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Background: The number of risk prediction models for mortality in patients with

severe pneumonia (SP) is increasing, while the quality and clinical applicability

of these models remain unclear. This study aimed to systematically review

published research on risk prediction models for mortality in patients with SP.

Methods: PubMed, Embase, Cochrane Library, and Web of Science were

searched from inception to August 31, 2024. Data from selected studies were

extracted, including study design, participants, diagnostic criteria, sample size,

predictors, model development, and performance. The prediction model risk

of bias assessment tool was used to assess the risk of bias and applicability. A

meta-analysis of the area under the curve (AUC) values from validated models

was conducted using Stata 17.0 software.

Results: A total of 22 prediction models from 18 studies were included in this

review, including 15 logistic regression models, two cox proportional regression

hazards models, two classification and regression trees, one light gradient

boosting machine, and one multilayer perceptron. The reported AUC values

ranged from 0.713 to 0.952. Seventeen studies were found to have a high risk

of bias, primarily due to inappropriate data sources and poor reporting of the

analysis domain. The pooled AUC value of five validated models was 0.85 (95%

confidence interval: 0.81–0.88), indicating a fair level of discrimination.

Conclusion: Although the included studies reported that the risk prediction

models for mortality in patients with SP exhibited a certain level of discriminative

ability, most of thesemodels were found to have a high risk of bias. Future studies

should focus on developing newmodels with larger sample sizes, rigorous study

designs, and multicenter external validation.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42024589877, identifier: CRD42024589877.
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1 Introduction

Severe pneumonia (SP) is a common and serious disease characterized by lower

respiratory infection with rapid progression, poor prognosis, and heavy economic burden.

It is the leading cause of infection-related mortality and admissions to intensive care units

(ICUs) globally (1). The Global Burden of Disease Study from 2016 states that the mortality
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of severe community-acquired pneumonia (SCAP) can range from

20% to 50% (2). Despite quick advancements in pertinent diagnosis

and therapy, the mortality of SP has hardly dropped in recent

years (1). According to a prospective cohort study conducted in

the United States (US) in 2020, 23% of pneumonia patients needed

to be admitted to ICUs. Pneumonia patients in ICUs had a 30-day

mortality of 27% and an annual mortality of 47% (3).

Risk prediction models for mortality in patients with SP

contribute to identifying high-risk patients with poor prognosis

and intervening timely, which is significant for improving

clinical outcomes. The Confusion, Urea, Respiratory rate, Blood

pressure, age ≥ 65 (CURB-65) score is one of the commonly

used pneumonia-related scoring systems in clinical practice.

This simple scoring system rapidly stratifies patients into three

distinct risk classes based on five key clinical parameters (4).

The Pneumonia Severity Index (PSI) consists of 20 variables

covering demographics, comorbidities, physical examination, and

laboratory tests that can categorize patients into five risk classes,

providing a more comprehensive assessment (5). The Sequential

Organ Failure Assessment (SOFA) and the Acute Physiology

and Chronic Health Evaluation II (APACHE II) provide a

comprehensive assessment of organ dysfunction in the ICU (6, 7).

The Predisposition, Insult, Response, Organ dysfunction (PIRO)

score can be helpful in evaluating mortality in sepsis-associated

pneumonia (8). However, they face some limitations. The CURB-65

score demonstrates suboptimal performance in critical patients and

omits crucial inflammatory biomarkers. PSI suffers from practical

constraints in emergency settings due to its complexity. SOFA and

APACHE II lack pneumonia-specific parameters. The PIRO score

shows restricted applicability in non-septic cases. Therefore, the

development of specific prediction models for SP carries significant

clinical implications.

This study aims to screen and systematically review existing risk

prediction models for mortality in patients with SP. The findings

will inform clinical decision-making and guide future research

directions in this critical area.

2 Methods

This study was reported following the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) (9)

guidelines and the Critical Appraisal and Data Extraction for

Systematic Reviews of Prediction Modeling Studies (CHARMS)

(10) checklist. The protocol has been registered in the International

Prospective Register of Systematic Reviews (PROSPERO) and the

registry number is CRD42024589877.

