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Early diagnosis of
sepsis-associated AKI: based on
destruction-replenishment
contrast-enhanced
ultrasonography

Zexing Yu, Xue Shi, Yang Song, Xin Li, Ling Li and Huiyu Ge*

Department of Ultrasound Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing,

China

Objective: Establish a deep learning ultrasound radiomics model based on

destruction-replenishment contrast-enhanced ultrasound (DR-CEUS) for the

early prediction of acute kidney injury (SA-AKI).

Method: This paper proposes a deep learning ultrasound radiomics model

(DLUR). Deep learning models were separately established using ResNet18,

ResNet50, ResNext18, and ResNext50 networks. Based on the features extracted

from the fully connected layers of the optimal model, a deep learning

ultrasound radiomics model (DLUR) was established using three classification

models (built with 3 classifiers). The predictive performance of the best

DLUR model was compared with the visual assessments of two groups of

ultrasound physicianswith varying levels of experience. The performance of each

model and the ultrasound physicians was evaluated by assessing the receiver

operating characteristic (ROC) curves. The area under the curve (AUC), sensitivity,

specificity, positive predictive value (PPV), negative predictive value (NPV), and

accuracy were subsequently calculated.

Results: Compared to the ResNet18 model, the DLUR model based on logistic

regression (DLUR-LR) demonstrated the best predictive performance, showing a

Net Reclassification Improvement (NRI) value of 0.210 (p < 0.05). The Integrated

Discrimination Improvement (IDI) value for the corresponding stage was 0.169

(p < 0.05). Additionally, the performance of the DLUR-LR model also surpassed

that of senior ultrasound physicians (AUC, 0.921 vs. 0.829, p < 0.05).

Conclusion: By combining deep learning and ultrasound radiomics, a deep

learning ultrasound radiomics model with outstanding predictive e�ciency and

robustness has demonstrated excellent capability in the early prediction of acute

kidney injury (SA-AKI).

KEYWORDS

destruction-replenishment contrast-enhanced ultrasound, deep learning ultrasound

radiomics model, acute kidney injury, risk assessment, deep learning model

1 Introduction

According to the 2020 WHO statistics (1), there were 48.9 million cases of sepsis

worldwide in 2017, resulting in 11 million deaths. Sepsis-related deaths accounted

for 19.7% of all global deaths. The mortality rate of sepsis is 15–25%, and this

rate increases to 30–50% in cases of septic shock. Therefore, sepsis represents a
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significant public health issue worldwide due to its high incidence

and mortality rates.

The kidneys are one of the organs most frequently affected by

sepsis. Poston and Koyner (2) pointed out that up to 60% of sepsis

patients develop secondary AKI, and themortality rate significantly

increases once sepsis is complicated by AKI. It is currently believed

(3) that sepsis triggers macrocirculatory disturbances, leading

to reduced renal blood flow (RBF), which causes acute tubular

necrosis, thereby resulting in sepsis-associated AKI. As research

into sepsis-related AKI deepens, studies (4, 5) have found that

during septic shock, despite maintained or even increased RBF,

the glomerular filtration rate (GFR) decreases, suggesting that the

pathogenesis of sepsis-related AKI may be more complex. Hence,

studying intrarenal blood perfusion has become a crucial step in

understanding the pathophysiology of AKI during septic shock.

Currently, there are few methods available to assess and

monitor renal cortical microcirculatory perfusion in sepsis patients

(6, 7). Conventional color Doppler ultrasound, widely used for

real-time monitoring of renal hemodynamics in large vessels and

some small vessels in the renal parenchyma (8), lacks accuracy

in evaluating microcirculatory perfusion, especially in the renal

cortex. The recently developed contrast-enhanced ultrasound

(CEUS) technology, which uses microbubble contrast agents

(ultrasound contrast agents, UCA) much smaller than red blood

cells, allows assessment of human microcirculatory perfusion by

reaching any terminal small vessels via the pulmonary circulation.

Concurrently, the rapid advancements in deep learning and

artificial intelligence have revolutionized medical image analysis,

demonstrating exceptional capabilities in feature extraction and

pattern recognition (9). Radiomics, which involves the extraction

of a large number of quantitative features from medical images,

combined with machine learning algorithms, has shown promise

in achieving precise disease diagnosis and prognostic predictions

(10). However, current radiomics research on SAKI predominantly

focuses on modalities such as magnetic resonance imaging (MRI)

and computed tomography (CT), with limited studies exploring

deep learning-based ultrasound radiomics models for SAKI (11).

