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Introduction: Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two

of the most prevalent neurodegenerative disorders, necessitating accurate

diagnostic approaches for early detection and e�ective management.

Methods: This study introduces two deep learning architectures, the Residual-

based Attention Convolutional Neural Network (RbACNN) and the Inverted

Residual-based Attention Convolutional Neural Network (IRbACNN), designed

to enhance medical image classification for AD and PD diagnosis. By integrating

self-attention mechanisms, these models improve feature extraction, enhance

interpretability, and address the limitations of traditional deep learning methods.

Additionally, explainable AI (XAI) techniques are incorporated to provide model

transparency and improve clinical trust in automated diagnoses. Preprocessing

steps such as histogram equalization and batch creation are applied to optimize

image quality and balance the dataset.

Results: The proposed models achieved an outstanding classification accuracy

of 99.92%.

Discussion: The results demonstrate that these architectures, in combination

with XAI, facilitate early and precise diagnosis, thereby contributing to reducing

the global burden of neurodegenerative diseases.

KEYWORDS

deep learning models, Parkinson’s disease (PD), Alzheimer’s disease (AD),

neurodegenerative disorders, medical image analysis

1 Introduction

Neurological disorders, including Alzheimer’s Disease and Parkinson’s Disease, pose

significant health concerns, affecting millions of people worldwide each year (1). AD

is a leading cause of progressive, irreversible dementia worldwide, accounting for 60–

80% of cases (2), whereas PD affects 2–3% of adults over 60, making it the second most

common neurodegenerative disorder. Its prevalence has doubled in the past 25 years,
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leading to increased disability and mortality (3). Dementia is a

continuum of neurological conditions characterized by memory

loss, impaired reasoning, and difficulty performing daily activities

(4). According to the World Alzheimer’s Report, over 55 million

people worldwide have dementia, with projections indicating that

this number will rise to 152 million by 2050. This growing

prevalence underscores the urgent need for early diagnosis and

preventive measures (5).

A key pathological hallmark of AD is the accumulation

of amyloid-beta (Aβ) plaques and neurofibrillary tangles of

tau protein, which disrupt synaptic communication and trigger

neuronal degeneration (6). Many of these changes occur years

before clinical symptoms appear. Mild Cognitive Impairment

(MCI) is an intermediate stage between normal aging and

dementia, with 10-30% ofMCI patients progressing to AD annually

(7). Early identification ofMCI is crucial, as individuals may benefit

from medical interventions that slow the progression of dementia.

Similarly, PD, which initially presents with motor symptoms such

as tremors, rigidity, and bradykinesia, can advance to Parkinson’s

Disease Dementia (PDD), complicating patient care and treatment

strategies (8).

Recent advancements in imaging technologies, including

MRI, PET, and CT, have significantly improved the diagnosis

of neurodegenerative diseases (9). These modalities enable the

tracking of structural and functional brain alterations associated

with AD and PD. However, conventional medical image analysis

is time-consuming and susceptible to human bias, highlighting the

need for automated and accurate diagnostic tools (10).

Artificial intelligence (AI), particularly deep learning (DL), has

emerged as a powerful tool for medical image classification and

pattern recognition (11). CNNs have demonstrated exceptional

performance in analyzing medical images, identifying subtle

biomarkers that human clinicians may overlook (12). However,

traditional DL models face challenges such as the “black box”

problem and lack of interpretability, limiting their acceptance

in clinical settings (13). To address these limitations, advanced

architectures like Residual Self-Attention CNNs and Inverted

Residual Self-Attention CNNs have been developed. These models

enhance feature extraction, improve interpretability, and achieve

higher accuracy across diverse datasets.

This study explores the feasibility of using RbACNN and

IRbACNN models for early-stage AD and PD classification from

medical images. By leveraging these advanced deep learning

techniques, the research aims to overcome challenges such as

poor image quality, variability across patients, and the complex

structure of brain regions (14). Additionally, the study utilizes

publicly available datasets like ADNI and OASIS, along with

preprocessing tools such as SPM and Freesurfer, to ensure reliable

and reproducible results. Ultimately, this work seeks to enhance

early diagnosis, improve patient outcomes, and contribute to

reducing the global burden of neurodegenerative diseases.

The three main contributions of this study are given below:

• This study introduces enhanced deep learning architectures,

Residual-based Attention Model and Inverted Residual-based

Attention Model, combined with explainable AI techniques

to improve the interpretability of multi-class classification

TABLE 1 List of abbreviations and their descriptions.

Abbreviation Description

AD Alzheimer’s disease

PD Parkinson’s disease

MCI Mild cognitive impairment

PDD Parkinson’s disease dementia

MRI Magnetic resonance imaging

PET Positron emission tomography

CT Computed tomography

AI Artificial intelligence

DL Deep learning

CNN Convolutional neural network

SPM Statistical parametric mapping

PCA Principal component analysis

DNN Deep neural network

KNN K-nearest neighbors

RF Random forest

SVM Support vector machine

XGBoost Extreme gradient boosting

AUC Area under the curve

ROC Receiver operating characteristic

MSE Mean squared error

for Alzheimer’s and Parkinson’s diseases. This enhances both

diagnostic accuracy and clinical transparency.

