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Introduction:High-grade serous ovarian cancer (HGSOC) is themost aggressive

and prevalent subtype of ovarian Treatment outcomes are significantly

influenced by residual disease status following neoadjuvant chemotherapy

(NACT). Predicting residual disease before surgery can improve patient

stratification and personalized treatment strategies.

Methods: This study analyzed pre-NACT proteomic data from 20 HGSOC

patients treated with NACT. Patients were categorized into two groups based

on surgical outcomes: no residual disease (R0, n = 14) and suboptimal residual

disease (R1, n = 6). From an initial set of 97 di�erentially expressed proteins, 18

significant proteins were selected using the BORUTA feature selection method.

Three machine learning models-Random Forest (RF), Support Vector Machine

(SVM), and Bootstrap Aggregation with Classification and Regression Trees

(BaggedCART)-were developed and evaluated.

Results: The Random Forest model achieved the best performance with an

AUC of 0.955, accuracy of 0.830, sensitivity of 0.904, specificity of 0.763, and

F1-score of 0.839. SHapley Additive exPlanations (SHAP) analysis identified

five proteins (P48637, O43491, O95302, Q96CX2, and P49189) as the most

influential predictors of residual disease. These proteins, including glutathione

synthetase and peptidyl-prolyl cis-trans isomerase FKBP9, are associated with

chemotherapy resistance mechanisms.

Discussion: The findings demonstrate the potential of integrating proteomic

data with machine learning techniques for predicting surgical outcomes in

HGSOC. Identified protein signatures may serve as valuable biomarkers for

anticipating NACT response and informing clinical decision-making, ultimately

contributing to personalized patient care.
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high-grade serous ovarian cancer (HGSOC), neoadjuvant chemotherapy (NACT),
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1 Introduction

Ovarian cancer is one of the deadliest gynecologic cancers

and ranks as the eighth most common cancer among women

worldwide. It is the third most common gynecologic cancer. Each

year, approximately 300,000 new cases are detected worldwide,

with approximately 200,000 deaths attributed to the disease (1).

This type of cancer, which is more common in developed countries,

North America, and Europe, poses a greater risk in women over

the age of 50–60, those with a family history, and those who

carry BRCA1/BRCA2 gene mutations (2). Pelvic examination,

transvaginal ultrasonography, CA-125 blood tests, and advanced

imaging methods such as computed tomography/magnetic

resonance (CT/MR) are used to diagnose the disease. Treatment

usually involves a combination of surgery, chemotherapy, and

sometimes radiotherapy and has a high success rate when the

disease is diagnosed at an early stage. However, due to the lack

of symptoms in the early stages, ∼70% of cases are diagnosed in

advanced stages, which negatively affects the success of treatment

(3). High-grade serous ovarian cancer (HGSOC) is considered the

most aggressive subtype of the disease, accounting for 70% of all

ovarian cancer cases and approximately 95% of diagnosed cases.

This type of cancer is usually diagnosed at an advanced stage, with

metastatic spread being common. These factors significantly limit

treatment options and make it difficult to determine treatment

strategies (4, 5). Standard clinical management of HGSOC

involves a treatment paradigm usually characterized by primary

reduction surgery (PDS) followed by platinum- and taxane-based

chemotherapy (6). Optimal cytoreduction aims to reduce the

tumor burden to the level of residual disease (R0), and achieving

R0 is known to improve the response to adjuvant chemotherapy

significantly. However, the presence of extensive disease in

∼70% of stage III and IV ovarian cancer patients complicates

optimal resection and requires the consideration of neoadjuvant

chemotherapy (NACT) in the majority of cases. In recent years,

NACT has emerged as an approach for the management of

HGSOC, the most common and aggressive subtype of advanced

epithelial ovarian cancer, in combination with interval debulking

surgery (IDS), with the potential to achieve complete resection.

According to two large prospective randomized trials, R0 rates

ranged from 35 to 51% in patients undergoing NACT, whereas they

ranged from 15 to 19% in the PDS group. Achieving R0 status has

been shown to have a positive effect on clinical outcomes such as

progression-free survival and overall survival (7, 8). In this context,

the prediction of R0 and partial resection (R1) classification after

neoadjuvant treatment plays a critical role in the management of

the treatment process.

Proteomic technologies provide a comprehensive analysis

of proteins in cells and tissues, allowing the identification of

specific proteins involved in the development and progression of

cancer. In particular, when methods such as mass spectrometry

and microarrays are used, cancer cell-specific proteins can be

profiled. In this way, valuable biomarkers are being discovered

for diagnosing the early stages of the disease, determining

patient prognosis, and monitoring patient response to treatment.

Furthermore, proteomic analyses contribute to the development of

targeted treatment strategies for individualized medicine practices,

enabling more effective management of patients. In this context,

proteomics technologies have the potential to revolutionize cancer

research and clinical applications (9, 10). In recent years, artificial

intelligence (AI) and, in particular, explainable artificial intelligence

(XAI) techniques have made significant advances in medical data

analysis. These technologies are used to develop predictive models

by analyzing large and complex datasets and have great potential

to predict treatment responses and support personalized medicine

applications. AI-based models offer new approaches to identify

biomarkers from proteomic data and improve classification

accuracy (11–13).

AI and proteomics technologies play critical roles in identifying

biomarkers in diseases such as cancer; proteomics analyses

elucidate the mechanisms of disease by studying protein profiles,

whereas AI analyses these data to reveal meaningful patterns.

