROC analysis was based 
on variables with less than 25% missing data and statistical significance 
in bivariate analysis. LASSO regression was used to shrink less 
informative predictors toward zero, enhancing model interpretability 

and handling multicollinearity (11). The LASSO method penalizes the 
beta estimation algorithm, pushing parameter estimates toward zero 
or exactly zero. This results in a simpler model that retains only the 
most important variables, making interpretation and analysis easier. 
This technique is particularly useful for reducing the number of 
explanatory variables in a model and addressing the issue of 
multicollinearity in data (19, 20). CombiROC (12) was used to 
evaluate various combinations of receiver operating characteristic 
(ROC) curves to identify the optimal biomarker combination for 
predicting clinical improvement. Furthermore, the combi function of 
the combiroc package calculates marker combinations and counts the 
positive samples for each class of the dependent variable based on a 
predefined threshold. A sample is considered positive for a given 
combination if its value exceeds the threshold for at least a specified 
number of markers within that combination. The threshold value is 
determined based on the recommendation of the markers distribution 
function, which corresponds to the threshold associated with the 
highest Youden Index (21). The code for the CombiROC and LASSO 
analysis, written in the R environment, is given in the 
Supplementary files.

Due to differing distributions among blood markers, data were 
normalized using the rescale function in the “scales” package (22). The 
optimal threshold for different biomarker combinations was selected 
using the Youden Index. ROC areas were compared with DeLong’s 
algorithm (23), using the roc.test function from the “pROC” package 
(24). Statistical significance was set at p < 0.05. All analyses were 
performed in the R 4.0.4 environment (22).

3 Results

A total of 203 patients were included in the analysis (Figure 1), 
divided into two groups: clinical improvement (n = 154) and no 
clinical improvement (n = 49). The median age of patients in the 
intensive care unit was 55 years (interquartile range, 46–66 years); 
65% were male. Patients in the clinical improvement group were 
generally older and had a lower respiratory rate (RR) but a higher level 
of oxygen saturation (SaO2), hematocrit, hemoglobin, platelets, IL-1ra, 
IL-13, RANTES, HGF, PDGF-BB, and CTACK compared with the no 
clinical improvement group (Table 1).

After applying the selection criteria (missing values <25% and 
significant differences in bivariate analysis), predictive variables were 
age, RR, SaO2, hematocrit, hemoglobin, platelets, IL-1ra, IL-13, 
RANTES, HGF, PDGF-BB, and CTACK across 73 observations. The 
individual predictive performance metrics (sensitivity, specificity, 
accuracy, and odds ratio [OR]) of these variables predicting clinical 
improvement are presented in Table 2.

LASSO analysis identified SaO2, hematocrit, and IL-13 as the 
three key predictive variables, achieving an area under the curve 
(AUC) of 0.704 (95% CI, 0.571–0.837) (Figure 2A). These variables 
demonstrated a sensitivity of 98%, specificity of 26%, accuracy of 82%, 
and OR of 13.19 (Table 2), with a confusion matrix indicating 17 false 
positives, contributing to low specificity (Figure 2B).

A total of 2036 combinations were tested in the CombiROC 
analysis; the top five performing combinations are highlighted in 
Table 2. The best CombiROC combination (CTACK, Hb, HGF, Htc, 
IL-3, PDGF-BB, RANTES, and SaO2) achieved an AUC of 0.823 
(95% CI, 0.708–0.937) (Figure  3A) with sensitivity of 82%, 
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specificity of 74%, accuracy of 80%, and OR of 11.56. The confusion 
matrix showed 10 false positives, yielding moderate specificity 
(Figure 3B).

ROC curves for the variables selected by LASSO and the top five 
CombiROC combinations are shown in Figure  4. No significant 
differences were observed between the LASSO model and the top five 
CombiROC models based on DeLong’s test (p = 0.185, p = 0.187, 
p = 0.186, p = 0.190, and p = 0.194, respectively).

4 Discussion

In patients hospitalized with COVID-19 pneumonia, we found 
that (1) the three predictive variables by LASSO (SaO2, hematocrit, 
and IL-13) demonstrated high sensitivity but low specificity in 
predicting clinical improvement; (2) the best combination of 
markers selected by CombiROC included more variables (CTACK, 
Hb, HGF, hematocrit, IL-3, PDGF-BB, RANTES, SaO2) and showed 
balanced sensitivity and specificity; (3) LASSO and CombiROC 
analyses yielded similar accuracy, with comparable ROC curves. This 
method is relevant for predicting clinical improvement or 
deterioration in non-COVID-19 acute respiratory distress syndrome 

(25). Nevertheless, there are important challenges to be overcome, 
such as data availability and the development and deployment of 
AI models.