• The proposed models leverage advanced self-attention

mechanisms to improve feature extraction and classification

performance. In addition, comprehensive preprocessing

techniques, including histogram equalization and

batch creation, were employed to enhance image

quality and ensure a balanced dataset for robust

model training.

• The models achieved remarkable classification accuracies

of up to 99.92%, demonstrating their effectiveness in

distinguishing between Alzheimer’s disease, Parkinson’s

disease, and healthy control groups. The integration

of XAI further supports their applicability in clinical

decision-making.

This study is organized into sections to clarify the research

framework. Section 2 highlights the related work addressing

Alzheimer’s disease detection by using DL models. The

proposed methods, dataset details, preprocessing strategies,

and discussions on proposed models are elaborated in Section 3.

Section 4 focuses on evaluation metrics, experimental findings,

and conclusions, including suggestions for future research.

Table 1 provides the summary of the abbreviation used in

the paper.
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2 Related work

This Section explains the related work of deep learning and

advanced machine learning (ML) for neurodegenerative disorders

and enhancing diagnostic accuracy. Studies on Alzheimer’s disease

prediction are summarized in Table 2.

Yedavalli and Bair (15) proposed an enhanced CNN model

for classifying MRI images into four stages of Alzheimer’s disease:

non-demented, very mildly demented, mildly demented, and

moderately demented. The model consisted of four convolutional

layers with ReLU activation, batch normalization, and max-

pooling, followed by fully connected layers with dropout

regularization to prevent overfitting. Trained on a balanced

dataset of 6,400 MRI images, the model achieved a peak training

accuracy of 99.7% and a testing accuracy of 88.79% on unseen

data, demonstrating its effectiveness for accurate AD stage

classification. Rao et al. (16) proposed a novel deep-learning

framework for Alzheimer’s disease classification. Recognizing the

limitations of manual classification methods, they leveraged 3D

convolutional neural networks to process spatial information

within 3D MRI scans. They used differential weights extracted

from various layers and integrated transfer learning with the

fine-tuning concept, which produced high accuracy. In particular,

ResNet50V2 was the chosen best pre-trained model that yielded

a training accuracy of 92.15% and a test accuracy of 91.25%.

These results demonstrate the feasibility of using transfer learning

and deep learning techniques for AD diagnosis. Srividhya et al.

(17) employed pre-trained models on the Alzheimer’s Disease

Neuroimaging Initiative (ADNI2) dataset to differentiate AD

stages. They compared existing deep learning algorithms for multi-

class classification of MRI images, identifying ResNet50V2 as

the most accurate model with a total accuracy of 91.84% for

the AD class and an F1-score of 0.97. Grad-CAM and Saliency

Map visualization methodologies were used to clarify which

regions the model focused on when predicting various stages

of illness.

Shinde et al. (18) extracted texture features using the GLCM

from MRI images and employed these features to train KNN,

Random Forest, and Decision Tree models. Additionally, they

studied transfer learning models, including Xception, DenseNet-

121, and ResNet50, and developed a CNN model for direct

feature learning. Their experiments compared the effectiveness of

these models and techniques for AD prediction. Hazarika et al.

(19) proposed a deep neural network (DNN) model leveraging

dense blocks inspired by VGG-19 for optimal feature extraction.

Incorporating inception blocks and min-max-pooling layers, the

network preserved both maximum and minimum valued features.

They also employed principal component analysis (PCA) for

dimensionality reduction and Random Forest for classification.

The proposed method achieved a classification accuracy of 98.08%,

particularly in distinguishing CN from EAD. Biswas and Gini

J (20) designed a multi-class classification system for early

AD detection. They segmented hippocampal, white matter, and

gray matter volumes from 3D MRI scans and calculated their

respective volumes using Analyze Direct and ITK Snap software.

These features, combined with demographic data like age and

gender, were used to train ML classifiers such as Random Forest,

Gradient Boost, Decision Tree, and KNN. The Random Forest

classifier achieved the highest accuracy of 99% with the OASIS

dataset and 92% accuracy for the ADNI dataset using Gradient

Boost. Tripathi and Kumar (21) introduced a speech-based

classification system for cognitive impairments, including AD,

MCI, and vascular dementia. Speech data from DementiaBank’s

Pitt Corpus was preprocessed to extract acoustic features, which

were then used to train ML models such as KNN, DT, SVM,

XGBoost, and RF. Their approach achieved an accuracy of

75.59% for six-class classification, with XGBoost demonstrating

statistically significant superiority over most other models,

offering a non-invasive and accessible cognitive impairment

diagnostic method.

Yao et al. (22) proposed a multi-class classification and

prediction model of AD from MRI images based on deep

learning. The proposed model, ADNET, is an augmentation of the

conventional VGG19 architecture, incorporating a Convolutional

Block Attention Module for improved feature extraction. Using the

ADNI dataset, the model classified AD, MCI, and CN conditions.