This interaction allows for early diagnosis and the development

of personalized treatment strategies. The first aim of this study

was to predict residual disease status before NACT in HGSOC

patients via three different artificial intelligence models on the basis

of proteomic data. The second aim is to clinically interpret possible

biomarkers using SHapley Additive exPlanations (SHAP), one of

the XAI models applied to the optimal model for classification.

2 Materials and methods

2.1 Dataset

The open-access dataset used in this study consists of proteomic

data from 20 patients who were diagnosed with HGSOC and

treated with NACT (14). These patients underwent interval

debulking surgery (IDS) after NACT treatment and were divided

into two groups according to surgical outcomes: no residual disease

(R0, n = 14) and suboptimal residual disease (R1, n = 6). The

R0 group consisted of patients with no residual tumor even at

the microscopic level after surgery, whereas the R1 group included

patients with residual tumor between 0.1 and 1 cm after surgery.

Within the scope of the study, tumor tissues were collected from

patients both before NACT (pre-NACT) and after NACT (post-

NACT) and were isolated using the laser microdissection method,

and label-free proteomic analysis was performed. A total of 4,336

proteins were detected, of which 3,043 were quantitatively analyzed.

In the analyses performed before and after NACT, 97 proteins

were found to be significantly different. In this study, 97 proteins

in pre-NACT tissues that were significantly different between

R1 and R0 patients (LIMMA p < 0.05) were used in machine

learning models to predict residual disease (R0, R1) after NACT.

This study was approved by the Inonu University Health Sciences

Non-Interventional Clinical Research Ethics Committee (approval

number: 2024/6557).

2.2 Data preprocessing and development
of machine learning models

In machine learning models, class imbalance (where one class

has far fewer observations than the others) can lead the model
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to predict the majority class more often, biasing the prediction

accuracy and validity. This can cause the model to produce

inaccurate results and lead to performance problems, such as low

sensitivity, especially when the minority class is important (15). In

this study, to address class imbalance (R0 = 14, R1 = 6), we used

the ovun.sample function in the R programming language library

Random Over-Sampling Examples (ROSE), thus implementing

both oversampling and under-sampling (16). In contrast, variable

selection methods, which play a critical role in machine learning

to improve model performance, reduce the computational burden

and improve the generalization capability of the model, ensure

that only the most important variables are used in the model by

eliminating unnecessary or low-information features in the data.

Variable selection prevents the model from overfitting, leading

to a more meaningful analysis. Especially in datasets with many

variables, variable selection can significantly increase the speed

and accuracy of the model (17). In the present study, BORUTA

was used as a variable selection method. BORUTA is a variable

selection method based on the random forest algorithm. BORUTA

evaluates the importance of each variable by creating “shadow

features” and comparing them with each other. These shadow

variables are randomly shuffled versions of the original variables,

and BORUTA tests whether a variable is more important than these

random shadows. If a variable is found to be statistically more

significant than the shadow variables, it is considered important.

This method allows for the evaluation of all potentially important

variables, ensuring that only significant variables remain in the

model. The advantage of BORUTA is that it provides a clear

ranking of the importance of attributes and minimizes information

loss by selecting all significant variables in the data (18). In

this study, three different machine learning algorithms, random

forest, support vector machines and bootstrap aggregation with

classification and regression trees, were used to predict pre-NACT

residual disease (R0, R1) on the basis of the pre-NACT values

of 97 different protein levels of HGSOC patients with statistically

significant differences before and after NACT. Machine learning

methods, such as support vector machines (SVM), random forest,

and bagged classification and regression tree (CART), have been

widely used in cancer classification on the basis of proteomic data.

These methods have the potential to provide high accuracy in

identifying and classifying biomarkers of cancer types. The often

high-dimensional, noisy, and complex nature of proteomic data

increases the applicability of such methods and plays a critical

role in the diagnosis and prognosis of complex diseases such as

cancer (19). Support vector machines (SVMs) effectively capture

complex patterns via kernel functions for non-linear classification

(20). The random forest method offers the ability to generalize by

detecting data variations via the combination of multiple decision

trees, which provides significant advantages in terms of feature

selection and accuracy (21). Bagged CART, in contrast, produces

consistent and interpretable classifications via the integration of

decision trees with bagging (22). These three methods stand out

as effective and reliable tools for cancer classification. To evaluate

the performance of the machine learning models, the dataset was

divided via stratified random sampling, with 70% allocated for

training and 30% allocated for testing. The grid search method,

which uses five repeated and 10-fold cross-validations, has been

employed to optimize the hyper parameters of machine learning

models. The effectiveness of each model was evaluated via a test set,

and the results were compared. Among the performance indicators

for all the models are accuracy, specificity, sensitivity, area under

the receiver operating characteristic (ROC) curve (AUC), F1-

score, and Brier score. To comprehensively evaluate the model’s

performance, we used the Brier score to examine the reliability and

calibration of the predictions and the AUC metric to evaluate the

ability to separate classes accurately. The machine learning model

with the best result according to these two-performance metrics is

selected for global explanations with XAI.

2.3 Random forest (RF)

The random forest (RF) is a powerful and flexible supervised

learning algorithm that is often used in classification and regression

problems. It applies the ensembling technique by combining

multiple decision trees and training each tree with randomly

selected samples (bootstrap samples). A large number of decision

trees reduces the risk of overfitting and improves accuracy.