To the best of our knowledge, no study has yet confirmed

the feasibility of using a DLUR model for the early prediction

of acute kidney injury (SA-AKI). This study aims to establish

a deep learning ultrasound radiomics model based on burst-

replenishment contrast-enhanced ultrasound for the early

prediction of acute kidney injury (SA-AKI).

2 Materials and methods

2.1 Study participants

The retrospective study collected data from 135 patients with

sepsis at Beijing Chaoyang Hospital, Capital Medical University,

from January 2023 to November 2024, including 75 SA-AKI

patients and 60 SA-non-AKI patients. The inclusion criteria were:

(1) meeting the diagnostic criteria of the “International Consensus

on the Definition of Sepsis and Septic Shock, 3rd Edition”; (2)

meeting the diagnostic criteria for acute kidney injury: Acute

Kidney Injury (AKI) is defined when either of the following criteria

is met: (1) Serum Creatinine Elevation Absolute increase in serum

creatinine ≥0.3 mg/dL (26.5 µmol/L) within 48 h, OR Serum

creatinine rising to ≥1.5 times baseline value (i.e., ≥50% increase

from baseline) within 7 days. (2) UrineOutput Reduction Sustained

urine output <0.5 mL/kg/h persisting for ≥6 h; (3) age ≥18

years; (4) clear ultrasound images and complete clinical data. The

exclusion criteria were: (1) patients with chronic kidney disease,

renal transplantation, contraindications for SonoVueTM contrast

agents, or pulmonary hypertension; (2) incomplete clinical data; (3)

poor quality of ultrasound images. All patients provided informed

consent. Please refer to Figure 1 for detailed information. The data

from 135 patients with sepsis were randomly divided into a training

set (n = 95) and a testing set (n = 45) in an 7:3 ratio. Input data

included burst-reperfusion ultrasound contrast agents and clinical

data, while the output indicated whether the patient belonged to the

septic AKI or non-AKI group.

2.2 Ultrasound data acquisition

Ultrasound diagnosis was performed by physicians with more

than 5 years of relevant experience using the Mindray Resona

R9 color Doppler ultrasound diagnostic system manufactured by

the Chinese medical device company Mindray. The procedure

utilized intravenous infusion combined with burst-replenishment

contrast-enhanced ultrasound technology. The patient was placed

in a supine position, and a vein in the left elbow was punctured

to establish an intravenous access using a special vein tube for

contrast-enhanced ultrasound. Two vials of SonoVue contrast

agent were dissolved in 10ml of saline, thoroughly shaken, and

then placed in a 20ml syringe. The syringe was installed in a

specialized micro-infusion pump for contrast agents, with the

speed set at 2 ml/min, and connected to the venous tube. The

largest coronal section of the patient’s right kidney (showing

the renal hilum) was selected for observation. The injection

pump was activated, and the ultrasound was used to observe

the time it took for the contrast to reach the kidney, followed

by continuous observation for 2min until the contrast entered

the kidney parenchyma and reached equilibrium. A fixed high

mechanical index (MI > 0.7) was used to continuously burst

the microbubbles within the kidney parenchyma for 6 s until all

the contrast microbubbles were extinguished. Subsequently, the

ultrasound probe was placed at the largest coronal section of

the right kidney to continuously and dynamically observe the

replenishment phase when the microbubbles re-entered the kidney

for 30 s. This burst-replenishment process was repeated three times

to obtain three sets of dynamic replenishment images, which were

then subjected to time-intensity curve (TIC) analysis to acquire the

replenishment data.

2.3 Ultrasound image annotation

After anonymizing patient information, the original dynamic

ultrasound images were imported into the MedAI Darwin learning

platform. The patient information labels were defined as follows:

gender, age, body mass index, mean arterial pressure, arterial

carbon dioxide partial pressure, hemoglobin, white blood cell
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FIGURE 1

Flow diagram of the study population.

count, lactate, and serum creatinine. The lesion information label

included: renal function impairment (septic AKI vs. non-AKI).

Physicians with over 5 years of relevant experience manually

delineated the regions of interest (ROI). In case of discrepancies,

consultation with senior physicians (physicians with ≥10 years of

ultrasound diagnostic experience and the title of Associate Chief

Physician or higher) was sought for a definitive diagnosis.