We chose to use a modified intention-to-treat placebo group from 
a previous RCT (17) to better reflect the natural progression of the 
disease without treatment bias. This approach allowed us to assess the 
primary outcome at 7 days post hospital admission, capturing a period 
marked by significant clinical symptoms and lung inflammation due 
to SARS-CoV-2 infection (26). We  used WHO clinical status for 
improvement as the primary outcome, a widely validated measure 
(27). Clinical improvement was defined as at least a 2-point increase 
in WHO clinical status. This outcome has been used in clinical trials 
dealing with pharmacological treatment for patients with COVID-19 
(28). The WHO Clinical Progression Scale has been developed to 
facilitate data pooling across cohort studies and clinical trials, with the 
objective of expediting the exchange of knowledge to benefit patients 
infected with SARS-CoV-2 and to inform optimal resource planning 
(29). We also selected general clinical and laboratory data commonly 
used worldwide, ensuring the findings can be externally validated in 
future studies. Plasma biomarkers were chosen pragmatically from a 
multiplex kit of 47 cytokine markers, most of which are relevant to 
early COVID-19 pathophysiology. However, we excluded biomarkers 

FIGURE 1

Flowchart of the study. CTACK, T cell–attracting chemokine; GM-CSF, granulocyte-macrophage colony-stimulating factor; Hb, hemoglobin; HGF, 
hepatocyte growth factor; HR, heart rate; Htc, hematocrit; IFN, interferon; IL, interleukin; LDH, lactate dehydrogenase; MCP, monocyte chemotactic 
protein; MIG, monokine induced by IFN-γ; MIP, macrophage inflammatory protein; mITT, modified intention-to-treat; PDGF, platelet-derived growth 
factor; RCT, randomized clinical trial; RR, respiratory rate; SCF, stem cell factor.
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TABLE 1 Characteristics of the population at hospital admission.

Characteristics of the population 
at hospital admission

No. All patients No clinical 
improvement

Clinical 
improvement

p value between 
groups*

Absolute and relative frequencies, n (%) 203 49 (24) 154 (76)

Age (years), median [IQR] 203 56 [46–66] 59 [52–66] 55 [45–65] 0.005

Sex, n (%) 203

  Male 131 (65) 30 (23) 101 (77) 0.701

  Female 72 (35) 19 (26) 53 (74)

Temperature (°C), median [IQR] 203 36.5 [36–37] 36.5 [36–37] 36.5 [36–37] 0.577

RR (bpm), median [IQR] 203 21 [19–24] 24 [20–29] 20 [19–23] <0.001

HR (bpm), median [IQR] 203 87 [78–98] 90 (79–100) 86 (78–95) 0.581

SpO2 (%), median [IQR] 203 92 [91–93] 90 [86–92] 92 [92–93] <0.001

Hematocrit (%), median [IQR] 203 40 [36–43] 37.8 [33.2–42.2] 40.9 [37.2–43.4] 0.004

Hemoglobin (mg/dl), median [IQR] 203 13.4 [12.1–14.6] 13.0 [10.8–14.2] 13.5 [12.4–14.7] 0.011

Leukocytes (cells/μl), median [IQR] 203 7,500 [5850–9,795] 7,840 [6100–10,900] 7,500 [5732–9,643] 0.254

Neutrophils (cells/μl), median [IQR] 201 5,538 [4086–7,250] 5,960 [4278–9,413] 5,442 [3988–7,026] 0.149

Lymphocytes (cells/μl), median [IQR] 203 1,920 [1367–2,610] 1,833 [1369–2,620] 1,937 [1368–2,587] 0.833

Platelets (103/μl), median [IQR] 203 232 [165–289] 191 [152–256] 227 [169–300] 0.022

C-reactive protein (mg/L), median [IQR] 203 121 [85–149] 126 [96–146] 114 [79–151] 0.370

Ferritin (mg/L), median [IQR] 196 443 [260–746] 436 [294–700] 445 [257–793] 0.880

LDH (IU/L), median [IQR] 191 267 [176–394] 277 [171–395] 265 [180–391] 0.787

Troponin (mg/dl), median [IQR] 203 0.02 [0.01–0.05] 0.02 [0.01–0.05] 0.02 [0.01–0.05] 0.706

D-dimer (mg/dl), median [IQR] 191 1,010 [483–1727] 1,024 [490–1,429] 1,010 [486–2053] 0.678