Especially in complex datasets, final results based on majority

voting or averaging predictions can provide more accurate

classification and prediction results than a single decision tree.

However, the use of multiple trees increases the computational

cost and complicates the interpretability of the model. Parameter

optimization (e.g., number of trees and maximum depth) can

significantly affect model performance, which can also inform

feature selection. The RF algorithm can produce fast and

efficient results on large datasets with its parallel processing

structure (23).

2.4 Support vector machine (SVM)

Support vector machines (SVMs) are powerful supervised

learning algorithms used for classification and regression tasks

and are particularly effective for high-dimensional datasets.

The SVM performs classification by determining an optimal

hyperplane that separates the data into two classes. This

hyperplane maximizes the margin (the distance to the closest

data points) between the classes, reducing the overall error.

It also projects the data into a higher-dimensional space via

kernel functions for datasets that cannot be linearly separated,

thereby achieving non-linear decision boundaries. This flexible

structure improves the accuracy of the SVM and minimizes the

risk of overfitting. However, with large datasets, the training

time can be long, and the optimization process of the model

can become complex because of the importance of parametric

adjustments (24).

2.5 Bootstrap aggregation with
classification and regression trees (bagged
CART)

Bagged CART (bootstrap aggregation with classification and

regression trees) uses the bootstrap aggregation technique to create
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many independent trees to improve the performance of decision

tree algorithms. This method divides the training data into multiple

subdatasets via random sampling and provides robustness against

data variations by training an independent decision tree in each

subdataset. Bagging combines the predictions of each tree model,

uses majority voting for classification problems, and averages the

predictions for regression problems. This aggregation strategy

reduces the risk of overfitting and improves the accuracy of the

model. The advantage of bagged CART is that it balances the

complexity of the model, resulting in high performance even on

large datasets and complex feature spaces. However, it requires

training a large number of decision trees, which may increase

the computational cost and reduce the interpretability of the

model (25).

2.6 Explainable artificial intelligence;
SHapley Additive exPlanations (SHAP)

Explainable artificial intelligence (XAI) is an approach that

aims to make the inner workings of AI models transparent and

present how their decisions are made in a manner understandable

to humans. This is especially important for algorithms such as

deep learning, machine learning, and ensemble models, which

are complex and so-called “black boxes”. XAI allows us to

understand the reasons for the results of these models and

assess the reliability, accuracy, and fairness of the model (26).

SHapley additive exPlanations (SHAP) is one of the most

popular techniques used for XAI and uses game theory to

explain the predictions of a model. SHAP makes the model’s

decisions more understandable by scoring the contribution of

each attribute to the model output as positive or negative. This

allows for a more transparent analysis of the extent to which

models use which features and how they generate the final

predictions (27).

2.7 Statistical analysis

The demographic characteristics of the HSGOC patients

included in the study are summarized in numbers and percentages.

In addition, groupwise descriptors for the 18 proteins considered

after BORUTA variable selection are presented as the mean ±

standard deviation and median (min–max). The conformity of

the 18 proteins included in the model to the normal distribution

on a group basis was evaluated via the Shapiro–Wilk test.

For proteins that met the assumption of a normal distribution

on a group basis, the statistical difference between the groups

was evaluated via two-sample t-tests, whereas for proteins that

did not meet the assumption of a normal distribution on at

least one group basis, the statistical difference between the

groups was evaluated via the Mann–Whitney U test. p < 0.05

was considered statistically significant. Statistical Package for

the Social Sciences (SPSS) version 26.0 (28) was used for the

statistical analyses, and the R (29) and Python (30) programming

languages were used for the development of the machine

learning models.

TABLE 1 Clinical data for the 20 HGSOC patients included in the study.

Clinical characteristic Count (%)

Age of diagnosis (year) <50 years old 4 (20%)

50–59 years old 9 (45%)

>60 years old 7 (35%)

Stage III NOS 3 (15%)

IIIB 1 (5%)

IIIC 5 (25%)

IV NOS 3 (15%)

IVA 3 (15%)

IVB 5 (25%)

NOS, Not otherwise specified.

3 Results

The clinical data for the 20 HGSOC patients included in the

study are depicted in Table 1. In this study, 18 proteins were selected

via the BORUTA method among 97 proteins whose protein levels

were found to differ between the two groups. The descriptive

statistics for the proteins included in the model, as determined by

the BORUTA method, are presented in Table 2 for residual disease

in HGSOC patients within the scope of this study.

Considering the statistics given in Table 2, the regulation of

nine proteins (O75874, P78417, P00568, P49189, P48637, O43491,

Q96CX2, P25786, and O95302) significantly differed between the

two groups (R0 and R1) (p < 0.05). Table 3 shows the performance

metrics (AUC, accuracy, sensitivity, specificity, F1-score, and Brier

score) for three different machine learning methods (RF, SVM, and

Bagged CART) on the basis of the data obtained after proteomic

analyses were performed on formalin-fixed, paraffin-embedded

(FFPE) tumor tissues from HGSOC patients before NACT to

predict residual disease status (R0, R1) before NACT.