A novel MLP-based model, incorporating additional factors such

as age, gender, and Minimal State Examination, achieved a

prediction accuracy of 51.2% without directional conditions and

89% with them. Sorour et al. (23) introduced a deep learning

algorithm (AD-DL) for screening Alzheimer’s disease from brain

MRI images. Their framework included preprocessing, model

training, and evaluation phases, incorporating five deep learning

models for binary classification. Among these, the CNN-LSTM

model achieved the best results with an accuracy of 99.92%,

highlighting the potential of deep learning for AD diagnosis.

Krishna et al. (24) proposed an algorithm derived from particle

swarm optimization to optimize the hyperparameters of CNN

structures for AD classification. Their model, utilizing lightweight

features at the convolution layer, achieved a classification

accuracy of 99.53% and an F1-score of 99.63%, demonstrating

its potential for improving diagnostic efficiency while reducing

clinicians’ workload. Ghassan Al Rahbani et al. (25) introduced

a novel approach to AD diagnosis using ResNet and EfficientNet

CNN models with a unique post-processing module. Their

methodology employed a weighted average ensemble learning

technique to combine the strengths of both models. The approach

was tested on the ADNI and OASIS datasets, achieving top-

1 classification accuracies of 98.59% with EfficientNet and

94.59% with ResNet on the ADNI dataset, and 99.36% with

ResNet and 99.4% after calibration on the OASIS dataset.

These results highlight the effectiveness of ensemble learning in

improving diagnostic accuracy. Table 2 provides the summary of

related work.

3 Proposed framework

This Section explains the proposed framework by utilizing

deep learning models to identify neurodegenerative diseases. In

the classification of this Figure 1 presents a detailed view of the

proposed framework, including dataset, image preprocessing and

deep learning models.
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TABLE 2 Summary of related work on Alzheimer’s disease classification.

References Method/approach Dataset Performance metrics

Yedavalli and Bair (15) Enhanced CNN with ReLU activation,

batch normalization, and dropout

6,400 MRI images (balanced) Training accuracy: 99.7%,

Testing accuracy: 88.79%

Rao et al. (16) 3D CNN with ResNet50V2, transfer

learning, and fine-tuning

Not specified Training accuracy: 92.15%,

Testing accuracy: 91.25%

Srividhya et al. (17) Pre-trained models (ResNet50V2),

visualization with Grad-CAM and

Saliency Map

ADNI2 dataset Accuracy: 91.84%,

F1-score: 0.97

Shinde et al. (18) GLCM feature extraction, fine-tuned

pre-trained models, and CNN

Kaggle Dataset Comparative analysis, performance

varies

Hazarika et al. (19) DNN with dense and inception blocks,

PCA for dimensionality reduction

NA Accuracy: 98.08%

Biswas and Gini J (20) Hippocampal, white matter, and gray

matter volume segmentation, Random

Forest

OASIS, ADNI datasets Accuracy: 99% (OASIS), 92% (ADNI)

Tripathi and Kumar (21) Speech-based classification with

XGBoost and acoustic feature extraction

DementiaBank’s Pitt Corpus Accuracy: 75.59%

Ghassan Al Rahbani et al. (25) ResNet and EfficientNet ensemble with

post-processing

ADNI, OASIS datasets Accuracy: 98.97% (ADNI), 99.41%

(OASIS)

Yao et al. (22) AD_Net with CBAM and MLP for

multi-factor integration

ADNI dataset Accuracy: 89% (with directional factors)

3.1 Experimental dataset and preliminaries

The Alzheimer’s Parkinson’s Diseases 3 Class dataset is used in

this study. The 3_cls folder contains two main directories: train

and test. Each of these directories is further divided into three

subdirectories: CONTROL, AD, and PD. The CONTROL folder

represents normal cases, while AD corresponds to Alzheimer’s

disease and PD corresponds to Parkinson’s disease. This dataset is

structured for a three-class classification task involving Alzheimer’s,

Parkinson’s, and control subjects. The number of data files in each

category was determined using the Python os module. This step

ensures the data is correctly structured and helps to understand

the distribution of data across the three groups, which is crucial for

downstream analysis. To facilitate testing and validation of image

processing techniques, a small batch of images was extracted from

the dataset using the create_batch function. This function iterates

through the class directories (AD, CONTROL, PD) and selects

a specified number of images (up to 800 per class) to create a

manageable subset for testing. The selected images are copied into

corresponding subdirectories within a new output directory. The

batch creation process was logged for debugging purposes, and the

final structure of the output directory was verified to ensure proper

organization. The contents of the batch directory were confirmed to

include the expected class subdirectories AD, CONTROL, and PD.