IL-6 115 14.0 [9.5–65.3] 12.5 [11.0–30.5] 15.5 [8.5–67.6] 0.724

IL-8 106 19.6 [12.0–196.4] 13.0 [10.0–96.8] 21.4 [13.0–214.4] 0.123

IL-10 139 56.4 [14.0–635.5] 18.0 [13.0–299.6] 73.6 [14.0–718.9] 0.148

IL-1rα 107 977.6 [12.0–1580.3] 14.0 [10.8–1144.4] 977.6 [13.8–1580.3] 0.04

IL-1α 105 76.9 [13.5–811.2] 15.0 [12.0–257.9] 174.9 [14.0–815.7] 0.08

IL-16 105 138.9 [15.0–550.9] 16.5 [13.1–505.9] 329.2 [16.0–540.1] 0.079

IL-12p40 108 810.7 [11.0–2379.6] 14.0 [10.5–2397.8] 1286.8 [11.0–2379.6] 0.309

IL-7 107 219.6 [12.0–2175.4] 14.5 [10.5–668.9] 701.9 [12.0–2665.8] 0.059

IL-12p70 114 17.0 [13.3–78.1] 14.0 [12.5–47.1] 19.0 [14.0–78.1] 0.101

IL-2 102 32.4 [13.0–209.5] 13.5 [12.2–120.6] 41.3 [13.3–225.0] 0.111

IL-17 107 32.7 [14.0–299.8] 15.5 [13.0–106.2] 74.8 [15.0–305.3] 0.059

IL-1β 122 64.8 [14.0–839.2] 14.5 [13.0–331.1] 107.8 [14.6–978.8] 0.053

IL-13 106 106.8 [9.0–342.5] 9.0 [7.0–147.2] 160.7 [9.0–382.0] 0.013

IP-10 132 421.1 [43.0–2062.6] 285.2 [38.0–2275.5] 554.8 [45.5–1964.2] 0.733

MCP-1 114 70.7 [14.0–246.7] 17.3 [13.0–84.4] 79.0 [15.0–251.4] 0.055

MIP-1α 123 17.0 [8.4–27.9] 15.5 [12.0–26.1] 17.0 [7.9–27.9] 0.747

RANTES 108 152.7 [15.0–1103.3] 15.0 [13.8–801.2] 259.8 [18.8–1103.3] 0.02

EOTAXIN 129 20.6 [11.4–284.3] 13.0 [10.8–124.6] 47.4 [12.5–324.1] 0.065

MIG 106 204.1 [11.6–681.0] 13.0 [10.5–409.4] 250.1 [12.0–687.6] 0.073

SCF 104 25.8 [12.0–653.9] 14.0 [11.3–104.8] 54.2 [13.6–725.2] 0.11

HGF 118 498.9 [18.0–1851.1] 18.0 [14.4–1070.5] 578.7 [19.3–1992.2] 0.039

GM-CSF 116 12.0 [7.1–27.4] 10.0 [5.7–13.5] 13.3 [8,1–31.2] 0.149

PDGF-BB 115 639.2 [16.0–4454.1] 16.5 [14.0–2044.8] 837.9 [17.6–4611.5] 0.036

(Continued)
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with less than 50% data availability, because this would compromise 
the predictive analysis.

CombiROC, initially developed as a web-based tool for 
selecting optimal omics markers (12), has been applied for 
predicting lung overload in COVID-19 (13). CombiROC enables 
interactive selection of optimal marker combinations and generates 
visual feedback such as ROC curves. In our analysis, CombiROC 
required eight variables (CTACK, Hb, HGF, hematocrit, IL-13, 
PDGF-BB, RANTES, and SaO2) to achieve a balanced discriminative 
analysis, yielding 82% accuracy with moderate sensitivity (82%) 
and specificity (74%). However, these markers are more complex to 
assess at admission, potentially limiting feasibility in routine 

hospital settings. Notable biomarkers included in the CombiROC 
analysis, such as CTACK, HGF, and PDGF-BB, reflect distinct 
aspects of the immune response. CTACK is associated with T cell 
homing to lung tissues and may play a role in early inflammatory 
responses (30). HGF, produced by mesenchymal cells, functions as 
a regulator of the immune response and tissue repair; it may 
indicate early lung recovery in patients with COVID-19 (31, 32). 
IL-13, a central mediator of airway responsiveness, may reduce 
ACE2 expression on epithelial cells, potentially influencing viral 
replication dynamics (33, 34). PDGF-BB and RANTES (CCL5) have 
been associated with milder disease and may serve as markers of 
early immune responses conducive to recovery (35–37).