When considering the performance metrics for the three

different machine learning methods, the best classification

performance is the random forest model, with an AUC of 95.5%

and a Brier score of 0.105. Figure 1A visualizes the SHAP values

for the residual disease optimal model random forest with a

bee swarm plot, which is used for visualizing data points for

global interpretation in explainable artificial intelligence (XAI)

applications. The bee swarm plots illustrate the importance of the

predictors included in the model in classification as well as their

positive/negative associations with the target variable. Each point

in the graph represents a sample in the data, while the colors

indicate the relative values of the variables. For residual disease

prediction, blue and red indicate low and high values for biomarker

candidate proteins, respectively. Thus, low values of the accession-

encoded proteins P48637, O43491, O95302, Q96CX2, P49189, and

O75874 and high values of the accession-encoded proteins Q96T58

and P48739 increase the risk of no residual disease after NACT.

Figure 1B shows the protein importance plots of the most critical

proteins in descending order for the optimal random forest model

in the tumor size prediction task on the basis of the aggregated

SHAP values. The length of each bar represents the average of
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TABLE 2 Descriptive statistics for proteins included in the model after the BORUTA method in terms of residual disease.

Protein
ID

Protein name Group p-value

R0 (n = 14) R1 (n = 6)

Mean ± SD Median (min–max) Mean ± SD Median (min–max)

O75874 Isocitrate dehydrogenase

[NADP] cytoplasmic

−0.867± 0.486 −0.944 (−1.59–0.277) −0.29± 0.559 −0.39 (−0.836–0.627) 0.032
∗

P78417 Glutathione S-transferase

omega-1

−0.782± 0.758 −0.858 (−1.865–0.569) −0.006± 0.589 0.211 (−1.063–0.575) 0.032
∗

P11766 Alcohol dehydrogenase class-3 −0.998± 0.694 −1.094 (−2.554–0.224) −0.361± 1.088 −0.437 (−1.976–1.449) 0.117∗

P12955 Xaa-Pro dipeptidase −0.48± 0.469 −0.386 (−1.316–0.137) −0.082± 0.257 −0.114 (−0.408–0.356) 0.083∗

P07305 Histone H1.0 −0.764± 0.711 −0.887 (−1.871–0.31) −0.393± 0.715 −0.655 (−0.829–1.032) 0.409∗∗

Q14914 Prostaglandin reductase 1 −0.16± 0.593 −0.217 (−1.258–1.26) −0.634± 0.672 −0.734 (−1.298–0.392) 0.248∗

P00568 Adenylate kinase isoenzyme 1 −0.438± 0.493 −0.359 (−1.15–0.329) 0.149± 0.453 0.252 (−0.597–0.717) 0.021
∗

P49189 4-trimethylaminobutyraldehyde

dehydrogenase

−0.54± 0.485 −0.537 (−1.159–0.668) −0.053± 0.408 −0.125 (−0.378–0.736) 0.017
∗∗

P48637 Glutathione synthetase −0.56± 0.654 −0.47 (−1.97–0.435) 0.093± 0.407 0.061 (−0.42–0.81) 0.026
∗

Q8NCW5 NAD(P)H-hydrate epimerase −0.702± 0.419 −0.801 (−1.449–0.045) −0.284± 0.51 −0.225 (−1.063–0.436) 0.099∗

P48739 Phosphatidylinositol transfer

protein beta isoform

−0.085± 0.601 −0.108 (−0.892–1.211) −0.187± 0.164 −0.212 (−0.387–0.014) 0.741∗

O43491 Band 4.1-like protein 2 −0.557± 0.516 −0.549 (−1.456–0.368) 0.079± 0.574 −0.042 (−0.513–0.985) 0.021
∗

P35237 Serpin B6 −0.352± 0.341 −0.354 (−0.952–0.197) 0.056± 0.468 −0.061 (−0.411–0.937) 0.070∗

Q96CX2 BTB/POZ domain-containing

protein KCTD12

−0.298± 0.34 −0.353 (−0.794–0.345) 0.001± 0.243 −0.041 (−0.272–0.321) 0.032
∗∗

P25786 Proteasome subunit alpha type-1 −0.341± 0.294 −0.293 (−0.815–0.06) −0.061± 0.196 −0.063 (−0.368–0.172) 0.048
∗

Q96T58 Msx2-interacting protein 0.355± 0.189 0.351 (0.016–0.631) 0.111± 0.292 0.084 (−0.27–0.525) 0.070∗

O95302 Peptidyl-prolyl cis-trans

isomerase FKBP9

−0.67± 0.75 −0.81 (−1.75–0.77) −0.09± 0.30 −0.03 (−0.56–0.29) 0.041
∗

P02788 Lactotransferrin −0.803± 1.563 −1.029 (−2.423–3.927) −0.497± 0.642 −0.489 (−1.428–0.544) 0.117∗∗

SD, standard deviation; Min, minimum;Max, maximum; ∗Independent sample t-test; ∗∗Mann–Whitney U test. Bold values indicate statistical significance (p< 0.05) between R0 and R1 groups.

TABLE 3 The performance metrics (AUC, accuracy, sensitivity, specificity, F1-score, and Brier score) of the RF, SVM, and Bagged CART models for

predicting residual disease status (R0, R1) from pre-NACT data.

Model AUC Accuracy Sensitivity Specificity Brier score F1-score

Bagged CART 91.0 78.7 89.6 67.3 0.146 79.9

Random Forest 95.5 83.0 90.4 76.3 0.105 83.9

SVM 93.0 85.2 89.5 83.1 0.113 84.5

AUC, area under the receiver operating characteristic (ROC) curve.

the absolute SHAP values for the protein(s) of interest. According

to Figure 1B, the top five most important proteins for predicting

residual disease after NACT are those with access codes P48637,

O43491, O95302, Q96CX2, and P49189, respectively.