2.4 Deep learning ultrasound radiomics
model development

To ensure the integrity and validity of the research data,

we have undertaken data preprocessing, aiming to enhance the

performance and robustness of the models. The data preprocessing

steps encompass data augmentation and image normalization.

Considering the unique structural characteristics of the training

data and the objectives of the task, we chose to build deep

learning models based on four different algorithms: ResNet18,

ResNet50, ResNeXt18, and ResNeXt50. ResNet (Residual Network)

and ResNeXt (Residual NeXt) are highly acclaimed deep learning

models in the field of image recognition. They utilize the concept

of residual learning, which enables the development of deeper

networks without being hindered by issues of vanishing or

exploding gradients.

ResNet addresses the issue of degradation in deep convolutional

neural networks by introducing residual blocks. In these blocks,

the input feature maps are combined with the subsequent

layers through skip connections, allowing for the maximum

preservation of the original information. Such design enables

the residual blocks to learn the residual function, capturing the

difference between the feature maps and the desired output.

ResNeXt, an improvement upon ResNet, introduces grouped

convolution within each residual block to enhance the model’s

expressive power. Traditional convolutional operations convolve

each channel of the input feature maps with each filter,

whereas grouped convolution divides the input feature maps
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into multiple groups and independently convolves each group.

By increasing the number of groups, ResNeXt enhances the

model’s expressive power without increasing the total number

of parameters or computational complexity. Typical structures

of ResNet and ResNeXt consist of multiple residual blocks,

with variants such as ResNet-18, ResNeXt-18, ResNet-50, and

ResNeXt-50 being widely used. Both ResNet and ResNeXt are

composed of several residual blocks. Within each residual block,

the convolutional layers are no longer ordinary convolutions but

rather grouped convolutions, which divide the input feature maps

into multiple groups for independent convolutional operations.

The number of convolutional kernels within each group in grouped

convolution is equal, and the quantity of groups is referred to

as “cardinality.” By increasing the cardinality, the model’s non-

linear expressive power can be enhanced. For instance, ResNet-

18 is a relatively shallow ResNet model with approximately

11 million total parameters, while ResNet-50 is a deeper and

more complex ResNet model with approximately 23 million

total parameters.

In general, ResNet and ResNeXt exhibit slight differences in

their model structures, but both leverage the concept of residual

learning to address challenges in deep networks. These models have

demonstrated outstanding performance in image recognition tasks

and have become pivotal models in research and applications. The

predictive performance of each model is evaluated using receiver

operating characteristic (ROC) curves, and metrics such as area

under the curve (AUC), sensitivity, specificity, and accuracy are

calculated to select the best differentiating model for tuberculous

hydronephrosis and non-tuberculous hydronephrosis. To optimize

computational resources and improve training efficiency, this study

uniformly employs region of interest (ROI) sub-images for model

training, with the ROI sub-image size standardized to 64× 64× 64

prior to training. Additionally, 3D image augmentation techniques,

such as random flipping and random cropping, are applied to the

training data.

After evaluating the deep learning modeling experiments,

features were extracted from the fully connected layers of the best-

performing deep learningmodel. These deep learning features were

FIGURE 2

The complete research process.
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then used to build an ultrasound radiomics model using three

mainstreammachine learning algorithms: Logistic Regression (LR),

Support Vector Machine (SVM), and Random Forest (RF). The

predictive performance of each model was assessed using receiver

operating characteristic (ROC) curves, and metrics such as the

area under the curve (AUC), sensitivity, specificity, PPV, NPV, and

accuracy were calculated. The complete research process is shown

in Figure 2.

2.5 Statistical analysis

SPSS version 27.0 statistical analysis software was used to

analyze the significance of each model. Categorical data were

presented as actual frequencies and percentages. The classification

performance of the models was assessed using the AUC, accuracy,

sensitivity, specificity, PPV, and NPV derived from the receiver

operating characteristic (ROC) curves. The DeLong test was used

to compare the significance of the AUCs among the different

models. A P-value of <0.05 was considered statistically significant,

indicating a difference with practical importance.

3 Results

3.1 General clinical data

This study included 135 septic patients, who were divided into

AKI group (n = 75) and non-AKI group (n = 60) based on renal

function within 48 h and urine output within 24 h. There were

90 males and 45 females, with an average age of 65.3 ± 15.2

years. General clinical data are presented in Table 1. There were

no statistically significant differences in age, sex, body mass index,

MAP, PaCO2, and CRP between the two groups (P > 0.05). The

TABLE 1 The general clinical data of enrolled patients.