3.2 Image preprocessing and
enhancement for dataset optimization

In this Section of the paper, we describe the process of

preprocessing and enhancing the images from the dataset to

improve their quality for further analysis. The following steps were

implemented to ensure that the data is properly prepared for testing

and model development:

3.2.1 Image preprocessing
To facilitate efficient processing, the preprocessed dataset

with progress function was implemented, which applies a basic

image enhancement technique to each image in the dataset. The

function processes images from class-specific directories (e.g., AD,

CONTROL, PD) and applies histogram equalization to improve

the contrast of the grayscale images. The progress of the image

processing is tracked and displayed using the progress bar, which

provides real-time feedback on the processing status. The enhanced

images are saved in a new directory, ensuring that the original

data remains intact for future reference. Before applying the

enhancement process, a batch of images was created from the

dataset using the create batch function. This step selects a fixed

number of images (800 images per class) from each class and

saves them into a new output directory. The batch creation process

ensures that only a manageable subset of the data is processed for

testing purposes.

3.2.2 Enhanced images representation
Figure 2 presents enhanced images for a selection of five

samples per class, illustrating the effect of histogram equalization.

This enhancement improves contrast and highlights critical

structural details, aiding in better feature extraction for deep-

learning models. Improved contrast ensures clearer visualization

of tissue boundaries and anomalies, which is crucial for

accurate classification. The visualization step also helps verify

that preprocessing enhances image quality without introducing

distortions, ensuring reliable model performance.

Frontiers inMedicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2025.1562629
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Baili et al. 10.3389/fmed.2025.1562629

FIGURE 1

Proposed framework for disease classification.

FIGURE 2

Graphical visualization of original and enhanced image. (a) Original and enhanced images of AD label. (b) Original and enhanced images of control

label.
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3.3 Residual based attention CNN model

The Residual-based Attention Model (RbACNN) model is an

architecture designed for image classification tasks. It leverages

the power of residual blocks and self-attention mechanisms to

efficiently extract features and enhance spatial dependencies in the

input data (see Figure 3). The model is designed to adapt to the

input size dynamically, making it scalable for various datasets (26).

3.3.1 Input layer and initial convolutional
The RbACNN model employs three residual blocks, each

designed to expand the feature channels and enhance the model’s

ability to capture hierarchical feature representations. These

blocks share a consistent structure, consisting of convolutional

layers interleaved with batch normalization and ReLU activation.

However, they differ in their input and output channel dimensions,

progressively increasing the depth of feature representations across

the network.

Block 1: The first block begins by expanding the input channels

from 32 to 64. It includes three sequential convolutional layers,

each with a kernel size of 3x3. Batch normalization is used

to normalize the feature activations following each convolution

operation, stabilizing the training process. A ReLU activation

function comes next, adding non-linearity and enabling the model

to recognize intricate patterns in the input data. The repeated

application of these layers ensures that the model captures richer

features while preserving the spatial dimensions of the input.

Block 2: In the second block, the feature channels are further

expanded from 64 to 128. While the structure remains identical to

the first block, the increase in channel dimensions allows the model

to process more complex features. This progression enables the

network to extract intermediate-level representations, bridging the

gap between initial low-level features and higher-level abstractions

found in the later stages of the network.

Block 3: The third block completes the feature expansion by

increasing the channels from 128 to 256. Following the same

design principles as the previous blocks, this stage is critical for

learning highly abstract and fine-grained features. The increased

channel count at this stage significantly enhances themodel’s ability

to discriminate between subtle variations in the data, making it

well-suited for complex classification tasks.

3.3.2 Self-attention mechanism
To enhance spatial feature dependencies, the RbACNN

incorporates a self-attention mechanism. This mechanism applies

a 1 × 1 convolution to reduce dimensionality, followed by a

softmax activation function along the spatial dimensions. The self-

attention layer computes an importance map, which is element-

wise multiplied by the feature map, emphasizing critical regions of

the input data. This step is crucial for improving the model’s focus

on discriminative features.

3.3.3 Dynamic fully connected layer
One unique aspect of the RbACNN model is its dynamically

initialized fully connected (FC) layer. After the self-attention

mechanism, the feature map is flattened into a 1D vector. The

FC layer is instantiated during runtime based on the input feature

size, ensuring compatibility with any input image dimensions. This

adaptability enhances the model’s usability across diverse datasets.

3.3.4 Model training and optimization
The RbACNN model is trained to classify input data into

a predefined number of classes. The FC layer’s output neuron

count corresponds to the number of classes. The model employs

cross-entropy loss function and optimization techniques such

as Adam to ensure efficient convergence during training. The

FIGURE 3

Residual self-attention CNN model architecture.
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model is initialized with the number of classes derived from the

dataset’s class map. The architecture of the model represented

as RbACNN, is specific to the task at hand. The code ensures

compatibility with the hardware by moving the model to a GPU

if available or to a CPU otherwise. This setup ensures efficient

computation during training and inference. Before beginning the

training process, this Section performs a quick forward pass using

a batch of images to verify the model’s functionality. Images

and labels are loaded from the batch_loader and moved to the

selected device. The model processes the images to produce

outputs, ensuring no runtime errors occur during the forward pass.