4 Discussion

In HGSOC, the most common and deadliest subtype

of epithelial ovarian carcinoma, preoperative prediction of

resection status before neoadjuvant chemotherapy (NACT)

and optimization of early diagnosis/treatment strategies have

multifaceted importance in the clinical management of the disease.

This is particularly evident in clinical situations where 5-year

survival rates decline from 70 to 90% in early-stage tumors to

25–30% in advanced-stage tumors, and optimal cytoreductive

surgery is one of the major prognostic factors affecting long-term

prognosis. The estimation of residual disease before NACT

provides important benefits for the optimization of treatment

strategies, such as the choice of primary surgery or NACT,

assessing complication risks, and planning postoperative care. This

approach improves patient quality of life with less invasive surgical

procedures and shorter hospital stays and has a positive impact on

the healthcare system in terms of resource efficiency. Recent studies
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FIGURE 1

(A) Global SHAP annotations of the random forest model for residual disease prediction. The bee swarm plot shows how features in the model a�ect

predictions. Each dot represents a data sample, and the positions of the dots on the x-axis represent SHAP values (positive or negative impact). The

colors of the dots represent feature values (blue—low, red—high). (B) Protein importance plots based on the mean SHAP values of the random forest

model for residual disease prediction. The bar graph shows the average of the absolute SHAP values of the marginal contribution of each variable to

the model output. This graph presents the relative importance of the variables on the model predictions in a hierarchical structure.

have identified various mutations in ovarian cancer, highlighting

the role of tumor biomarkers in diagnosis and treatment. In

particular, BRCA1/2 mutations and homologous recombination

repair deficiency (HRD) have been shown to significantly influence

the chemotherapy response. The identification of these biomarkers

allows for the development of personalized therapeutic strategies,

including the use of PARP inhibitors, which have shown high

antitumor activity in BRCA-mutated and HRD-positive patients

(31). These inhibitors are currently being evaluated in clinical

trials for their antitumor potential. Notably, mutations in the

RAS-RAF-MEK-ERK pathway have been implicated in resistance

to conventional chemotherapy, particularly in low-grade serous

ovarian cancer (LGSOC). Compared to standard therapies, v-raf

murine sarcoma viral oncogene homolog B1 (BRAF) and mitogen-

activated protein kinase (MEK) inhibitors, which are designed

to target this pathway, have shown promising antitumor activity,

especially in patients with the BRAF V600E mutation, leading to

higher response rates. These findings highlight the importance

of molecular profiling in predicting treatment response and

optimizing therapeutic strategies (32).

In addition, providing scientific contributions, such as the

development of predictive models based on artificial intelligence,

the identification of risk factors, and the standardization of

treatment protocols, contributes significantly to both improving

individual patient outcomes and increasing the efficiency of

the healthcare system. In a study aimed at developing a

machine learning-based immune risk model (immune-risk tumor

microenvironment (TMErisk) model) that can predict prognosis

and identify treatment strategies for HGSOC, the authors defined

two different immune microenvironment phenotypes on the basis

of immune and stromal cell signatures and developed a clinically

applicable prognostic scoring system using 10 independent

machine learning algorithms. The low-TMErisk group was

characterized by BRCA1 mutation, immune activation, and a

better immune response, whereas the high-TMErisk group was

associated with the deletion of C-X-C motif chemokine ligands

and carcinogenic activation pathways. TMErisk outperforms other

clinical characteristics and published signatures, and patients in

the low-TMErisk group were observed to respond better to

immunotherapy and chemotherapy. This study may contribute to

the development of more personalized and effective approaches for

ovarian cancer treatment (33). In another study, machine learning

models were developed to predict sensitivity to platinum-based

therapy in HGSOC. The researchers analyzed clinicopathological

data from a total of 1,002 HGSOC patients from three different

hospitals and identified six variables (age, baseline serum CA-

125 levels, neoadjuvant chemotherapy, pelvic lymph node status,

pelvic tissue involvement other than the uterus and tubes,

and small bowel and mesentery involvement) associated with

platinum sensitivity via a stepwise selection method. On the

basis of these variables, prediction models were developed via

four different machine learning algorithms (logistic regression,

random forest, support vector machine, and deep neural network).

The logistic regression-based model performed best in identifying

platinum-resistant cases, with an AUC of 0.741. A web-based

nomogram was also developed for clinical use, providing a

tool to help implement individualized treatment and follow-up

protocols (34).