SA-Non-AKI
(n = 60)

SA-AKI
(n = 75)

Significance
(p)

Age 69 (17–90) 63 (54–77)

Gender (percentage of

females)

36% 27%

Temperature 36.8± 0.87 36.8± 0.29 0.336

Pulse 82.7± 13.2 89.1± 21 0.49

Respiration (breaths per

minute)

21.4± 4.8 18.7± 4.7 0.302

BMI 23.8± 2.98 22.9± 4.9 1.000

Mean arterial pressure

(MAP)

72.0± 19.0 85.1± 9.7 0.193

Arterial partial pressure of

carbon dioxide (PaCO2)

54.5± 27.5 47± 15.8 0.530

Hemoglobin 108.1± 24.3 90± 22 0.964

White blood cell count 11.7± 6.7 15.4± 13.3 0.151

Lactic acid 1.26± 0.26 2.97± 3.15 0.007∗

ScR 60.6± 19.9 216.9±

149.5

0.025∗

∗Indicates that P < 0.05. There is a statistically significant difference between the two groups.

levels of Scr and Lac in the AKI groupwere significantly higher than

those in the non-AKI group, and the differences were statistically

significant (P < 0.05).The general clinical data of enrolled patients

are shown in Table 1.

3.2 Performance of the deep learning
ultrasound radiomics model

Table 2 lists four algorithm models based on deep learning

technology. Compared with other deep learning models on the

testing dataset, ResNet 18 exhibited superior overall performance.

The AUC of ResNet 18 was 0.899 (95% CI: 0.858–0.940), with

a sensitivity of 0.800, specificity of 0.857, PPV of 0.706, NPV of

0.909, and accuracy of 0.840. Comparison of performance among

different deep learning models as shown in Figure 3.

Ultimately, among the three classifiers, the deep learning

ultrasound radiomics model based on logistic regression

demonstrated the best classification performance (see Table 3). In

the testing set, the AUC of DLUR-LR was 0.973 (95% CI: 0.949–

0.998), with a sensitivity of 0.905, specificity of 0.960, PPV of 0.905,

NPV of 0.960, and accuracy of 0.944; the AUC of DLUR-SVM was

0.953 (95% CI: 0.918–0.988), with a sensitivity of 0.892, specificity

of 0.938, PPV of 0.857, NPV of 0.954, and accuracy of 0.924;

the AUC of DLUR-RF was 0.929 (95% CI: 0.890–0.968), with a

sensitivity of 0.907, specificity of 0.891, PPV of 0.782, NPV of

0.957, and accuracy of 0.896. Comparison of performance among

different deep learning ultrasound radiomics models as shown in

Figure 4.

In our study, we utilized performance metrics such as AUC,

sensitivity, specificity, PPV, and NPV due to their significant

clinical importance in the context of early AKI diagnosis. These

metrics were carefully chosen to align with and reflect the critical

aspects of clinical outcomes. The AUC provides a comprehensive

assessment of the model’s overall ability to distinguish between

AKI and non-AKI cases across all thresholds, offering a holistic

evaluation of performance. Sensitivity and specificity are directly

related to clinical priorities: high sensitivity minimizes missed true

cases, ensuring timely treatment, while high specificity reduces

false positives, avoiding unnecessary interventions. PPV and NPV

further aid clinical decision-making by indicating the likelihood

that test results accurately reflect the patient’s condition, thereby

supporting clinicians in making informed treatment choices.

Together, these metrics not only validate the statistical performance

of our model but also underscore its practical utility in improving

patient outcomes by facilitating early and accurate diagnosis of

sepsis-associated AKI.

4 Discussion

Sepsis-associated acute kidney injury (AKI) is a significant

complication that complicates the management of septic patients

and dramatically increases morbidity and mortality rates. The early

diagnosis of sepsis-associated AKI is crucial for implementing

timely therapeutic strategies, which can significantly improve

patient outcomes. In this study, we explored the utility of

destruction-replenishment contrast-enhanced ultrasonography
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TABLE 2 The performance comparison of di�erent deep learning models.

