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Background: Transperineal ultrasound (TPUS) is widely utilized for the evaluation

of female stress urinary incontinence (SUI). However, the diagnostic accuracy

of parameters related to urethral mobility and morphology remains limited and

requires further optimization.

Objective: This study aims to develop and validate an optimized deep learning

(DL) model based on TPUS images to improve the precision and reliability of

female SUI diagnosis.

Methods: This retrospective study analyzed TPUS images from 464 women,

including 200 patients with SUI and 264 controls, collected between

2020 and 2024. Three DL models (ResNet-50, ResNet-152, and DenseNet-

121) were trained on resting-state and Valsalva-state images using an 8:2

training-to-testing split. Model performance was assessed using diagnostic

metrics, including area under the curve (AUC), accuracy, sensitivity, and

specificity. A TPUS-index model, constructed using measurement parameters

assessing urethral mobility, was used for comparison. Finally, the best-

performing DL model was selected to evaluate its diagnostic advantages over

traditional methods.

Results: Among the three developed DL models, DenseNet-121 demonstrated

the highest diagnostic performance, achieving an AUC of 0.869, an accuracy

of 0.87, a sensitivity of 0.872, a specificity of 0.761, a negative predictive value

(NPV) of 0.788, and a positive predictive value (PPV) of 0.853. When compared to

the TPUS-index model, the DenseNet-121model exhibited significantly superior

diagnostic performance in both the training set (z = −2.088, p = 0.018) and the

testing set (z = −1.997, p = 0.046).

Conclusion: This study demonstrates the potential of DL models, particularly

DenseNet-121, to enhance the diagnosis of female SUI using TPUS images,

providing a reliable and consistent diagnostic tool for clinical practice.
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Introduction

Stress urinary incontinence (SUI) refers to the involuntary

leakage of urine during activities that increase intra-abdominal

pressure, such as coughing or physical exertion. It is commonly

observed in female, significantly impacting the quality of their

life. Studies have reported that the prevalence of SUI in

postmenopausal women ranges from 10% to 40% (1). From

the pathophysiological perspective, the development of SUI is

primarily associated with damage to the supportive structures of

the bladder neck and proximal urethra, as well as excessive urethral

mobility (2).

Transperineal ultrasound (TPUS) is widely utilized in

clinical practice to evaluate pelvic floor dysfunction, including

SUI. This non-invasive imaging modality provides clear

visualization of pelvic floor structures, such as the urethra,

bladder, and vagina, and enables quantitative assessment

of urethral mobility (3, 4). Measurable parameters derived

from TPUS, including bladder neck descent (BND), urethral

rotation angles (URA), and urethral length, hold diagnostic

value for female SUI (5–7). However, current ultrasound

techniques for diagnosing SUI face significant challenges. The

dependence of TPUS on operator experience may lead to

inconsistencies in diagnostic results, affecting clinical decision-

making. Patient cooperation directly impacts the accuracy of

parameters, such as the intensity and duration of the Valsalva

maneuver. Moreover, the dynamic changes in the structures

surrounding the urethra are complex, and existing parameters may

overlook certain important functional abnormalities, resulting in

incomplete diagnosis. These limitations underscore the need for

innovative approaches to enhance the accuracy and reliability of

SUI diagnosis.

Recent advancements in artificial intelligence (AI), particularly

deep learning (DL) algorithms, have demonstrated significant

potential in enhancing diagnostic accuracy in medical imaging.

Unlike traditional machine learning methods, DL models

automatically extract detailed structural features from raw data

without requiring operator expertise or manually designed

feature extraction (8). DL algorithms exhibit exceptional

proficiency in segmenting pelvic floor ultrasound images

and identifying pelvic floor structures. Additionally, they are

capable of dynamically segmenting and automatically measuring

anterior pelvic structures, such as bladder neck descent and

urethral rotation angles (9–12). These capabilities make DL

models potentially capable of achieving breakthroughs in

addressing the limitations of conventional TPUS diagnostics for

female SUI.

This study aims to develop and validate a convolutional

neural network (CNN)-based DL model optimized for TPUS

imaging to overcome key challenges in diagnosing SUI. By

harnessing DL’s capabilities for automated feature extraction

and precise analysis, the model strives to enhance diagnostic

accuracy, while reducing reliance on operator expertise and

mitigating measurement variability. Ultimately, this study seeks

to establish a diagnostic tool that can be integrated into clinical

workflows, facilitating earlier detection and improvedmanagement

of SUI.