The CrossEntropyLoss function, which works well for multi-class

classification applications, is used in the training pipeline. With an

initial learning rate of 0.001, the Adam optimizer is selected due

to its flexible learning rate capabilities. These choices ensure stable

and efficient optimization of the model’s parameters.

3.3.5 Explainability with LIME
The model incorporates explainability through the use of LIME

(Local InterpretableModel-agnostic Explanations) (27) to elucidate

its predictions. A custom function, explain_model_predictions,

is designed to integrate LIME into the workflow. The process

begins with a preprocessing step where each input image is

cropped to focus on the region containing the object of interest,

achieved using a custom crop_to_object function. Since LIME

requires three-channel images, grayscale inputs are converted

to RGB format during preprocessing. Once prepared, LIME is

applied to generate feature-based explanations for the model’s

predictions. This involves identifying and highlighting specific

parts of the image that influence the model’s output. To make these

explanations accessible and intuitive, the original cropped image

and its LIME-generated explanation are displayed side by side,

facilitating easy comparison. This functionality is showcased for up

to 10 images selected from the batch loader, providing a detailed

explanation of how the model makes decisions. Figure 4 presented

the selected images.

The model is trained over a specified number of epochs, with

several key steps performed in each iteration. At the start of each

epoch, the model is set to training mode, enabling weight updates

during the training process. Each batch of images is then processed

iteratively, where the loss is calculated using the CrossEntropyLoss

function, and the optimizer performs backpropagation followed

by parameter updates. The running loss is monitored throughout

this procedure, and the model’s predictions are compared to

the ground-truth labels to calculate the training accuracy. The

average loss and accuracy are recorded, printed, and saved for

later examination at the conclusion of each epoch. Through the

reported losses and accuracies, this methodical technique enables

the tracking of the model’s performance trends, offering important

insights into its learning progress across several epochs.

3.4 Inverted residual self-attention CNN
model

The Inverted Residual with Self-Attention (IRbACNN) model

introduces an innovative design by leveraging inverted residual

blocks combined with self-attention mechanisms. This architecture

emphasizes efficient feature extraction while maintaining spatial

dependencies, making it highly effective for image classification

tasks (see Figure 5). The inverted structure focuses on reducing

computational overhead by first expanding feature dimensions

and then compressing them, resulting in a compact and high-

performing model (28).

3.4.1 Input layer and initial convolutional
The IRbACNN model incorporates three inverted residual

blocks, each following a consistent structure but with varying

input and output channel dimensions. Unlike traditional blocks,

the inverted blocks begin by expanding feature dimensions before

compressing them, allowing the network to learn high-dimensional

intermediate features while reducing the overall parameter count.

Block 1: In the first block, the input feature dimensions

are expanded from 32 to 128 using a 1 × 1 convolution. This

initial expansion increases the representational capacity of the

model while keeping computational overhead minimal. Following

this, a 3 × 3 depthwise convolution is applied, which preserves

the spatial dimensions of the input while significantly reducing

computational complexity. To ensure efficient representation, the

features are then compressed back to 32 channels using another

1 × 1 convolution. After each convolutional operation, batch

normalization is performed to stabilize the training process, and

ReLU activation introduces non-linearity, enabling the model to

capture complex patterns.

Block 2: The second block builds on the structure of the

first block, adapting it to process higher-dimensional features.

Here, the feature dimensions are expanded from 32 to 256 using

a 1 × 1 convolution. This expansion allows the network to

extract richer and more intricate patterns from the data. After the

depthwise convolution, the features are compressed back to 64

channels, balancing feature richness with computational efficiency.

The increased feature depth at this stage bridges the gap between

low-level features captured earlier in the network and high-level

abstractions learned in later stages.

Block 3: In the final block, the feature dimensions undergo the

most significant expansion, increasing from 64 to 512 using a 1× 1

convolution. This stage is designed to capture highly abstract and

fine-grained features that are critical for distinguishing between

subtle variations in the input data. After the depthwise convolution,

the features are compressed back to 128 channels, ensuring

compact and efficient representation. This block is essential to the

model’s capacity to recognize discriminative patterns necessary for

complex classification tasks.

3.4.2 Self-attention mechanism
The self-attention mechanism in the IRbACNNmodel plays an

important role in enhancing spatial dependencies and emphasizing

discriminative regions of the input. It consists of:

A 1 × 1 convolution to reduce feature dimensionality for

computational efficiency. A softmax activation along spatial

dimensions to compute an attention map. Element-wise

multiplication of the attention map with the feature map,

amplifying important features while suppressing irrelevant ones.

This mechanism allows the model to focus dynamically on
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FIGURE 4

Graphical visualization of original image and explainability LIME of RbACNN model. (a) Original image and LIME explanation 1. (b) Original image and

LIME explanation 2. (c) Original image and LIME explanation 3. (d) Original image and LIME explanation 4. (e) Original image and LIME explanation 5.