2.1 Search strategy

We systematically searched the PubMed, Embase, Cochrane

Library, and Web of Science databases without language

restrictions from their inception to August 31, 2024. We

used a combination of the following keywords to build the

search strategy: (“severe”) AND (“pneumonia” OR “pulmonary

inflammation” OR “pulmonary infection”) AND (“predict model”

OR “risk prediction” OR (“risk score” OR “prediction model”

OR “prognostic model” OR “risk factor” OR “nomogram” OR

“machine learning” OR “deep learning” OR “artificial intelligence”

OR “neural network” OR “decision tree” OR “computational

intelligence” OR “machine intelligence” OR “bayesian” OR “k-

nearest neighbor” OR “decision support” OR “random forest”

OR “support vector machine” OR “Xgboost” OR “adaboost”

OR “gradient boosting machine” OR “regression tree” OR “least

squares” OR “stepwise regression” OR “linear model” OR “logistic

regression” OR “principle component analysis” OR “independent

component analysis” OR “k means clustering”). The detailed search

strategy is provided in Supplementary material. We also identified

additional relevant studies by reviewing the reference lists of the

retrieved studies and review articles.

For the systematic review, we utilized the PICOTS system,

recommended by CHARMS checklist (10). This system helps frame

the review’s aim, search strategy, and study inclusion and exclusion

criteria. The key items of our systematic review are described below:

P (Population): Patients with severe pneumonia, as defined

by either the guidelines published in 2007/2019 for CAP by the

Infectious Diseases Society of America/American Thoracic Society

(11, 12) or the Guidelines for the Diagnosis and Treatment of Adult

Community-Acquired Pneumonia in China (2016 Edition) (13).

I (Intervention model): Risk prediction models for mortality

in patients with SP that were developed and published (predictors

≥ 2).

C (Comparator): No competing model.

O (Outcome): The outcome focused on death.

T (Timing): The outcome was predicted after evaluating

basic information at admission, clinical scoring scale results, and

laboratory indicators.

S (Setting): The intended use of the risk prediction model is

to individualize the prediction of mortality in patients with SP,

facilitating the implementation of preventive measures to prevent

adverse events.

2.2 Inclusion and exclusion criteria

The inclusion criteria for studies were: (1) studies involving

patients aged ≥ 18 years with SP; (2) an observational study

design; (3) reported a prediction model; (4) the outcome of interest

was death.

The exclusion criteria for studies were: (1) studies that did not

develop a prediction model; (2) only one predictor; (3) duplicate

publications, reviews, editorials, animal studies, case reports, or

other non-data driven article-types; (4) the full text could not be

retrieved; (5) to enhance homogeneity, we excluded studies that

explicitly focused on fungal and viral pneumonia, such as severe

H1N1, SARS, or COVID-19.

2.3 Study selection

The selection process of the studies was conducted

independently by two investigators. Initially, duplicate studies

were removed, then the remaining studies were assessed based

on titles and abstracts to determine eligibility. Following the
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inclusion and exclusion criteria, full texts were reviewed, and the

reference lists of all eligible studies were examined to identify any

potentially relevant studies. In case of disagreements regarding

study selection, a discussion involving three investigators was held

to reach a consensus.

2.4 Data extraction

The data was extracted by two investigators independently

according to CHARMS checklist (10), including the name

of the first author, publication year, country, study design,

participants, diagnostic criteria, sample size, model development

method, variable selection method, model validation type, model

performance measures, handling of missing data, method for

processing continuous variables, final predictors used in the model,

and the form in which the model was presented. In case of

disagreements regarding data extraction, a discussion involving

three investigators was held to reach a consensus.

2.5 Quality assessment

Two independent investigators used the prediction model risk

of bias assessment tool (PROBAST) (14, 15) to evaluate the bias

risk and applicability of the included studies. The evaluation of

bias risk comprises 20 signaling questions categorized into four

domains: participants, predictors, outcome, and analysis. Each

signaling question can be answered as “yes,” “probably yes,” “no,”

“probably no,” or “no information.” Each domain can be judged as

“low risk of bias,”“high risk of bias,” or “unclear.” The evaluation

of applicability comprises three domains: participants, predictors,

and outcome.

2.6 Statistical analysis

Qualitative analysis method was used to sort out the general

information and model information. A meta-analysis of the

area under the curve (AUC) values from validated models was

conducted using Stata software (version 17.0). A random-effects

model was applied if there was significant heterogeneity; otherwise,

a fixed-effects model was used. The Chi-square test and I2 value

were implemented to assess heterogeneity, and p < 0.1 or I2 > 50%

indicated significant heterogeneity. When statistical heterogeneity

existed, we conducted sensitivity analyse to verify the robustness of

the overall results, which were carried out by gradually removing

studies. Egger’s test was used to identify publication bias, with p >

0.05 indicating a low likelihood of publication bias.