Materials and methods

Objects

The study retrospectively collected data from female patients

who underwent TPUS examinations at the Department of Urology

and Gynecology, the Second Affiliated Hospital of Xi’an Jiaotong

University from 2020 to 2024. The study was conducted in

compliance with the Declaration of Helsinki and approved by the

Institutional Review Board (IRB number 2020823).

All patients underwent a comprehensive clinical evaluation,

which included completing the International Consultation on

Incontinence Questionnaire-Urinary Incontinence Short Form

(ICIQ-UI-SF), the International Consultation on Incontinence

Questionnaire-Female Lower Urinary Tract Symptoms (ICIQ-

FLUTS), urinalysis, uroflowmetry, andmaintaining a 3-day bladder

diary (13, 14). Inclusion criteria for the SUI group were: (1) age

>18 years; (2) clinical diagnosis of SUI; (3) availability of complete

TPUS images and clinical data. Exclusion criteria included: (1)

residual urine volume >50mL; (2) history of pelvic or pelvic floor

reconstructive surgery; (3) active urinary tract infection or history

of urogenital tumors; (4) unclear ultrasound images or inability to

perform the Valsalva maneuver. A total of 200 patients meeting

these criteria were included in the SUI group. Additionally, 264

female patients without a diagnosis of SUI during the same period,

who fulfilled the inclusion criteria, were selected as the control

group (non-SUI group). Transperineal ultrasound images were

collected for all patients, including 464 resting-state images and 464

Valsalva-state images (Figure 1).

Ultrasound images acquisition

TPUS examinations were conducted by expert sonographer

with 5–10 years of the pelvic for ultrasound experience using

a Mindray Resona 8 ultrasound system equipped with a DE10-

3U 3D volumetric probe (frequency range: 3–10 MHz). Patients

were positioned in the lithotomy position after bladder emptying,

following the protocol established by Dietz HP (15). Mid-sagittal

pelvic floor static images were obtained at rest and during the

Valsalva maneuver. Key parameters, including bladder symphyseal

distance (BSD), urethral axis angle (α angle), and retrovesical angle

(RVA), were measured. Additionally, bladder neck descent (BND)

and urethral rotation angle (URA) were calculated. Ultrasound

static images were exported in JPG format for subsequent analysis

(Figure 2).

Deep learning model development

Ultrasound images in JPG format were imported into the

MedAI Darwin learning platform (http://premium.darwin.yizhun-

ai.com). Using the platform’s tools, the urethra was delineated as

the region of interest (ROI). The annotation process was carried

out by an experienced pelvic floor ultrasound specialist, and any

disagreements were resolved through consensus discussion. The
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FIGURE 1

The flow diagram of recruitment and grouping of research objects.

FIGURE 2

Mid-sagittal ultrasound images of the pelvic organs. (A) Anatomical landmarks: the public symphysis (PS), bladder neck (BN), and urethra (U) are also

visualized. (B) Index measurement mark: bladder symphyseal distance (BSD), urethral axis angle (α angle) and retrovesical angle (RVA).

dataset included 928 images (464 resting-state and 464 Valsalva-

state), with annotated ROIs. The annotated data were randomly

divided into a training set (n = 371) and a testing set (n = 93) in

an 8:2 ratio. Following this, preprocessing operations such as data

augmentation and normalization were performed on the input ROI

sub-images, including random flipping, image transposition, and

pixel value normalization (16).

Three DL architectures were implemented for model

development: ResNet-50, ResNet-152, and DenseNet-121. The

models were trained separately on resting-state and Valsalva-state

images to predict the presence of SUI. Model performance was

evaluated using standard diagnostic metrics, including the area

under the receiver operating characteristic curve (AUC), accuracy,

sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV). Receiver operating characteristic (ROC)

curves were generated to visualize and compare the classification

performance of the models. The complete experimental workflow

is shown in Figure 3.
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FIGURE 3

Schematic diagram of DL models in predicting the risk of SUI. DL, Deep Learning; TPUS, Transperineal Ultrasound; SUI, Stress Urinary Incontinence.

Construction of the TPUS-index model in
predicting the risk of SUI

A TPUS-index model was constructed using

ultrasonic measurement parameters for assessing urethral

morphology and mobility as independent variables,

with SUI diagnosis as the outcome variable. Binary

logistic regression analyses were performed to identify

significant predictors of SUI, and the model’s predictive

performance was evaluated using AUC, accuracy, sensitivity,

and specificity.

Statistical analysis

Statistical analyses were conducted using SPSS software

(version 26.0; IBM Corp). Continuous variables were expressed

as mean ± standard deviation (SD) and compared using

independent samples t-tests. Categorical variables were

presented as counts and percentages and analyzed using chi-

square tests. Univariate and multivariate logistic regression

with forward stepwise analysis were applied to screen for

independent risk factors and establish a TPUS-index model.