Differing from the TMErisk model and platinum sensitivity

prediction studies, this study used pre-NACT proteomic data

from 20 patients diagnosed with HGSOC, and residual disease

(R0, R1) was classified using three different machine learning

methods (BaggedCART, Random Forest, and SVM) created on

the basis of these data. When all the performance metrics were

considered, the random forest model was the best prediction

model, with AUC, accuracy, sensitivity, specificity, Brier score,

and F1-score values of 0.955, 0.830, 0.904, 0.763, 0.105, and 0.839,

respectively. These results show that the random forest model

performs exceptionally well in predicting residual disease status in

HGSOC patients. In particular, the AUC value of 0.955 indicates

that the model has a very high ability to distinguish classes. The

accuracy rate of 0.830 and the F1-score value of 0.839 indicate

that the overall prediction performance of the model is consistent

and balanced. The sensitivity value of 0.904 indicates that the

model is quite successful in correctly detecting positive cases

(R1). In contrast, the specificity value of 0.763 indicates that it
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can discriminate negative cases (R0) at a satisfactory level. A

low Brier score value of 0.105 indicates that the predictions of

the model are reliable and calibrated. These results suggest that

pre-NACT proteomic data can be valuable biomarkers for the

prediction of residual disease status and that the random forest

algorithm is an effective tool for such clinical prediction tasks. The

five proteins most important for predicting residual disease after

NACT with SHAP analysis via XAI methods applied to the optimal

random forest model are those with accession codes P48637

(glutathione synthetase), O43491 (band 4.1-like protein 2), O95302

(peptidyl-prolyl cis-trans isomerase FKBP9), Q96CX2 [Broad-

Complex, Tramtrack, and Bric-a-brac/POxvirus and Zinc finger

(BTB/POZ)] domain-containing protein (potassium channel

tetramerization domain-containing protein 12 [KCTD12]),

and P49189 (4-trimethylaminobutyraldehyde dehydrogenase).

Moreover, according to the statistical analysis, these five key

proteins, which were significantly different between the two

groups, stand out as important biomarkers in the prediction of

residual disease after NACT. The importance ranking of these

proteins quantitatively reveals the effects of the model in the

decision-making process. These proteins, which are determined

with SHAP values, both increase the interpretability of the model

and can guide the determination of potential therapeutic targets.

In addition, the high predictive power of these proteins can

contribute to a better understanding of the molecular basis of

the NACT response in HGSOC and can be used to optimize

treatment strategies. These findings constitute an important step in

the development of personalized treatment approaches and more

accurate assessments of patient prognosis.

While this study focused on predicting residual disease in

HGSOC via proteomic biomarkers, integrating molecular profiling

with predictive models could further enhance treatment strategies.

In particular, the inclusion of BRCA mutations and HRD status

could improve the model’s ability to predict chemotherapy

response, enabling more personalized and effective therapeutic

interventions. The success of the use of BRAF and MEK inhibitors

in LGSOC emphasizes the potential of personalized medical

approaches that target molecular alterations. These findings suggest

that the integration of molecular profiling with predictive models

could improve treatment strategies for different ovarian cancer

subtypes. Furthermore, the development of advanced molecular

profiling techniques could improve the performance of AI-based

prediction models by identifying subtype-specific biomarkers.

Future research should explore the combined use of AI-based

residual disease prediction models and molecular profiling,

including tumor biomarkers such as BRCA mutations and HRD

status. This integrative approach could lead to more personalized

and effective treatment strategies for ovarian cancer, optimizing

therapeutic outcomes by accurately predicting the chemotherapy

response. Additionally, understanding the molecular differences

between HGSOC and LGSOC remains crucial for tailoring

treatment approaches and enhancing patient-specific care.

Such integrative approaches may lead to more personalized

and effective treatment strategies for ovarian cancer. In this

context, understanding the molecular differences between

HGSOC and LGSOC will be crucial for developing tailored

therapeutic interventions.

Glutathione (GSH) serves as a critical cellular antioxidant and

reducing agent, playing multifaceted roles in various physiological

and cellular processes. It is integral to themetabolism of xenobiotics

and cellular molecules, scavenges free radicals, regulates cell cycle

dynamics, and maintains microtubule integrity. GSH also

functions as a physiological reservoir of cysteine (Cys), modulates

calcium (Ca2+) homeostasis, and regulates protein function

and gene expression through thiol–disulfide exchange reactions.

Furthermore, it contributes to immune modulation, lymphocyte

function, and mitochondrial mechanisms linking permeability

transition pore complexes to the activation of cell death. In

addition to these roles, GSH plays a pivotal role in maintaining

the intracellular redox balance and is heavily implicated in cellular

processes such as differentiation, proliferation, and apoptosis.

Additionally, it has been associated with resistance to ionizing

radiation and drug-induced cytotoxicity. In the present study,

the mean level of the protein encoded by P48637 (glutathione

synthetase) was significantly greater in the partial resection group

following neoadjuvant chemotherapy. Cisplatin and carboplatin,

two platinum-based chemotherapeutic agents, have similar efficacy

profiles, with carboplatin exhibiting reduced toxicity compared

with cisplatin. Importantly, GSH mediates resistance to these

agents through several mechanisms, including reduced drug

uptake, enhanced intracellular detoxification/inactivation of

the drug, improved DNA repair, and inhibition of apoptosis

triggered by drug-induced oxidative stress (35). In ovarian cancer,

high levels of GSH and glutathione S-transferase P1 (GSTP1)

activity have been associated with resistance to cisplatin and

carboplatin, although some conflicting reports exist (36). Sawers

et al. demonstrated that stable deletion of GSTP1 significantly

increased the sensitivity of A2780 ovarian cancer cells to both

cisplatin and carboplatin (37). Similarly, Crawford and Weerapana

identified a dichlorotriazine-containing compound (LAS17) that

irreversibly inhibited GSTP1 activity, representing a promising

therapeutic target (38). These findings emphasize the complexity

of ovarian cancer, particularly concerning the unique metabolic

and thiol-related responses to neoadjuvant chemotherapy. The

interplay between GSH metabolism and chemotherapeutic

efficacy highlights the need to consider these factors in clinical

decision-making. Tailoring treatment strategies to account for thiol

metabolism and associated resistance mechanisms may improve

therapeutic outcomes in ovarian cancer patients.