3 Results

3.1 Study selection

The initial search yielded a total of 8,128 records. After

removing 3,450 duplicate records, 4,678 titles and abstracts were

screened for eligibility. Following this screening process, 88 articles

were included for further evaluation. During the subsequent

evaluation, 37 studies were excluded as their participants did

not meet the criteria. Additionally, 16 studies did not establish

prediction models, 11 studies had only one predictor, and six

studies were not available. Ultimately, we got 18 studies (16–33)

that met all of the inclusion criteria. The selection procedure is

illustrated in Figure 1.

3.2 Study characteristics

Out of 18 studies, 15 studies (18–29, 31–33) were conducted

in China, with one study each from the US, Spain, and South

Korea. In terms of study design, ten studies (19–21, 25, 26, 29–

33) were retrospective cohort, six studies (16, 17, 22, 24, 27, 28)

were prospective cohort, and two studies (18, 23) were case-control.

The sample sizes ranged from 94 to 37,348 cases, and the patient

mortality ranged from 21.55% to 55.32%. Detailed characteristics

are presented in Table 1.

3.3 Model construction

A total of 22 models were reported, including 15 logistic

regression models, two cox proportional regression hazards

models, two classification and regression trees (CART), one

light gradient boosting machine (LightGBM), and one multilayer

perceptron (MLP). Regarding the model development and

validation processes, the studies demonstrated varying scopes.

Four studies (17, 23, 26, 31) were limited to model development.

Twelve studies (16, 18–22, 24, 27–30, 32) conducted both model

development and internal validation. One study (25) conducted

model development and external validation. Notably, only one

study (33) comprehensively covered model development, internal

validation, and external validation. The sample size for model

development was 94–37,348 cases, while 40–710 cases were for

model validation. The number of candidate variables considered

during the model construction process varied from 12 to 59, with

the final models retaining 2–16 predictors. Continuous variables

were transformed into categorical variables based on clinically

significant cutoff values or the upper and lower limits of the normal

range in two studies (19, 20). The variable selection methods were

also diverse. Sixteen studies (16–29, 32, 33) reported the variable

selection methods, including univariable analysis, multivariable

analysis, least absolute shrinkage and selection operator (LASSO),

and recursive feature elimination (RFE). Seven studies (19, 21, 25,

27, 29, 30, 33) detailed the approaches to handling missing data,

primarily through multiple imputation (MI) and case elimination.

Detailed information of model construction is shown in Table 2.

3.4 Model performance

All the included studies reported AUC of model development,

with values ranging from 0.713 to 0.952. Nine studies (19–21,

24, 27, 30, 32, 33) reported AUC values of internal validation,

spanning 0.728 to 0.921, while two studies (25, 33) reported
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FIGURE 1

Preferred Reporting Items for Systematic reviews (PRISMA) flowchart of literature search and selection.

AUC values of external validation ranging from 0.778 to 0.893.

Thirteen studies (17, 19–22, 24, 25, 27–30, 32, 33) evaluated

model calibration using a calibration curve, Hosmer-Lemeshow

test, or Brier score. Five studies (16, 23, 26, 28, 31) reported

model specificity ranging from 69.05% to 93.30% and sensitivity

ranging from 76.90% to 96.90%. The model accuracy was reported

in just one study (26) at 80.85%. Eleven studies (19–22, 25, 27–

30, 32, 33) evaluated clinical applicability using decision curve

analysis (DCA). The results consistently demonstrated that the

models provided substantial net benefits across a wide range

of threshold probabilities, indicating robust clinical applicability.

Notably, Huang et al. (21) further plotted a clinical impact

curve (CIC) to predict improved probability stratification for a

population size of 1,000. To further investigate the clinical utility of

the prediction model, they established clinically meaningful cutoffs

by categorizing nomogram scores into three risk strata: < 150

(low risk), 150–200 (moderate risk), and >200 (high risk) points.

This stratification demonstrated remarkable risk discrimination.

Thirteen studies (16, 18–22, 24, 27–30, 32, 33) reported internal

validation methods, comprising seven using bootstrap resampling,

one with 5-fold cross validation, three with 10-fold cross validation,

and two utilizing random split validation. Notably, only two studies

(25, 33) performed external validation, both implementing spatial

validation through geographically distinct cohorts. The models

were presented by nomogram in 11 studies (19–22, 24, 25, 27–

29, 32, 33), decision tree in two studies (16, 18), and β coefficient

of each factor in one study (23). Detailed information of model

performance is shown in Table 3.

3.5 Quality assessment

3.5.1 Risk of bias assessment
In the participants domain, 12 studies (18–21, 23, 25, 26, 29–33)

were judged as “high risk of bias” due to retrospective study design.