TABLE 2 Individual performances of the LASSO selected variables and the top five best combination of variables according to the AUC to predict 
clinical improvement (≥2 points on the WHO scale).

Variables AUC (95% CI) Sensitivity, % 
(95% CI)

Specificity, 
% (95% CI)

Accuracy 
(%)

OR (95% CI)

IL-1ra 0.637 (0.482–0.791) 69 (54–80) 58 (33–80) 66 2.93 (1.00–9.02)

IL-3 0.635 (0.497–0.772) 26 (15–40) 100 (82–100) 45 Inf (1.37–inf)

RANTES 0.646 (0.501–0.790) 69 (54–80) 63 (38–84) 67 3.63 (1.22–11.55)

HGF 0.615 (0.462–0.769) 61 (47–74) 68 (43–87) 63 3.31 (1.11–10.92)

PDGF-BB 0.65 (0.502–0.797) 65 (51–77) 68 (43–87) 66 3.87 (1.29–12.84)

CTACK 0.606 (0.461–0.751) 32 (20–46) 90 (67–99) 47 3.64 (0.89–27.10)

RR 0.594 (0.433–0.755) 57 (43–71) 63 (38–84) 59 2.27 (0.78–7.08)

SaO2 0.715 (0.580–0.851) 74 (60–85) 63 (38–84) 71 4.74 (1.57–15.39)

Htc 0.67 (0.530–0.809) 76 (62–87) 53 (29–76) 70 3.42 (1.13–10.67)

Hg 0.602 (0.439–0.765) 87 (75–95) 37 (16–62) 74 3.82 (1.09–13.64)

Platelets 0.569 (0.428–0.711) 59 (45–72) 63 (38–84) 60 2.44 (0.84–7.64)

LASSO

SaO2, Htc, IL-13 0.704 (0.571–0.837) 98 (92–100) 26 (10–48) 82 13.19 (2.67–106.54)

CombiROC

CTACK, Hb, HGF, Htc, IL-3, PDGF-BB, RANTES, SaO2 0.823 (0.708–0.937) 82 (69–91) 74 (49–91) 80 11.56 (3.53–44.25)

Hb, HGF, Htc, IL-3, PDGF-BB, RANTES, SaO2 0.823 (0.709–0.936) 82 (69–91) 74 (49–91) 80 11.56 (3.53–44.25)

Hb, HGF, Htc, IL-1ra, IL-3, PDGF-BB, RANTES, SaO2 0.823 (0.709–0.936) 80 (66–89) 74 (49–91) 79 10.31 (3.19–38.95)

CTACK, RR, Hb, HGF, Htc, IL-1ra, IL-3, PDGF-BB, 

RANTES, SaO2

0.822 (0.708–0.936) 82 (69–91) 74 (49–91) 80 11.56 (3.53–44.25)

CTACK, RR, Hb, HGF, Htc, IL-1ra, IL-3, RANTES, SaO2 0.821 (0.706–0.935) 80 (66–89) 74 (49–91) 78 10.31 (3.19–38.95)

OR represents the odds that an outcome will occur given a particular exposure, compared with the odds of the outcome occurring in the absence of that exposure. If the outcome is the same in 
both groups, the ratio is 1, which implies there is no difference between the two arms of the study, however, if the OR is >1, the control is better than the intervention. If the OR is <1, the 
intervention is better than the control. The 95% confidence interval (CI) is used to estimate the precision of the OR. A large CI indicates a low level of precision of the OR, whereas a small CI 
indicates a higher precision of the OR. The OR was calculated considering the confusion matrix of each model, generated from the cut-off specified by the Youden Index. See the list of 
abbreviations at the end of the text for the definitions of the abbreviations used in the table.

TABLE 1 (Continued)