Model AUC (95%CI) Sensitivity Specificity PPV NPV Accuracy

ResNet18 0.899 [0.858–0.940] 0.800 0.857 0.706 0.909 0.840

ResNet50 0.879 [0.828–0.931] 0.838 0.847 0.697 0.925 0.844

ResNext18 0.856 [0.802–0.910] 0.811 0.841 0.682 0.914 0.832

ResNext50 0.842 [0.793–0.892] 0.773 0.766 0.586 0.887 0.768

FIGURE 3

Comparison of performance among di�erent deep learning models.

(DR-CEUS) as a novel method for the early detection of

sepsis-associated AKI.

Our results indicate that DR-CEUS can detect early renal

changes associated with sepsis before traditional markers show

significant alterations. This is particularly important in the context

of sepsis, where timely intervention is necessary to mitigate kidney

injury. The ability to identify renal microcirculatory dysfunction

may allow clinicians to initiate protective strategies earlier in the

disease course, potentially reversing or preventing AKI progression.

We developed a deep learning ultrasound radiomics model that

outperforms four different deep learning network models, namely

ResNet18, ResNet50, ResNext18, and ResNext50. Compared to

the best-performing model within ResNet18, our deep learning

ultrasound radiomics model demonstrated superior predictive

performance on the explosive-replenishment contrast-enhanced

ultrasound imaging test data. The deep learning informatics

model exhibited higher reliability and reproducibility in evaluating

diagnostic outcomes, leveraging its inherent characteristics.

The performance differences among the various deep learning

network models may be attributed to their distinct network

architectures (12). In our study, we trained four different deep

learning network architectures: ResNet18, ResNext18, ResNet50,

and ResNext50, all of which are widely used in various

clinical applications. We chose ResNet18, which exhibited the

best predictive performance in our study, to extract deep

learning features for constructing the deep learning ultrasound

radiomics model. Among these four models, the ResNet network

demonstrated more stable and superior predictive performance

compared to other classical deep learning networks in the test set.

The ResNet architecture maintains the integrity of information

by directly passing input information to the output to learn the

residual functions throughout the network. This property helps

mitigate the issues of gradient vanishing and explosion, allowing

the network to deepen without compromising performance (13).

The ResNext network is a new architecture based on ResNet

that incorporates the recurrent layer strategy of ResNet and

combines it with a split-transform-merge strategy in a simple

and scalable manner (14). However, the predictive results of the

ResNext network were inferior to those of the ResNet network. In

deep learning, dimensionality reduction, classification, and feature

extraction are performed in an integrated manner. However,

the quality and output of these cascading layers depend on
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TABLE 3 The performance comparison of di�erent deep learning ultrasound radiomics models.

Model AUC (95%CI) Sensitivity Specificity PPV NPV Accuracy

DLUR-LR 0.973 [0.949–0.998] 0.905 0.960 0.905 0.960 0.944

DLUR-SVM 0.953 [0.918–0.988] 0.892 0.938 0.857 0.954 0.924

DLUR-RF 0.929 [0.890–0.968] 0.907 0.891 0.782 0.957 0.896

FIGURE 4

Comparison of performance among di�erent deep learning ultrasound radiomics models.

various hyperparameters such as the number of layers, feature

maps, layer configurations, and structures. Different network

architectures utilize different sets of hyperparameters, and the

choice of these hyperparameters and architectures may impact

predictive performance.

Our study reveals that the deep learning ultrasound radiomics

model significantly outperforms traditional diagnostic methods

and physician assessments in diagnosing sepsis-associated AKI.

This advancement holds promise for improving early diagnosis

in clinical settings. The integration of such AI-powered tools is

increasingly feasible due to advancements in digital healthcare

infrastructure, and our model can be seamlessly incorporated

into existing ultrasound practices. However, potential barriers

include initial investment costs, resistance to workflow changes,

a need for comprehensive training, regulatory hurdles, and data

privacy concerns. Despite these challenges, the clinical impact of

implementing this model is substantial, offering more accurate

diagnoses, timely interventions, and improved patient outcomes,

while also alleviating physicians’ cognitive load. Expanding our

discussion to include these integration considerations and clinical

benefits highlights the model’s potential to enhance real-world

healthcare delivery.

5 Conclusion

In this study, we propose a deep learning ultrasound imaging

model based on blast-reperfusion ultrasound contrast imaging.

Our method effectively integrates the technical advantages of deep

learning and ultrasound imagingomics, demonstrating excellent

predictive performance for the early diagnosis of sepsis-related

acute kidney injury (AKI). This enables clinicians to detect renal

changes earlier than traditional methods, allowing for the use of

more precise interventions.
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