In the predictors domain, two studies (23, 26) were classified as

“high risk of bias” due to the inclusion of statistically nonsignificant

predictors, while one study (30) was rated as “unclear.” In the

outcome domain, all the included studies were assessed as “low

risk of bias.” In the analysis domain, 17 studies (16–26, 28–

33) were categorized as “high risk of bias.” The reasons were as

follows. Events per variable (EPV) were fewer than 10 in 10 studies

(16, 17, 22–25, 28–30, 33) during model development. Model

validation sample sizes were below 100 in two studies (24, 25). Two

studies (19, 20) transformed continuous variables into categorical

variables. One study (33) eliminated participants with missing data.

Five studies (16, 18, 23, 26, 31) failed to evaluate model calibration

altogether. One study (17) relied solely on the Hosmer-Lemeshow

test for calibration assessment. Internal validation was absent in

five studies (17, 23, 25, 26, 31), and two studies (21, 32) only used

random split verification. The results of risk of bias assessment are

shown in Table 4.
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TABLE 1 Overview of basic data of the included studies.

Author Year Country Study
design

Participants Diagnostic
criteria

Outcome
cases/sample

size (%)

Main
outcome

El-Solh et al. (16) 2001 US Prospective

cohort

≥75, SCAP – 57/104 (54.81) Hospital

mortality

Sirvent et al. (17) 2013 Spain Prospective

cohort

SCAP A 56/242 (23.14) 28-day

mortality

Wang et al. (18) 2017 China Case-control SCAP A 15,921/373,48 (42.63) 28-day

mortality

Huang et al. (19) 2021 China Retrospective

cohort

SCAP with T2DM A 444/1,262 (35.18) Hospital

mortality

Gong et al. (20) 2022 China Retrospective

cohort

≥65, SCAP with

CVD

A 220/413 (53.27) Hospital

mortality

Huang et al. (21) 2022 China Retrospective

cohort

SCAP with COPD A 361/873 (41.35) Hospital

mortality

Song et al. (22) 2022 China Prospective

cohort

≥65, SCAP A 65/292 (22.27) 28-day

mortality

Gao et al. (23) 2023 China Case-control SCAP A 32/94 (34.04) 28-day

mortality

Lu et al. (24) 2023 China Prospective

cohort

SCAP A 40/158 (25.32) Hospital

mortality

Pan et al. (25) 2023 China Retrospective

cohort

SCAP A 117/543 (21.55) Hospital

mortality

Wang et al. (26) 2023 China Retrospective

cohort

SAP A/B 52/94 (55.32) 90-day

mortality

Shang et al. (27) 2023 China Prospective

cohort

≥65, SCAP A 177/490 (36.12) Hospital

mortality

Zhang et al. (28) 2023 China Prospective

cohort

SP B 45/152 (29.61) 28-day

mortality

Gao et al. (29) 2023 China Retrospective

cohort

SP with EN A 225/632 (35.60) Hospital

mortality

Jeon et al. (30) 2023 Korea Retrospective

cohort

SP A 223/816 (27.33) ICU mortality

Miao et al. (31) 2024 China Retrospective

cohort

≥65, SCAP A 88/406 (21.67) 28-day

mortality

Wei et al. (32) 2024 China Retrospective

cohort

≥65, SCAP A 868/2,365 (36.70) Hospital

mortality

Zhang et al. (33) 2024 China Retrospective

cohort

SCAP A –/815 30-day

mortality

T2DM, Type 2 diabetes; CVD, cerebrovascular disease; COPD, chronic obstructive pulmonary disease; SAP, severe aspiration pneumonia; SP, severe pneumonia; EN, enteral nutrition; A,

the guidelines published in 2007/2019 for CAP by the Infectious Diseases Society of America/American Thoracic Society; B, the Guidelines for the Diagnosis and Treatment of Adult

Community-Acquired Pneumonia in China (2016 Edition); –, not reported.

3.5.2 Applicability accessment
The included studies have shown good applicability in different

domains, as shown in Table 4.

3.6 Meta-analysis

To ensure the accuracy and reliability of model performance

evaluation, only AUC values from validated models were

included in the meta-analysis. This selective approach aligns

with CHARMS guideline recommendations, which emphasize

prioritizing models with complete validation data when

synthesizing prediction model performance in meta-analyses.