Band 4.1-like protein 2 (EPB41L2), also known as erythrocyte

membrane protein band 4.1-like 2, plays a vital role in mediating

the recruitment of the dynein–dynactin complex and NUMA1 to

the mitotic cell cortex during anaphase. In this study, the protein

associated with O43491 (Band 4.1-like protein 2) was found to have

significantly higher levels in the partial resection group following

neoadjuvant chemotherapy, suggesting its potential involvement in

chemoresistance. Similarly, research by Menyhárt et al. revealed

that EPB41L2, one of four genes (alongside HLA-DQB1, LTF,

and SFRP1), is consistently overexpressed in tumor samples from

ovarian cancer patients with disease progression after topotecan

therapy (39). This association supports the notion that EPB41L2

may act as a marker for resistance. The EPB41L2 gene encodes

the protein 4.1G, a member of the 4.1 superfamily of scaffold

proteins. Unlike its paralogues, protein 4.1G has been linked to
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poorer survival outcomes, as supported by findings in this dataset

and corroborative data from the Human Protein Atlas (40). These

observations suggest that EPB41L2 may function as an oncogene in

ovarian cancer, although its underlyingmechanisms require further

investigation. This research underscores the potential of EPB41L2

as both a prognostic biomarker and a therapeutic target, paving the

way for precision treatments aimed at overcoming chemoresistance

in ovarian cancer.

Peptidyl-prolyl cis-trans isomerase FKBP9, commonly referred

to as FK506 binding protein 5 (FKBP5), belongs to the

immunophilin family and is defined by its peptidylprolyl cis/trans

isomerase (PPIase) activity (41). FKBP5 is a well-recognized

target of immunosuppressive agents such as rapamycin and

tacrolimus (FK506) and interacts with key proteins, such as Akt

and the progesterone receptor (PR), via its FKBP-type domains.

This protein plays a central role in several critical signaling

pathways, including hormone signaling, NF-κB activation in

response to irradiation, and Akt-PHLPP signaling in the context

of chemotherapy, emphasizing its multifaceted involvement in

cancer progression and resistance to treatment (42). While it shares

fundamental characteristics with other FK506-binding proteins,

FKBP5 exhibits distinct properties, especially its ability to modulate

crucial signaling pathways, such as those driven by Akt (43).

Prior studies have shown that FKBP5 is highly expressed

across multiple tissues and significantly contributes to drug

resistance in various cancers, including breast and prostate

cancers, multiple myeloma, acute lymphoblastic leukemia,

and melanoma (44). This resistance often occurs following

exposure to antineoplastic therapies such as FK506, rapamycin,

dexamethasone, or irradiation. Notably, the present study revealed

substantial upregulation of FKBP5 in residual high-grade serous

ovarian cancer (HGSOC) tissues from patients undergoing

neoadjuvant chemotherapy. These findings further implicate

FKBP5 in facilitating chemoresistance in ovarian cancer. These

results align with prior research by Sun et al., who examined

Taxol-resistant ovarian carcinoma cells derived from the SKOV3

cell line. Their analysis demonstrated that these cells showed cross-

resistance to other mitotoxins, such as vincristine, but remained

sensitive to the genotoxin cisplatin. Transcriptomic profiling of

the Taxol-resistant cells revealed 112 genes with pronounced

overexpression, among which FKBP5 exhibited an initial 100-

fold upregulation during resistance acquisition, followed by a

decline with extended culture. Functional experiments by the

same group revealed that silencing FKBP5 resensitized Taxol-

resistant cells to Taxol, whereas ectopic overexpression of FKBP5

amplified resistance. This phenomenon was similarly observed

with vincristine but not with cisplatin, suggesting the specificity

of the role of FKBP5 in mitotoxin resistance (45). These findings

suggest a mechanism of FKBP5-mediated chemoresistance that

involves intricate protein–protein interactions and transcriptional

regulation, suggesting promising therapeutic opportunities for

addressing drug resistance in ovarian cancer.

Q96CX2 (BTB/POZ domain-containing protein KCTD12),

also known as Pfetin, serves as an auxiliary subunit of gamma-

aminobutyric acid (B) (GABAB) receptors and modulates their

biophysical and pharmacological properties (46). By increasing

agonist potency, accelerating the onset of the receptor response,

and promoting desensitization, Pfetin plays a key role in

determining receptor pharmacology and the kinetics of G protein

signaling (47). Despite its established role in receptor modulation,

the involvement of Pfetin in tumorigenesis and cancer progression

remains largely unclear. Altered expression of Pfetin has been

observed in gastrointestinal stromal tumors (GISTs) with poor

clinical outcomes, but the underlying mechanisms regulating

its expression are not fully understood (48). In our study,

significant upregulation of Pfetin (KCTD12) was detected in

residual tissue from patients with high-grade serous ovarian

cancer (HGSOC) who had received neoadjuvant chemotherapy,

suggesting a potential role for Pfetin in chemoresistance or

tumor aggressiveness. Although few studies of Pfetin in ovarian

cancer exist, a genome-wide mutation screen identified a mutation

in KCTD12 in one patient with high-grade serous ovarian

cancer, suggesting its possible involvement in disease progression.