The predictive performance of the model was evaluated by

plotting ROC curves and calculating the AUC along with

the consistency index (CI). Comparisons of AUC values

between models were performed using z-tests. All statistical

tests were two-tailed, and a p-value < 0.05 was considered

statistically significant.

Results

Baseline characteristics

The baseline characteristics of the study population are

summarized (Supplementary Table 1). The mean age of the

participants was 47.90 ± 14.88 years, ranging from 19 to 90

years. The average parity was 1.38 ± 0.80, and the mean BMI

was 23.22 ± 1.80 kg/m². Among the participants, 233 women

(50.2%) were postmenopausal. The clinical characteristics

were balanced between the testing set and the training

set, with no significant differences in age, parity, BMI, or

menopausal status.

Diagnostic performance of DL models

The DL models based on resting-state images exhibited

inferior diagnostic performance. In contrast, the DL

models trained on Valsalva-state images demonstrated

significantly better performance in predicting SUI.

DenseNet-121 achieved the best discriminatory ability

among the three models, with a well-balanced performance

across multiple diagnostic metrics, including accuracy

(81.7%), sensitivity (87.2%), and specificity (76.1%)

(Table 1).

In the training set, significant differences were found between

ResNet-50 and ResNet-152 (z = −2.149, p = 0.032) and

between ResNet-50 and DenseNet-121 (z = −3.568, p <

0.001). However, no significant difference in AUC values was

observed between ResNet-152 and DenseNet-121 (z = −1.661,

p = 0.097). In the testing set, DenseNet-121 demonstrated

a statistically significant superiority in AUC compared to

ResNet-152 (z = −2.372, p = 0.029) and ResNet-50 (z

= −2.190, p = 0.018). These results confirm the superior

classification ability of DenseNet-121 in both training and testing

datasets (Figure 4).

Construction of the TPUS-index model in
predicting the risk of SUI

Among the TPUS measurement parameters, BSD-rest and

BSD-valsalva were lower in the SUI group (OR: 0.910 and 0.894,

p < 0.001), while α angle-valsalva, BND, and URA were higher

in the SUI group (OR: 1.037, 1.124, and 1.023, p < 0.001).
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TABLE 1 Comparison of the diagnostic performance between DL models for SUI based on TPUS images.

Image mode DL model Group AUC(95%CI) Accuracy Sensitivity Specificity PPV NPV

Resting ResNet-50 Training set 0547 (0.487, 0.606) 0.578 0.726 0.380 0.611 0.508

Testing set 0.605 (0.490, 0.720) 0.559 0.269 0.927 0.824 0.500

ResNet-152 Training set 0.482 (0.421, 0.542) 0.589 0.948 0.108 0.588 0.607

Testing set 0.553 (0.436, 0.670) 0.548 0.250 0.927 0.813 0.494

DensNet-121 Training set 0.532 (0.472, 0.591) 0.538 0.392 0.734 0.664 0.473

Testing set 0.490 (0.369,0.610) 0.516 0.192 0.927 0.769 0.475

Valsalva ResNet-50 Training set 0.713 (0.659, 0.766) 0.695 0.757 0.608 0.733 0.637

Testing set 0.803 (0.710, 0.896) 0.774 0.830 0.717 0.750 0.805

ResNet-152 Training set 0.761 (0.712, 0.810) 0.722 0.739 0.699 0.778 0.652

Testing set 0.809 (0.720, 0.898) 0.763 0.872 0.652 0.719 0.833

DensNet-121 Training set 0.798 (0.752, 0.845) 0.747 0.761 0.725 0.832 0.681

Testing set 0.869 (0.793, 0.945) 0.817 0.872 0.761 0.788 0.853

DL, Deep Learning; AUC, Area Under the ROC Curve; CI, Confidence Interval; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

FIGURE 4

ROC curves of the DL models for diagnosing SUI based on Valsalva-state TPUS images. (A) Training Set; (B) Testing Set. ROC, Receiver Operating

Characteristic; DL, Deep Learning; SUI, Stress Urinary Incontinence; TPUS, Transperineal Ultrasound.

Additionally, α angle-rest was slightly lower in the SUI group (OR:

0.988, p = 0.015; Table 2). Based on the univariate analysis, six

significant variables (BSD-rest, BSD-valsalva, α angle-rest, α angle-

valsalva, BND, and URA) were included in the multivariate logistic

regression analysis due to their strong statistical association with

SUI (p < 0.05).