Owing to insufficient reporting on the validation details in

most included studies, only five studies (19, 21, 24, 28, 33)

that provided complete information on the validation AUC

values and 95% confidence intervals (CI) qualified for the

meta-analysis. The I2 value was 69.3% (p = 0.011), indicating

significant heterogeneity among the studies. The pooled AUC

was calculated using a random-effects model, resulting in a value

of 0.85 (95% CI: 0.81–0.88), as shown in Figure 2. Sensitivity

analysis confirmed the robustness of the result. The regression

value from Egger’s test (p = 0.764) indicated no significant

publication bias.
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TABLE 2 Overview of model construction of the included studies.

Author Model
development
method

Model
type

Variable
selection

Number
of
candidate
variables

Continuous
variable

processing

Sample
size

(D/I/E)

Missing
data

handling

Final
predictors

El-Solh et al. (16) CART, LR D, I Univariable

analysis,

RFE

19 Continuous 104/–/– – Use of

vasopressor,

multilobar

pneumonia,

BUN/Cr, GCS,

UO, ADL

Sirvent et al. (17) LR D Univariable

and

multivariable

analysis

34 Continuous 242/–/– – Age, CURB

score, septic

shock, ARDS,

ARF

Wang et al. (18) CART D, I Multivariable

analysis

31 Continuous 373,48/–/– – Cr, WBC, CRP,

GCS, HCO−

3

Huang et al. (19) LR D, I Univariable

and

multivariable

analysis

17 Categorical 883/379/– MI/elimination Number of

comorbidities,

diabetes

related

complications,

BP, CRP, NLR,

BNP, lactate

Gong et al. (20) LR D, I Univariable

and

multivariable

analysis,

LASSO

34 Categorical 413/–/– – Age, use of

vasopressor,

number of

primary

symptoms,

temperature,

monocyte,

CRP, NLR

Huang et al. (21) LR D, I Univariable

and

multivariable

analysis

17 Continuous 611/262/– MI Age, diabetes,

CKD, SBP,

fibrinogen,

IL-6, BUN

Song et al. (22) LR D, I Univariable

and

multivariable

analysis

36 Continuous 292/–/– – Age, GCS,

platelet, BUN

Gao et al. (23) LR D Univariable

and

multivariable

analysis

12 Continuous 94/–/– – MicroRNA-24,

microRNA-

233, APACHE

II

Lu et al. (24) LR D, I Univariable

and

multivariable

analysis

18 Continuous 118/40/– – IL-6, BUN,

PCT, length of

stay, bacterial

infection,

mNGS

Pan et al. (25) LR D, E Univariable

and

multivariable

analysis

23 Continuous 455/–/88 MI/elimination Lymphocyte,

PaO2/FiO2 ,

shock,

APACHE II

Wang et al. (26) Cox D Univariable

and

multivariable

analysis

- Continuous 94/–/– – Platelet, total

protein

Shang et al. (27) LR D, I Multivariable

analysis,

LASSO

59 Continuous 490/–/– MI MAP, SpO2 ,

GCS, LDH,

lactate, BUN,

ESMcsa

Zhang et al. (28) LR D, I Multivariable

analysis

15 Continuous 152/–/– – APACHE II,

NLR, lactate,

CAR

(Continued)
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TABLE 2 (Continued)

Author Model
development
method

Model
type

Variable
selection

Number
of
candidate
variables

Continuous
variable

processing

Sample
size

(D/I/E)

Missing
data

handling

Final
predictors

Gao et al. (29) LR D, I Univariable

and

multivariable

analysis

28 Continuous 632/–/– MI/elimination Duration of

mechanical

ventilation,

combined

malignant

proliferative

disease,

platelet, PT,

ALT, albumin,

K+ , Na+

Jeon et al. (30) LR, LightGBM,

MLP

D, I - 55 Continuous 489/327/– MI/elimination PaO2/FiO2 ,

CRP, lactate,

UO, SBP,

WBC,

troponin,

PaO2 , PT-INR,

ALP, PR,

PaCO2 , pH,

steroid,

norepinephrine,

DBP

Miao et al. (31) Cox D - - Continuous 406/–/– – NLR, SHR

Wei et al. (32) LR D, I Univariable

and

multivariable

analysis

26 Continuous 1,655/710/– – Age, use of

vasopressor,

CKD,

neutrophil,

platelet, BUN

Zhang et al. (33) LR D, I, E LASSO 44 Continuous 502/216/97 Elimination Age, combined

malignant

tumor, heart

rate, MAP,

albumin, BUN,

PT, lactate

LR, logistic regression model; Cox, cox proportional regression hazards model; D, development; I, internal validation; E, external validation; BUN, blood urea nitrogen; Cr, creatinine; GCS,