Further evidence comes from Suehara et al., who identified

Pfetin as a prognostic biomarker in patients with GIST via

a proteomic approach. They demonstrated that eight of the

identified protein spots were derived from Pfetin, four of which

showed high discriminatory power between GISTs with good

and poor prognoses. Immunohistochemical analysis of 210 GIST

cases confirmed the prognostic value of Pfetin. It revealed that

Pfetin-positive tumors were associated with a significantly greater

5-year metastasis-free survival rate (93.9%) than were Pfetin-

negative tumors (36.2%). Multivariate analyses also confirmed

that Pfetin expression is a decisive prognostic factor independent

of clinicopathologic variables, including c-kit or platelet-derived

growth factor receptor A mutations (49). Given the similarities

between GIST and epithelial ovarian cancers in the acquisition

of aggressive features such as invasion, metastasis, and peritoneal

dissemination, it is plausible that KCTD12 mutations could lead

to a loss of the tumor suppressive function of Pfetin. This loss

could drive the acquisition of aggressive phenotypes in ovarian

cancer, similar to mechanisms observed in other tumor suppressor

genes. These results suggest that Pfetin not only has prognostic

value but also may represent a potential therapeutic target. Further

studies are needed to clarify the role of KCTD12 and its mutations

in the pathophysiology, chemoresistance, and progression of

ovarian cancer.

Ovarian cancer is a heterogeneous disease characterized

by different histological subtypes and stages of development,

which complicates its diagnosis and treatment. The cancer

stem cell hypothesis emphasizes the presence of proliferating

cell populations in tumors that are capable of self-renewal

and differentiation into multiple developmental stages, and

contribute to tumorigenesis and progression (50). Among

the markers associated with these stem-like cells, aldehyde

dehydrogenase (ALDH) proteins have gained attention. ALDH

represents a superfamily of 19 enzymes that protect cells from

cytotoxic and carcinogenic aldehydes and are distributed

across various organelles, including the nucleus, cytosol,

mitochondria, and endoplasmic reticulum (51). In addition

to their protective function, ALDH enzymes are critical for the

maintenance of epithelial homeostasis and have been shown

to be important markers of stem cells in both normal and

tumor contexts.
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Deregulation of ALDH enzymes has been demonstrated in

several cancer types, including breast, prostate, lung, and colorectal

cancer, and their expression correlates with clinical outcome

(52). Additionally, meta-analyses have shown that increased

ALDH1 expression in ovarian cancer is associated with poor

prognosis, shorter progression-free survival, and unfavorable

clinical features (53). Conversely, ALDH5A1 transcription and

expression are associated with better overall survival in patients

with serous ovarian cancer harboring TP53 mutations but not in

patients with wild-type TP53, underscoring the differential role of

ALDH enzymes in ovarian cancer pathogenesis and progression

(54). In this study, we observed increased levels of P49189,

also known as aldehyde dehydrogenase family 9 member A1

(ALDH9A1) or 4-trimethylaminobutyraldehyde dehydrogenase,

in residual tissue from patients with high-grade serous ovarian

cancer (HGSOC) treated with neoadjuvant chemotherapy. To the

best of our knowledge, this is the first report to identify the

upregulation of ALDH9A1 in this context, highlighting its potential

role in the biology of residual disease and chemoresistance.

Using immunohistochemistry, Saw et al. demonstrated significant

overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 in

ovarian tumors compared with normal ovarian tissue. They also

reported tumor type-dependent induction of ALDH enzymes in

ovarian cancer cells cultured as sphere suspensions in serum-free

medium, suggesting that ALDH expression and activity may vary

depending on the cell status and tumor microenvironment. These

results indicate that ALDH enzymes play a cell-type-specific role in

ovarian tumor tissues and may contribute to stem-like properties

and chemoresistance (55). Our results and those of previous studies

suggest that elucidating the role of ALDH isozymes, including

ALDH9A1, in cell lineage differentiation and tumor progression

may provide new insights into the pathophysiology of ovarian

cancer. Further studies are needed to understand the regulatory

mechanisms of ALDH9A1 and its potential as a prognostic

biomarker or therapeutic target in ovarian cancer, particularly in

the context of residual disease and chemoresistance.

5 Conclusion

This study highlights the effectiveness of machine learning

models, particularly random forests, in predicting residual disease

status (R0, R1) in high-grade serous ovarian cancer (HGSOC)

patients undergoing neoadjuvant chemotherapy (NACT) via

proteomic data. The random forest model achieved high predictive

accuracy, with an AUC of 95.5% and reliable performance

metrics. Key proteins identified through SHAP analysis—such

as glutathione synthetase (P48637) and peptidyl-prolyl cis-trans

isomerase FKBP9 (O95302)—were found to play significant

roles in chemotherapy resistance, suggesting potential targets for

personalized therapeutic strategies. This study also demonstrates

the power of explainable artificial intelligence (XAI) in enhancing

clinical decision-making by making machine learning models

more transparent and interpretable. In conclusion, the findings of

this research pave the way for integrating machine learning and

proteomics to predict treatment outcomes in patients with ovarian

cancer, suggesting a promising approach for more individualized

and effective therapies. Further research with larger datasets could

help validate these biomarkers and optimize treatment strategies

for improved patient outcomes.
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