The Rad-score of the TPUS-index model achieved an

AUC of 0.736 (95% CI: 0.629 – 0.843), with an accuracy,

sensitivity, and specificity of 77.2%, 67.5%, and 75.5%,

respectively (Table 3). The model formula is as follows:

RadScore = −0.047∗BSD(valsalva) – 0.036∗BSD(rest) +

0.020∗α angle(valsalva) + 0.018∗BND −0.008∗α angle(rest)

−0.002∗URA−0.003.

Comparison of the diagnostic performance
between DL model and TPUS-index model

In the training set, the DL model demonstrated a significantly

higher AUC compared to the TPUS-index model (z = −2.088,

p < 0.05), indicating superior diagnostic performance. Similarly,

in the testing set, the AUC of the DL model was also

significantly higher than that of the TPUS-index model (z

= −1.997, p < 0.05). Beyond the AUC, other diagnostic

metrics, including accuracy, sensitivity, and specificity, was

consistently better for the DL model compared to the TPUS-

index model. This highlights the DL model’s enhanced capability

in diagnosing SUI, offering a more robust and reliable diagnostic
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TABLE 2 Univariate binary logistic regression analysis of TPUS ultrasonic measurement.

TPUS measurement
variable

SUI group (n = 200) non SUI group
(n = 264)

Odds ratio (95% CI) P-value

BSD-rest(mm, mean± SD) 22.460± 4.783 23.980± 3.465 0.910 (0.867, 0.956) 0.000

BSD-valsalva(mm, mean± SD) −1.310± 11.462 14.440± 7.862 0.894 (0.873, 0.916) 0.000

α angle-rest(◦ , mean± SD) 24.690± 17.335 28.980± 19.646 0.988 (0.978, 0.998) 0.015

α angle-valsalva(◦ , mean± SD) 45.600± 25.337 25.050± 20.535 1.037 (1.028, 1.046) 0.000

RVA-valsalva(◦ , mean± SD) 137.180± 24.936 133.440± 20.467 1.008 (0.999, 1.016) 0.079

BND(mm, mean± SD) 23.770± 10.552 14.440± 7.862 1.124 (1.095, 1.153) 0.000

URA(◦ , mean± SD) 59.340± 29.929 40.900± 26.633 1.023 (1.016, 1.030) 0.000

TPUS, Transperineal Ultrasound; SUI, Stress Urinary Incontinence; CI, Confidence Interval; BSD, Bladder Symphyseal Distance; RVA, Retrovesical Angle; BND, Bladder Neck Descent; URA,

Urethral Rotation Angle; SD, Standard Deviation.

TABLE 3 In comparison of the performance between DL model and TPUS-index model in predicting SUI in the training and testing sets.

Group Diagnostic
model

AUC (95% CI) P-value Accuracy Sensitivity Specificity PPV NPV

Training set DL Model 0.798 (0.752, 0.845)
0.018

0.747 0.761 0.725 0.832 0.681

TPUS-index

Model

0.721 (0.666, 0.777) 0.730 0.631 0.806 0.711 0.742

Testing set DL Model 0.869 (0.793, 0.945)
0.046

0.817 0.872 0.761 0.788 0.853

TPUS-index

Model

0.736 (0.629, 0.843) 0.772 0.675 0.755 0.675 0.775

DL, Deep Learning; TPUS, Transperineal Ultrasound; SUI, Stress Urinary Incontinence; AUC, area under the ROC curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

approach compared to the TPUS-index model (Table 3 and

Supplementary Figures 1, 2).

Discussion

This study developed a DL model for the diagnosis of female

SUI and compared its diagnostic performance with that of an

ultrasound assessment model. Our findings demonstrate that the

DL model outperformed the TPUS-index model in predicting

the disease.

Our findings revealed that DL models trained on resting-

state images exhibited poor diagnostic performance. In contrast,

models trained on Valsalva-state images demonstrated significantly

better performance in diagnosing SUI. The inferior performance

of resting-state models can be attributed to the lower recognition

rate of organs farther from the probe, such as the bladder and

uterus, by CNN under resting conditions (9). Additionally, the

morphology and function of the urethra change during the Valsalva

maneuver. The limited anatomical changes observable under

resting conditions provide insufficient diagnostic information

for the model to learn effectively (17). This aligns with

current clinical practice, where sonographer prioritize changes

in the urethral angle and position in Valsalva-state images

when assessing SUI through pelvic floor ultrasound (2). These

findings indicate that DL models relying solely on resting TPUS

images lack the reliability required for accurate diagnosis of

female SUI.