glasgow coma scale; UO, urinary output; ADL, activities of daily living score; ARDS, acute respiratory distress syndrome; ARF, acute renal failure; WBC, white blood cell; CRP, C-reactive

protein; BP, blood pressure; NLR, neutrophil to lymphocyte ratio; CKD, chronic kidney disease; SBP, systolic blood pressure; IL-6, interleukin 6; BNP, brain natriuretic peptide; APACHE II,

acute physiology and chronic health evaluation II; PCT, procalcitonin; mNGS, metagenomic next generation sequencing; MAP, mean arterial pressure; SpO2 , blood oxygen saturation; LDH,

lactate dehydrogenase; ESMcsa, cross-sectional area of erector spinae muscle; CAR, C-reactive protein to albumin ratio; PT, prothrombin time; ALT, alanine aminotransferase; SHR, stress

hyperglycemia ratio; PaO2 , partial pressure of oxygen; PT-INR, prothrombin time international normalized ratio; ALP, alkaline phosphatase; PR, pulse rate; PaCO2 , partial pressure of carbon

dioxide; pH, power of hydrogen; DBP, diastolic blood pressure.

4 Discussion

We evaluated 22 models that demonstrated moderate to good

predictive performance, with reported AUC ranging from 0.713 to

0.952. The pooled AUC value of five validated models included

in the meta-analysis was 0.85 (95% CI: 0.81–0.88), indicating

strong discriminative ability. Several included studies compared the

models with commonly used scoring systems. The results indicated

that the newly developed models exhibited superior discriminative

ability, although this may be attributed to the specificity of

patients. DCA and CIC further supported the utility of these

models, demonstrating a favorable net benefit across a wide range

of threshold probabilities, which underscores their potential for

clinical decision-making. Evidently, beyond their robust predictive

performance, these models provide significant clinical value in

real clinical settings. First, prediction models facilitate early

identification of high-risk patients, allowing clinicians to prioritize

critical care resources and interventions. Second, these models

assist in shared decision-making between clinicians and patients.

By providing validated, objective mortality risk estimates, patients

and families can better understand prognosis and make informed

choices about treatment intensity. Third, they can guide the

optimization of treatment strategies. By analyzing the variables

associated with mortality in the models, clinicians can focus

on modifying modifiable risk factors, such as time-to-antibiotic

administration. Additionally, they can help in evaluating the

effectiveness of new treatment modalities. By comparing observed

mortality rates with predicted rates in patients receiving novel

therapies, researchers and clinicians can assess whether the new

interventions are having a positive impact on patient outcomes. To

maximize clinical impact, Future research must bridge specificity

and generalizability by developing both subtype-targeted models

and flexible frameworks for complex clinical scenarios.

Notably, El-Solh et al. and Jeon et al. utilized both logistic

regression and machine learning (ML) methods during model

development, with the latter yielding better performance. One
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TABLE 3 Overview of model performance of the included studies.

Author AUC(D/I/E) Calibration
method

A/B/C(%) Clinical
applicability

Validation
method

Model
presentation

AUC of
commonly
used scoring
systems

El–Solh et al. (16) Model

1: 0.932/–/–

Model

2: 0.801/–/–

– Model

1: 93.30/83.80/–

Model

2: 83.30/76.90/–

– Internal

validation

(5–FCV)

Decision tree APACHE II (0.711)

Sirvent et al. (17) 0.863/–/– Hosmer–

Lemeshow

test

– – – –

Wang et al. (18) 0.889/–/– – – – Internal

validation

(10–FCV)

Decision tree APACHE II (0.864),

SOFA (0.877), PSI

(0.761), CURB−65

(0.767)

Huang et al. (19) 0.907/0.873/– Calibration

curve

– DCA Internal

validation

(bootstrap)

Nomogram PSI (0.809)

Gong et al. (20) 0.800/0.781/– Calibration

curve

– DCA Internal

validation

(bootstrap)

Nomogram PSI (0.624),

CURB−65 (0.630)

Huang et al. (21) 0.840/0.830/– Calibration

curve

– DCA/CIC Internal

validation

(random split

validation)

Nomogram

Song et al. (22) 0.713/–/– Calibration

curve

– DCA Internal

validation

(bootstrap)

Nomogram APACHE II (0.628),

SOFA (0.660), PSI

(0.576)

Gao et al. (23) 0.952/–/– – 77.40/96.90/– – – β coefficient of each

factor

APACHE II (0.791)

Lu et al. (24) 0.829/0.921/– Calibration

curve

– – Internal

validation

(bootstrap)

