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Introduction: The advancement of medical robotic systems highlights the

critical need for precise and high-quality visual data, particularly in low-

quality imaging scenarios. This study explores the interdisciplinary physics

underlying image fusion and analysis, addressing challenges such as integrating

complementary features, handling dynamic range variations, and suppressing

noise in real-world medical contexts.

Methods: We introduce the Multi-Scale Feature Adaptive Fusion Network

(MFAFN) and the Dynamic Feature Refinement Strategy (DFRS), which leverage

principles from computational and experimental physics to enhance imaging

techniques. MFAFN applies multi-scale feature extraction, attention-based

alignment, and adaptive fusion to improve spatial and spectral integration while

preserving crucial details. Complementing this, DFRS employs saliency-based

weighting, context-aware mechanisms, and dynamic normalization to refine

feature importance and mitigate inconsistencies.

Results: This interdisciplinary approach bridges computational physics,

non-linear systems, and technological development, delivering significant

improvements in fusion quality metrics such as spatial consistency, edge

retention, and noise suppression.

Discussion: Our findings contribute to advancingmedical robotics by integrating

novel physical principles into imaging methodologies, supporting sustainable

innovations in healthcare technology.

KEYWORDS
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1 Introduction

The development of low-quality image fusion and analysis technologies is pivotal

for enhancing medical robot vision, especially in environments where imaging data

is noisy, incomplete, or low in resolution (1). Medical robots rely heavily on visual

information for navigation, diagnosis, and surgical precision, yet real-world conditions

often lead to compromised image quality (2). This research field is essential not only

for improving robot-assisted medical outcomes but also for enabling the deployment of

robotic systems in under-resourced healthcare settings (3). By integrating advanced fusion

techniques with robust analytical algorithms, researchers can optimize medical robots to

process low-quality visual data effectively (4). This approach ensures reliability, safety, and

accuracy, addressing the pressing need for intelligent systems capable of functioning under

suboptimal conditions (5). The evolution of this technology has followed a trajectory from

traditional image processing techniques to data-driven machine learning approaches and,

more recently, to deep learning and pre-trained models, each with its own advantages and

limitations (6).
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Traditional methods based on symbolic AI and knowledge

representation were the first attempts to address the challenges

of low-quality image fusion and analysis (7). These methods

employed rule-based algorithms to enhance images by applying

predefined transformations, such as noise reduction, contrast

adjustment, and edge detection (8). Techniques like histogram

equalization and wavelet transforms were commonly used to

improve image quality for analysis (9). These methods were limited

by their deterministic nature and inability to adapt to varying

image conditions (10). While they provided a foundation for

understanding image enhancement, symbolic approaches often

failed to handle complex or noisy datasets effectively (11). They

lacked the capability to integrate multiple sources of low-quality

images into a cohesive representation, making them insufficient for

the demanding requirements of medical robotics (12).

To overcome the limitations of symbolic methods, data-

driven approaches using traditional machine learning were

introduced (13). These methods relied on supervised learning

algorithms to fuse and analyze low-quality images, leveraging

labeled datasets to train models for tasks like segmentation, feature

extraction, and object recognition (14). Techniques such as Support

Vector Machines (SVM) and Random Forests were employed

to identify patterns in low-quality visual data, enabling medical

robots to process and interpret images more effectively (15).

These methods allowed for multi-modal image fusion, combining

information from different imaging modalities, such as X-rays and

MRIs (16). Despite their adaptability and improved performance

over symbolic methods, data-driven approaches were constrained

by their dependence on large, annotated datasets. The variability

in medical imaging data further complicated model training, often

resulting in limited generalization and suboptimal performance in

unseen scenarios (17).

The advent of deep learning and pre-trained models has

revolutionized low-quality image fusion and analysis for medical

robot vision (18). Convolutional Neural Networks (CNNs) and

Generative Adversarial Networks (GANs) have demonstrated

remarkable capabilities in enhancing and analyzing low-quality

images (19). Pre-trained models like U-Net and ResNet have

been fine-tuned for medical imaging tasks, achieving significant

improvements in segmentation, anomaly detection, and image

synthesis. Furthermore, these models enable end-to-end learning,

integrating fusion and analysis in a unified framework. Deep

learning also excels in processing multi-modal data, providing

robust solutions for integrating information from disparate

imaging sources (20). However, these methods come with

challenges, such as high computational requirements and potential

biases introduced during training. The dependency on large-scale,

high-quality datasets for model training further restricts their

applicability in resource-constrained environments. Despite these

limitations, deep learning has set a new benchmark for low-quality

image processing, paving the way for innovative applications in

medical robotics.

Recognizing the constraints of existing methods, this study

proposes a novel approach to low-quality image fusion and

analysis tailored formedical robot vision. By combining lightweight

deep learning architectures with advanced domain adaptation

techniques, the proposed framework addresses the computational

and generalization challenges of current methods. Incorporating

unsupervised learning enables the model to adapt to unlabeled

data, enhancing its applicability in diverse medical scenarios. The

framework integrates multi-scale feature extraction with attention

mechanisms to optimize image fusion and ensure accurate analysis

under suboptimal conditions.