Characteristics of the population 
at hospital admission

No. All patients No clinical 
improvement

Clinical 
improvement

p value between 
groups*

IFNα2 107 108.7 [11.5–304.9] 12.0 [9.8–224.8] 144.7 [12.8–304.9] 0.072

IFNg 113 22.2 [9.2–297.7] 11.5 [9.0–34.7] 53.3 [11.0–297.7] 0.061

CTACK 103 254.5 [13.3–1164.7] 14.5 [12.0–579.8] 337.8 [15.0–1324.2] 0.045

The descriptive analysis of the data is presented as absolute frequencies (n) and percentages according to the group. No. is the number of values gathered according to the respective variables. 
See the list of abbreviations at the end of the text for the definitions of the abbreviations used in the table. RR: respiratory rate, HR: heart rate, SpO2: peripheral oxygen saturation, LDH: lactate 
dehydrogenase, Interleukin (IL)-1β, IL-1α, IL-1rα, IL-2, IL-12 (p40), IL-6, IL-7, IL-8, IL-10, IL-12 (p70), IL-13, IL-16, IL-17, IP-10: Interferon gamma-induced protein 10, MCP-1: Monocyte 
Chemoattractant Protein-1, MIP-1α: Macrophage Inflammatory Protein-1 Alpha, RANTES: regulated upon activation, normal T cell expressed, and secreted, SCF: stem cell factor, HGF: 
hepatocyte growth factor, GM-CSF: Granulocyte-macrophage colony-stimulating factor, PDGF-BB: platelet-derived growth factor, IFN: interferon, CTACK: T cell–attracting chemokine.
*Mann–Whitney U test, Student’s t test or χ2 test (p < 0.05).
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From a statistical point of view, both methods, CombiROC and 
LASSO, showed equivalent performance in predicting clinical 
improvement. Nevertheless, from a clinical point of view, there are 
some important insights about the discriminatory capacity of both 
methods. As observed, although CombiROC selected more variables, 
it showed good balance in recognizing those patients with COVID-19 
who will or will not clinically improve. It can be inferred that if we are 
dealing with a population of patients with COVID-19 with very little 
clinical and laboratory information, it might be interesting to use the 
variables selected by the CombiROC analysis. This could maximize the 
prediction of clinical improvement or no clinical improvement because 
both truly positive cases and truly negative cases will be recognized. 
This can help the decision-making and ultimately improve healthcare 
for patients (38). On the other hand, if we are dealing with a population 
of patients with COVID-19 with some clinical information, such as age 

(39), absence of co-morbidity (40), presence of vaccine (41), we may 
use fewer and simpler variables selected by the LASSO analysis to 
identify likely truly positive case for clinical improvement; LASSO 
variables will detect with good sensitivity (98%). In practice, the 
process of selecting a discrete threshold value for a given test must 
carefully weigh the relative importance of a high true positive rate 
versus a high true negative rate and, by extension, the consequences of 
false negative and false positive results for the particular test (38).

4.1 Limitations

Our study has several limitations. First, the number of patients 
with a poor outcome was low, limiting the analysis. Second, as a 
secondary analysis, the SARS-CoV-2 strain was from the early wave 

FIGURE 2

(A) ROC curve of variables selected by LASSO; (B) confusion matrix of variables selected by LASSO. AUC, area under the curve; CI, confidence interval.

FIGURE 3

(A) ROC curve of variables selected by CombiROC; (B) confusion matrix of variables selected by CombiROC. AUC, area under the curve; CI, 
confidence interval.
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of the pandemic, before widespread vaccination efforts. By 2023, >13 
billion vaccine doses had been administered globally, although 
coverage remains low in some regions, particularly low-income areas 
where it is estimated to be under 30% (42). We did not assess plasma 
biomarkers on day 7 due to limited sample size and kit limitations. 
There are additional classification models, such as gradient boosting, 
hist gradient boosting, multilayer perceptron, among others that could 
be used to predict clinical improvement in COVID-19 patients (43).

5 Conclusion

In patients hospitalized with COVID-19 pneumonia, LASSO and 
CombiROC analyses showed comparable accuracy and ROC curve 
performance in predicting clinical improvement. LASSO identified 
three primary variables (SaO2, hematocrit, and IL-13) that yielded 
high sensitivity but low specificity, whereas CombiROC, with eight 
variables (CTACK, Hb, HGF, hematocrit, IL-3, PDGF-BB, RANTES, 
SaO2), provided a balanced sensitivity and specificity for predicting 
improvement. Thus, in patients with COVID-19, SaO2, hematocrit, 
and IL-13 may predict clinical improvement.
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Glossary

AI - Artificial intelligence

AUC - Area under the curve

CI - Confidence interval

CTACK - T cell–attracting chemokine

Hb - Hemoglobin

Hct - Hematocrit

HGF - Hepatocyte growth factor

IFN - Interferon

IL - Interleukin

IQR - Interquartile range

LASSO - Least absolute shrinkage and selection operator

LDH - Lactate dehydrogenase

MCP - Monocyte chemotactic protein

MIG - Monokine induced by IFN-γ

OR - Odds ratio

PDGF - Platelet-derived growth factor

RCT - Randomized clinical trial

ROC - Receiver operating characteristic

RR - Respiratory rate

SCF - Stem cell factor

TNF - Tumor necrosis factor

WHO - World Health Organization
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