Nomogram

Pan et al. (25) 0.850/–/0.893 Calibration

curve

– DCA External

validation

(spatial

validation)

Nomogram APACHE II

(0.795/–/0.746),

SOFA

(0.690/–/0.742)

Wang et al. (26) 0.832/–/– – 69.05/90.38/80.85 – – –

Shang et al. (27) Model

1: 0.803/–/–

Model

2: 0.836/0.826/–

Calibration

curve,

Hosmer–

Lemeshow

test, Brier

score

– DCA Internal

validation

(bootstrap)

Nomogram APACHE II (0.740),

SOFA (0.778), PSI

(0.704), CURB−65

(0.669)

Zhang et al. (28) 0.826/0.848/– Calibration

curve

87.32/88.45/– DCA Internal

validation

(bootstrap)

Nomogram

Gao et al. (29) 0.782/–/– Calibration

curve,

Hosmer–

Lemeshow

test

– DCA/CIC Internal

validation

(bootstrap)

Nomogram

Jeon et al. (30) Model

1: 0.820/0.832/–

Model

2: 0.827/0.840/–

Model

3: 0.838/0.856/–

Calibration

curve, Brier

score

– DCA Internal

validation

(10–FCV)

– APACHE II (0.616),

SOFA (0.619), SAPS

II (0.650)

Miao et al. (31) 0.898/–/– – 81.10/89.80/– – – –

(Continued)
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TABLE 3 (Continued)

Author AUC(D/I/E) Calibration
method

A/B/C(%) Clinical
applicability

Validation
method

Model
presentation

AUC of
commonly
used scoring
systems

Wei et al. (32) 0.742/0.728/– Calibration

curve

– DCA Internal

validation

(random split

validation)

Nomogram

Zhang et al. (33) 0.803/0.756/0.778 Calibration

curve,

Hosmer–

Lemeshow

test

– DCA Internal

validation

(10–FCV),

external

validation

(spatial

validation)

Nomogram

A, specificity; B, sensitivity; C, accuracy; DCA, decision curve analysis; CIC, clinical impact curve; 5-FCV, 5-fold cross validation; 10-FCV, 10-fold cross validation; APACHE II, acute physiology

and chronic health evaluation II; SOFA, sequential organ failure assessment; CURB-65, confusion, urea, respiratory rate, blood pressure, age ≥ 65; PSI, pneumonia severity index; SAPS II,

simplified acute physiology score II.

study (34) indicated that ML tend to yield higher accuracy

compared to traditional logistic regression. With the development

of artificial intelligence (AI) in medical domain, ML have shown

various advantages (35). First, AI and ML algorithms can handle

complex, high-dimensional data more effectively than traditional

models. Patients with SP often present with a vast array of clinical,

laboratory, and imaging data. AI/ML methods can uncover hidden

patterns and non-linear relationships within these data, leading to

more precise predictionmodels. Second, these advanced techniques

can adapt and improve continuously. AI/ML models can be

retrained to incorporate new information and refine prediction

algorithms. This is a critical advantage in the context of evolving

antimicrobial resistance patterns and new pathogens. Third, AI/ML

methods can potentially provide personalized risk assessment.

By analyzing individual patient characteristics, including genetic

profiles, comorbidities, and disease progression trajectories, these

models can generate more individualized mortality risk estimates,

enabling more targeted and effective clinical decision-making.

While the current reviews focused on traditional logistic regression

models, AI/ML are likely to play an increasingly important role in

improving the accuracy of mortality prediction in patients with SP,

by leveraging their unique capabilities in data analysis, adaptability,

and personalization.

Seventeen studies were assessed as having a high risk of

bias, significantly limiting the practical utility of their prediction

models. Participants and analysis domains were the primary

sources of bias risk. Twelve retrospective studies faced risks of

data missing, incomplete predictor inclusion, and inconsistent

measuring methods. In contrast, prospective study designs

could effectively mitigate these methodological shortcomings and

substantially reduce the risk of bias. According to the PROBAST

guidelines, an events-per-variable (EPV) ratio of at least 10 is

recommended during model development to prevent overfitting.

More candidate predictors and insufficient sample size in studies

resulted in high risk of bias. The categorization of continuous

variables leads to a loss of statistical information, while excluding

participants with missing data similarly reduces statistical power.