We summarize our contributions as follows:

• The framework introduces a novel lightweight deep learning

architecture with multi-scale feature extraction for efficient

low-quality image processing in medical robotics.

• It leverages unsupervised domain adaptation, ensuring

adaptability and generalization across diverse imaging

conditions without requiring extensive labeled datasets.

• Experimental results demonstrate significant improvements

in image quality enhancement and diagnostic accuracy,

achieving superior performance compared to traditional and

existing deep learning methods.

2 Related work

2.1 Image fusion for low-quality inputs

Image fusion techniques have become essential for medical

robot vision, particularly when dealing with low-quality images

acquired under challenging conditions (21). These techniques

combine information frommultiple images or sensors to generate a

single enhanced image that retains critical features for analysis (22).

In medical robotics, the quality of visual input is paramount, as it

directly influences decision-making, precision, and safety during

surgical or diagnostic procedures (23). Traditional image fusion

methods, such as multi-scale decomposition and intensity-hue-

saturation (IHS) transformations, have been extensively utilized in

medical imaging. These methods are computationally efficient and

capable of preserving critical spatial and spectral information (24).

However, their effectiveness diminishes when dealing with highly

degraded or noisy inputs. Recent advances in deep learning have

introduced neural network-based fusion methods, such as CNNs

and GANs, which demonstrate superior performance in handling

low-resolution or noisy images. For instance, neural fusion

techniques can integrate complementary data from modalities

like MRI and CT scans to enhance the interpretability of fused

images (25). In medical robots, such fused images enable more

accurate object recognition, obstacle avoidance, and navigation in

complex environments. Despite these advancements, challenges

persist, including computational complexity, real-time processing

requirements, and the difficulty of fusing heterogeneous image

sources. Future developments are likely to focus on lightweight and

adaptive algorithms that cater to the specific demands of medical

robotic systems (26).

2.2 Noise reduction in medical imaging

Noise reduction is a critical component in the analysis of

low-quality images for medical robot vision (27). The presence
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of noise can obscure important details, leading to errors in

diagnosis or surgical operations. Noise in medical imaging

can arise from various sources, including sensor limitations,

environmental interference, and motion artifacts (28). Addressing

these challenges requires robust denoising algorithms tailored to

medical applications. Traditional approaches, such as Gaussian

filtering, median filtering, and wavelet thresholding, have been

widely employed to suppress noise while preserving important

image features (29). While these methods are effective for

general applications, they often struggle with the trade-off

between noise removal and the retention of fine details (30).

Recent advancements in deep learning have introduced novel

denoising architectures, such as autoencoders and transformer-

based models, which achieve state-of-the-art results in preserving

fine-grained details in noisy medical images (31). In the

context of medical robots, these noise reduction techniques

are particularly valuable for enhancing the accuracy of real-

time image analysis. For example, robotic-assisted surgeries

often rely on endoscopic or laparoscopic imaging, where low

light and narrow fields of view exacerbate noise issues (26).

Advanced denoising methods allow for clearer visualization

of anatomical structures, improving the precision of robotic

manipulations. However, achieving real-time denoising while

maintaining high accuracy remains a significant challenge,

prompting ongoing research into lightweight and hardware-

accelerated solutions (32).

2.3 Deep learning for vision analysis

Deep learning has revolutionized the field of computer vision,

offering unparalleled performance in tasks such as object detection,

segmentation, and classification (33). Its application to medical

robot vision has similarly transformed the capabilities of robotic

systems in clinical settings. Convolutional neural networks (CNNs)

and their variants have demonstrated remarkable success in

analyzing low-quality medical images, providing robust solutions

to challenges posed by noise, blur, and low resolution (34).

In medical robotics, deep learning models are employed to

identify and track anatomical landmarks, detect abnormalities,

and guide robotic instruments with high precision (35). For

instance, deep learning-based segmentation algorithms enable

accurate delineation of organs and tissues in endoscopic images,

even under poor lighting or occlusion (36). These models also

play a critical role in ensuring the safety and efficacy of robotic

procedures by detecting and compensating for errors in real

time (37). Another emerging trend is the use of multi-task

learning frameworks, which allow a single deep learning model

to perform multiple vision-related tasks simultaneously, such

as denoising, segmentation, and anomaly detection (38). This

approach is particularly advantageous for medical robots, as it

reduces computational overhead while ensuring comprehensive

visual analysis (39). However, the deployment of deep learning

models in medical robotics faces challenges, including the need for

extensive labeled datasets, domain adaptation to diverse imaging

conditions, and compliance with regulatory standards for clinical

use (40).