Among the three DL models developed using Valsalva-state

images, DenseNet-121 outperformed the ResNet models (ResNet-

152 and ResNet-50), particularly in the testing set. This superior

performance highlights DenseNet-121′s network architecture,

which offers enhanced feature reuse and information flow

through its dense connections, significantly reducing parameter

redundancy. This optimizationmakes DenseNet-121more efficient

in terms of both parameter count and computational performance.

The model exhibits strong classification capabilities in disease

diagnosis through medical imaging (18–20). In the testing

set, DenseNet-121 successfully identified four positive cases of

SUI that were missed by ResNet-50 and ResNet-152. This

superior sensitivity underscores DenseNet-121′s ability to capture

subtle features in images. In contrast, the limitations of the

ResNet models stem from their residual connections being

confined to adjacent layers, which results in less effective

feature reuse and greater computational resource requirements

during training.

TPUS is a non-invasive and repeatable tool commonly used

to assist in the assessment of female SUI. The SUI prediction

models established based on TPUS ultrasound measurement data

are also one of the current research hotspots. Liu and Quan (21)

developed a postpartum SUI model using clinical data, bladder

neck descent, and urethral funneling, achieving an AUC of 0.807

in the validation cohort. Another study on predicting SUI based

on pelvic floor ultrasound data reported that combining multiple

measurement parameters in the model achieved an AUC of 0.802,

with sensitivity ranging from 0.542 to 0.665 and specificity from
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0.867 to 0.980 (6). This study also demonstrated the predictive

value of ultrasound parameters in diagnosing SUI. Indicators

of Valsalva-State had a significant impact on the model’s Rad-

Score, consistent with previous research findings. These results

further emphasize the critical role of Valsalva maneuver images

in evaluating SUI. However, the limitations of such models lie

in the need to collect clinical information or repeatedly measure

multiple ultrasound parameters, which is time-consuming and

highly dependent on the operator’s technical expertise and dynamic

observation skills.

This study found that the optimal DL model developed

using TPUS images demonstrated higher diagnostic value for

SUI compared to the TPUS-index model. The advantages of DL

models lie in their ability to capture subtle imaging details that are

challenging for sonographers while performing rapid automated

analysis, reducing human errors and significantly shortening

operational time. Notably, the optimal DL model in our study

showed a significant advantage in sensitivity compared to the

TPUS-index model. However, five positive cases in the testing

set were misclassified by the DL model. Upon analysis, three

cases involved uterine prolapse. Since uterine prolapse can cause

structural changes in the adjacent urethra and posterior bladder

wall, it may have affected the model’s automatic segmentation

of the urethra, thereby influencing the classification results. In

addition, the DenseNet-121 model shows suboptimal performance

with a specificity of 0.761 in ruling out non-SUI cases. Possible

reasons include the limited number of non-SUI cases in the dataset,

which may cause the model to be biased toward the majority

class, resulting in insufficient ability to identify non-SUI cases.

Additionally, non-SUI cases may exhibit diverse manifestations,

making it difficult for the model to capture their complex features.

To address these issues, improvements can be made by balancing

the dataset and enhancing data diversity, or by fine-tuning the

model or customizing layers to better capture the features of

non-SUI cases. Despite these challenges, the DL model exhibited

excellent performance in AUC and sensitivity for SUI diagnosis,

making it a valuable tool for early detection. With an aging

population, the rising incidence of SUI and its impact on quality

of life have gained widespread attention. Early diagnosis and

intervention are crucial in managing SUI. Accurate identification

of early-stage SUI patients and the provision of timely treatments,

such as lifestyle modifications, pelvic floor muscle therapy,

and pharmacological interventions, can effectively slow disease

progression. Compared to late-stage surgical treatments, these

measures are more cost-effective, less invasive, and significantly

improve patients’ quality of life. Furthermore, the development of

DL models facilitates large-scale screening for this condition in the

general population.

Limitations of the study

First, the sample size included in this study was relatively small,

necessitating further research with larger, more diverse prospective

samples. Importantly, external validation in diverse populations,

such as multi-center cohorts or across varying ultrasound devices,

is currently absent and represents a critical limitation. Future

steps should include multi-center validation and testing across

different imaging devices to ensure the model’s adaptability and

reliability in various clinical settings. Second, the developed DL

model analyzed only ultrasound images and did not integrate

clinical data. Therefore, in the next phase, we plan to combine

clinical data with the DL model to design and construct a new

hybrid model, further improving its diagnostic performance for

female SUI.

Conclusion

In summary, this study developed a DL model for

diagnosing female SUI, showing significant improvements in

specificity, sensitivity, accuracy, and testing set consistency

compared to the TPUS-index models, and its diagnostic

performance was validated. It demonstrates the potential of

DL models to enhance diagnostic accuracy and automation for

female SUI.
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