For a comprehensive assessment of model performance, calibration

should be evaluated through more robust metrics such as

calibration curves and the Brier score, rather than relying solely

on the Hosmer-Lemeshow test. Additionally, most models lacked

external validation, a key step to evaluate the generalization

ability of the models. Future research should refer to PROBAST

and transparent reporting of a multivariable prediction model

for individual prognosis or diagnosis (TRIPOD) (36) for study

design and reporting, prioritizing prospective approaches, ensuring

adequate EPV and sample size, employing appropriate missing data

handling, and conducting rigorous internal and external validation

to reduce the risk of bias.

The included models contained 2–16 predictors, with the most

frequently identified variables including age, APACHE II, glasgow

coma scale (GCS), blood urea nitrogen (BUN), C-reactive protein

(CRP), neutrophil to lymphocyte ratio (NLR), platelet, lactate, and

use of vasopressor. With advancing age, the body’s immune defense

gradually weakens, leading to higher mortality in elderly patients

with SP, particularly among the very aged (37). APACHE II has

been widely adopted in clinical evaluations of critical diseases,

remaining the global gold standard for prognostic evaluation in

the ICU (38). As a standardized measure of consciousness levels,

GCS has been demonstrated to be independently associated with

the prognosis in CAP patients requiring ICU admission (39).

A recent meta-analysis (40) confirmed BUN as an independent

predictor of prognosis in patients with SP. Thrombocytopenia is

prevalent in critically ill patients, often serving as an indicator of

severe organ dysfunction and the development of intravascular

coagulation (41). Elevated CRP and NLR levels reflect a sustained

systemic inflammatory response in patients. The inflammatory

storm triggers the production of various inflammatory factors,

which can cause systemic immune damage in patients with SP.

Studies have shown that both CRP and NLR are independently

associated with occurrence and prognosis of critical disease

(42, 43). Lactate has shown independent prognostic value in

patients with critical diseases, particularly sepsis. Furthermore,

the fluid resuscitation guided by lactate monitoring can improve

patient outcomes (44). Vasopressor can be used as a combination

pressor therapy in patients with refractory septic shock when

catecholamines alone are ineffective, but there is a risk of visceral

ischaemia (45). The predictors included in the 22 models may serve
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TABLE 4 Overview of quality assessment of the included studies.

Author Risk of bias Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome Risk of bias Applicability

El–Solh et al. (16) + + + – + + + – +

Sirvent et al. (17) + + + – + + + – +

Wang et al. (18) – + + – + + + – +

Huang et al. (19) – + + – + + + – +

Gong et al. (20) – + + – + + + – +

Huang et al. (21) – + + – + + + – +

Song et al. (22) + + + – + + + – +

Gao et al. (23) – – + – + + + – +

Lu et al. (24) + + + – + + + – +

Pan et al. (25) – + + – + + + – +

Wang et al. (26) – – + – + + + – +

Shang et al. (27) + + + + + + + + +

Zhang et al. (28) + + + – + + + – +

Gao et al. (29) – + + – + + + – +

Jeon et al. (30) – ? + – + + + – +

Miao et al. (31) – + + – + + + – +

Wei et al. (32) – + + – + + + – +

Zhang et al. (33) – + + – + + + – +

–, high risk of bias;+, low risk of bias; ?, unclear.
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FIGURE 2

Forest plot of the random e�ects meta-analysis of pooled AUC estimates for five validation models.

as potential predictors for future model development and inform

subsequent investigations into critical risk factor analysis.

4.1 Limitations

The review has several potential limitations. Firstly, most of

the included studies were conducted in China, which limits the

applicability of the findings to other countries. Thus, it is important

for future research to develop risk prediction models for mortality

in patients with SP in diverse populations. Secondly, due to the

differences in reporting transparency and methods of the included

studies, our meta-analysis only integrated the AUC values of five

validated models. A wealth of information in models could not be

quantitatively analyzed. However, these issues did not affect the

assessment of models and reflect methodological and reporting

issues that exist in studies. More rigorous methodologies and more

transparent reporting are needed in the future.

4.2 Conclusion

This systematic review conducted a descriptive analysis of

18 studies with 22 models and a meta-analysis of five validated

models, indicating a certain level of discrimination. However, 17

studies were assessed as having a high risk of bias according to

PROBAST. Therefore, researchers need to familiarize themselves

with the PROBAST checklist and comply with the reporting

guidelines outlined in the TRIPOD statement to improve the

quality of future studies. Future research should combine ML

to prioritize the development of new models with larger sample

sizes, rigorous study designs, and multicenter external validation.

In addition, researchers should translate models into a web

calculator or application, and make risk classification, so that

medical staff can implement targeted hierarchical prevention

and management strategies. Making the prediction models more

intelligent and convenient to better serve the clinic is also the focus

of future research.
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