(f) Original image and LIME explanation 6. (g) Original image and LIME explanation 7. (h) Original image and LIME explanation 8. (i) Original image

and LIME explanation 9. (j) Original image and LIME explanation 10.
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FIGURE 5

Inverted residual self-attention CNN model architecture.

critical regions of the input image, improving its classification

performance.

3.4.3 Dynamic fully connected layer
Similar to the RbACNN model, the IRbACNN employs a

dynamically initialized fully connected (FC) layer. After applying

the self-attention mechanism, the feature map is flattened into a 1D

vector. The FC layer adapts to the number of classes in the dataset,

ensuring the model’s scalability across diverse tasks.

3.4.4 Model training and optimization
With an initial learning rate of 0.001, the Adam optimizer and

the cross-entropy loss function are used to optimize the IRbACNN

model. Important training actions consist of:

Forward propagation through the model to compute

predictions. Loss calculation using CrossEntropyLoss for multi-

class classification. Backpropagation to update weights. Each

training epoch records and logs the average loss and accuracy,

allowing for performance monitoring and evaluation over time.

3.4.5 Explainability with LIME
To enhance interpretability, the IRbACNN model integrates

Local Interpretable Model-agnostic Explanations (LIME). The

explainability process involves the following:

Preprocessing input images by cropping to the region of

interest and converting grayscale images to RGB if necessary.

Generating feature-based explanations using LIME to highlight

image regions influencing the model’s predictions. Visualizing the

original image alongside its LIME explanation for comparison and

insight into the model’s decision-making. This approach improves

transparency and trust in the model by providing clear visual

explanations for its predictions.

Once prepared, LIME is applied to generate feature-based

explanations for the model’s predictions. This involves identifying

and highlighting specific parts of the image that influence

the model’s output. To make these explanations accessible and

intuitive, the original cropped image and its LIME-generated

explanation are displayed side by side, facilitating easy comparison.

This functionality is showcased for up to 10 images selected from

the batch loader, providing a detailed explanation of how the model

makes decisions. Figure 6 presented the selected images.

The model is trained over a specified number of epochs, with

several key steps performed in each iteration. At the start of each

epoch, the model is set to training mode, enabling weight updates

during the training process. Each batch of images is then processed

iteratively, where the loss is calculated using the CrossEntropyLoss

function, and the optimizer performs backpropagation followed

by parameter updates. The running loss is monitored throughout

this procedure, and the model’s predictions are compared to

the ground-truth labels to calculate the training accuracy. The

average loss and accuracy are recorded, printed, and saved for

later examination at the conclusion of each epoch. Through the

reported losses and accuracies, this methodical technique enables

the tracking of the model’s performance trends, offering important

insights into its learning progress across several epochs.

4 Results and discussion

This Section explains the evaluation metrics, experimental

findings, and conclusions, including suggestions for future

research. The performance of the models was evaluated using the

following metrics:

Accuracy: This measures the efficiency of the model by

showing the ratio of total instances separated correctly while

normal and anomalous to the total instances. The total score is an

estimate of the model’s capacity to generalize normal and abnormal

driving styles.

Loss: There is also a measure of loss, the Mean Squared Error

(MSE), that calculates the average height of the squared vertical

distances between the two lines or between the line and the target

points. Therefore, a lower loss is preferred since it means the model

can effectively reconstruct the initial input data.
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FIGURE 6

Graphical visualization of original image and explainability LIME Of IRbACNN model. (a) Original image and LIME explanation 1. (b) Original image

and LIME explanation 2. (c) Original image and LIME explanation 3. (d) Original image and LIME explanation 4. (e) Original image and LIME

explanation 5. (f) Original image and LIME explanation 6. (g) Original image and LIME explanation 7. (h) Original image and LIME explanation 8. (i)

Original image and LIME explanation 9. (j) Original image and LIME explanation 10.
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TABLE 3 Training loss and accuracy over 10 epochs.

Epoch Loss Accuracy (%)

1 0.7827 67.54

2 0.5327 75.79

3 0.4058 82.38

4 0.3028 87.17

5 0.2230 91.29

6 0.1647 93.29

7 0.0900 96.88

8 0.0595 98.17

9 0.0428 98.29

10 0.0379 98.83

4.1 Result of the models

Table 3 presents the training performance of a model over 10

epochs. The results show a consistent reduction in loss and a steady

improvement in accuracy as training progresses. The initial training

loss is 0.7827, with an accuracy of 67.54%, indicating the model’s

initial performance. Over subsequent epochs, the loss decreases

significantly, reaching 0.0379 by the 10(th) epoch, while accuracy

improves to a peak of 98.83%. This trend demonstrates that the

model is effectively learning the data patterns within the given 10

epochs, achieving high accuracy and a low loss value in a relatively

short training duration.

Table 4 details the training metrics of a model trained for 25

epochs. Starting with a loss of 0.5265 and an accuracy of 78.42%,

the model shows rapid improvement in the early epochs. By epoch

9(th), the accuracy reaches 95.25% with a loss of 0.1496. However,

the training process exhibits some fluctuations in the later epochs,

such as between epochs 19(th) and 20(th), where accuracy slightly

decreases from 94.96% to 94.33%, possibly due to overfitting or

data variability. Despite these fluctuations, the model achieves

its best results at epoch 25(th), with a final loss of 0.0670 and

an accuracy of 98.04%. This extended training period provides

insights into the model’s performance stability and refinement over

more iterations.

Figure 7 illustrates the training and validation loss and accuracy

trends, confusion matrix, and ROC curves for a deep learning

model applied to a multi-class classification task with three classes:

AD, PD, and CONTROL. Figure 7a illustrates the training and

validation loss and accuracy trends over 25 epochs for a deep

learning model applied to multi-classification tasks. The left graph

shows the loss curve, while the right graph represents the accuracy

curve. The Training Loss curve indicates a gradual reduction in loss

values as the number of epochs increases. Starting at approximately

0.8 at the 1(st) epoch, the loss consistently decreases with each

epoch and stabilizes around 0.1 after the 20(th) epoch. This steady

decline and eventual plateau suggest that the model effectively

minimizes the error over time, indicating successful learning. The

Training Accuracy curve starts at around 70% for validation and

TABLE 4 Training loss and accuracy over 25 epochs.

Epoch Loss Accuracy (%)

1 0.5265 78.42

2 0.4008 84.71

3 0.3574 86.62

4 0.3147 88.25

5 0.2508 90.38

6 0.2394 90.17

7 0.2323 91.83

8 0.2165 92.25

9 0.1496 95.25

10 0.1556 94.88

11 0.1535 94.17

12 0.1624 94.29

13 0.1345 95.50

14 0.1288 95.54

15 0.1278 95.88

16 0.1358 95.62

17 0.1205 96.17

18 0.1205 96.33

19 0.1457 94.96

20 0.1713 94.33

21 0.0947 97.17

22 0.1030 96.71

23 0.1345 96.12

24 0.1025 96.92

25 0.0670 98.04

80% for training; the validation curves stabilize, reaching up to 74%

Meanwhile, the training curve rapidly increases over the first few

epochs, reaching nearly 97% by the 23(rd) epoch. The accuracy then

stabilizes, showing minimal fluctuations, and remains consistently

high. This pattern shows that the model performs very well on

the training set by successfully capturing the patterns in the

training data. Figure 7b presents the confusion matrix for the

multi-class classification task. The matrix visualizes the true labels

versus the predicted labels, providing insights into the model’s

performance for each class. The diagonal cells represent correct

classifications, with the values being relatively high for all three

classes (Class 0, Class 1, and Class 2). For instance, 99.33% instances

of Class 0, 61.45% instances of Class 1, and 64.85% instances of

Class 2 were correctly classified. The off-diagonal cells highlight

misclassifications. For Class 1, 24.70% samples were incorrectly

classified as Class 2. Similarly, Class 2 had 35.15% samples

misclassified as Class 1. The confusion matrix demonstrates

that the model performs well overall, with misclassifications for

class 2, indicating robust classification performance. Figure 7c
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FIGURE 7

Graphical representation of the model. (a) Accuracy and loss of the model. (b) CM of the model. (c) ROC of the model.

depicts the ROC curves for a multi-class classification task. Every

line depicts the ROC curve of each class to measure the TPR

against FPR optimally. The AUC values are different for all three

classes, Class 0 with 0.98, class 1 with 0.77, and Class 2 with

0.87, which indicates that the classes can be discriminated at

a good rate. The curves are right on top of each other, and

they stay very close to the top-left corner, which proves the

model’s discriminative strengths. Altogether, the results confirm

the high efficiency of the model in distinguishing between the

classes and the nearly perfect classification accuracy for all the

classes.

Figure 8 illustrates the training loss and accuracy trends,

confusion matrix, and ROC curves for a deep learning model

applied to a multi-class classification task with three classes: AD,

PD, and CONTROL. The training loss curve, as shown in Figure 8a

on the left, exhibits a consistent reduction in loss values over

25 epochs. Beginning at approximately 0.75 for training and

0.6 for validation, the loss decreases steadily, dropping below

0.2 by the 7(th) epoch and stabilizing around 0.1 by the 25(th)

epoch for training and validation it dropped below 0.5. This

steady decline and eventual stabilization suggest effective learning

and convergence of the model. The training accuracy curve,

shown on the right, starts at approximately 66% for training

and 71% for validation and improves rapidly, surpassing 90% for

training and 80% for validation within the first 10(th) epochs

demonstrating the model’s strong ability to learn patterns from

the training data and achieve high accuracy. The confusion matrix

in Figure 8b gives the classification performance of the model

with more clarity. The diagonal values, representing correctly

classified instances, are notably high for class 0 and class 2:
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FIGURE 8

Graphical representation of the model. (a) Accuracy and loss of the model. (b) CM of the model. (c) ROC of the model.

TABLE 5 Comparison with related work.

References Method/approach Dataset Performance metrics

Alhudhaif (29) Hybrid CNN with ensemble

classification; super-resolution

preprocessing for MRI

Public 3-class MRI dataset (AD,

PD, Healthy)

Accuracy: 99.11%

Siddiqua et al. (30) Transfer learning with EfficientNetB0,

ResNet50, InceptionV3, Xception

3-class MRI dataset (AD, PD,

Healthy)

Best: EfficientNetB0,

Accuracy: 99.4%

Nancy Noella and Priyadarshini

(31)

ML classifiers (Bagged Ensemble, ID3,

Naive Bayes, SVM) on PET images

PET dataset (1050 images; AD, PD,

Healthy)

Best: Bagged Ensemble,

Accuracy: 90.3%

Proposed research RbACNN and IRbACNN with

self-attention; histogram equalization

preprocessing

Public datasets (AD, PD, Healthy) Accuracy: 99.92%

97.99% samples correctly classified as PD and 97.99% as PD

but only 68.67% as CONTROL. Figure 8c presents the ROC

curves for the three classes. Every line depicts the ROC curve

of each class to measure the TPR against FPR optimally. The

AUC values are 0.98, 0.87 and 0.96 for class 0, class 1 and class

2, respectively. The ROC curves are in proximity to the top-left
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corner of the graph, which means that the model is a great

classifier. In conclusion, the general outlines of the training loss

and accuracy make us believe that, in general, the model excels in

multi-class classification.

4.2 Comparison and discussion

Table 5 presents a comparative analysis of recent studies on

Alzheimer’s and Parkinson’s Disease classification using machine

learning and deep learning techniques. Various models have been

explored, each leveraging different architectures and preprocessing

strategies to improve classification performance. Authors in

(29) introduced a deep hybrid network combining ensemble

classifiers with CNNs and utilized a super-resolution neural

network for MRI preprocessing, achieving an accuracy of 99.11%

on a three-class MRI dataset. Similarly, Siddiqua et al. (30)

investigated transfer learning using four CNN architectures–

EfficientNetB0, ResNet50, InceptionV3, and Xception–on a three-

class MRI dataset, with EfficientNetB0 outperforming others

with an accuracy of 99.4%. Meanwhile, Nancy Noella and

Priyadarshini (31) applied classical machine learning classifiers,

including Bagged Ensemble, ID3, Naive Bayes, and Multi-class

SVMs, on PET images. The Bagged Ensemble classifier achieved

the highest accuracy of 90.3% on a dataset of 1,050 images.

Our proposed approach builds upon these advancements by

introducing enhanced deep learning architectures, RbACNN

and IRbACNN, which integrate self-attention mechanisms to

enhance feature extraction. Additionally, histogram equalization

is employed as a preprocessing step to improve contrast

and enhance model performance. Our framework achieves an

accuracy of 99.92% on publicly available datasets containing

AD, PD, and normal brain images. Beyond accuracy, our

findings highlight several key aspects of deep learning applications

in neurodegenerative disease classification. First, self-attention

mechanisms improve model interpretability by focusing on the

most relevant image features. Second, preprocessing techniques

such as histogram equalization significantly enhance image

quality, leading to more robust feature extraction. Lastly, while

traditional ML methods still offer reasonable performance, deep

learning approaches–particularly with attention mechanisms–

demonstrate superior accuracy and generalization capabilities.

Despite these advantages, challenges remain. One limitation of

deep learning models is their reliance on large datasets to

generalize effectively. Additionally, the “black-box” nature of

some architectures can hinder clinical adoption due to a lack

of explainability. Future research should focus on integrating

explainable AI techniques to enhance model transparency and

developing strategies to address data scarcity, such as data

augmentation and synthetic data generation. In summary, our

proposed models outperform existing approaches in terms of

accuracy while addressing critical limitations in neurodegenerative

disease classification. These findings underscore the potential

of deep learning in advancing automated diagnostic tools for

AD and PD, ultimately aiding early detection and improving

patient outcomes.

5 Conclusion

This study effectively presented two deep learning frameworks,

RbACNN and IRbACNN, for a multi-class classification of

Alzheimer’s Disease and Parkinson’s Disease. Through the

incorporation of self-attentionmechanisms, thesemodels refine the

ability to perform feature extraction, leading to better performance

and interpretability in scenarios using medical images. The steps

of preprocessing that have been used are histogram equalization

and the creation of batches in order to enhance the performance

of the model. The results obtained from experiments suggest that

the proposed models can classify AD, PD, and control accurately

with a classification rate of 99.92%. Based on the findings,

further practical implications are suggested toward encouraging

the use of deep learning techniques in detecting neurodegenerative

diseases during the early stages so as to enable early intervention

and management. In the future, the researcher will push their

current work even more on how to enhance these models and

how to apply them to the biggest datasets, including different

types of data. Furthermore, applying explainability techniques,

including LIME, will be extended to increase the acceptability of

AI in clinical practice. Finally, the developments discussed in this

research aim to advance AI-based approaches in the battle against

neurodegenerative diseases to provide better diagnostics and better

patient outcomes.
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