3 Method

3.1 Overview

Image fusion is a critical process in the field of computer vision,

aimed at combining relevant information from multiple images

into a single, enhanced image. This technique finds extensive

applications in areas such as medical imaging, remote sensing, and

surveillance. The primary objective of image fusion is to integrate

complementary features from different sources while preserving

essential details and minimizing distortions.

This section outlines the methodology and contributions of

our work in image fusion. In Subsection 3.2, we formalize

the problem of image fusion and introduce the foundational

principles underpinning our approach. This includes defining

the mathematical framework for multi-source image analysis and

fusion, emphasizing clarity and rigor. Subsection 3.3 delves into

the limitations of existing image fusion techniques, including their

inability to effectively handle high-dimensional data or maintain

consistency across varying scales. We mathematically analyze

the challenges associated with feature extraction, alignment,

and noise suppression, highlighting the need for innovative

methods to address these issues. Subsection 3.4presents our

novel image fusion model and strategy. This includes a detailed

explanation of a new architecture designed to enhance feature

integration while preserving critical spatial and spectral details. Our

approach leverages state-of-the-art techniques in deep learning and

optimization to achieve superior performance. By addressing gaps

in existing methodologies, our work aims to set a new benchmark

in the domain of image fusion.

3.2 Preliminaries

To enhance the clarity and reproducibility of our methodology,

we provide a consolidated notation system and explicit definitions

for all mathematical variables and operators used in this section. Let

{I1, I2, . . . , IN} be a set of N input images, where each Ii ∈ R
H×W

represents an image with heightH and widthW. The goal of image

fusion is to generate a single image F ∈ R
H×W that preserves the

most salient and complementary information from the inputs. The

fusion operation is described by a function F(·) such that:

F = F(I1, I2, . . . , IN). (1)

Each image Ii is passed through a multi-scale encoder,

producing a set of feature maps {F
(l)
i }L

l=1
, where l denotes the scale

level, and F
(l)
i ∈ R

Hl×Wl×C is the feature representation at that level.

Feature extraction is denoted by 8(·), alignment by A(·, ·), and

attention modulation by a weighting operator W(·). The attention

scores are computed per scale, and the aligned features are denoted

F̂
(l)
i . To ensure consistency in intensity across modalities, we apply

a normalization function g(·). Feature importance is guided by

saliency Sal(·), computed via spatial gradients ∇F, and evaluated

with metrics such as structural similarity index (SSIM), entropy

H(·), and edge-preservation criteria. Learnable weights w
(l)
i ∈ [0, 1]
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control the contribution of each image at scale l, with the constraint:

N
∑

i=1

w
(l)
i = 1, ∀l ∈ {1, . . . , L}. (2)

These notations are consistently used throughout the

remainder of this section to define and analyze each computational

stage in our proposed fusion framework.

Image fusion is a process of combining multiple images from

different sources into a single image that retains the most relevant

and complementary information. Let {I1, I2, . . . , IN} represent a set

of input images from different modalities or sensors, where each

Ii ∈ R
H×W has height H and width W. The goal is to produce a

fused image F ∈ R
H×W that incorporates the salient features of

all input images while reducing redundancy and preserving spatial

and spectral information.

The process of image fusion can be formulated as an

optimization problem. Let F(·) be the fusion function such that:

F = F(I1, I2, . . . , IN), (3)

where F combines relevant features from {Ii}
N
i=1. The objective of

F is to maximize information content and minimize artifacts:

F∗ = argmin
F

L(F; I1, I2, . . . , IN), (4)

where L is a loss function that measures the quality of the fused

image F based on metrics such as structural similarity, entropy, or

gradient consistency.

To effectively integrate information from multiple images,

multi-resolution analysis is often employed. Given an input image

Ii, we decompose it into a set of resolution levels {I
(1)
i , I

(2)
i , . . . , I

(L)
i }

using a transform such as wavelets or Laplacian pyramids. Each

level I
(l)
i corresponds to a particular spatial or frequency scale:

I
(l)
i = Tl(Ii), (5)

where Tl denotes the transformation operator for level l. The fusion

process then integrates features across all levels:

F
(l) = Fl({I

(l)
i }Ni=1), (6)

and the fused image F is reconstructed as:

F = T−1({F(l)}Ll=1), (7)

where T−1 denotes the inverse transformation.

Key to the success of image fusion is accurate feature extraction

and alignment. For each image Ii, we extract features 8(Ii) using a

suitable method:

8(Ii) = {fk(Ii) | k = 1, . . . ,K}, (8)

where fk(·) represents a feature extractor such as edge detection,

texture analysis, or deep neural networks.

The alignment ensures that features across input images

correspond spatially:

8̂(Ii) = A(8(Ii),8(Ij)), (9)

where A is an alignment function that minimizes disparities

between features in Ii and a reference image Ij.

Evaluating the quality of fusion involves several metrics.

Commonly used measures include: The fused image should

preserve spatial details present in the input images:

Qspatial =

N
∑

i=1

SSIM(F, Ii), (10)

where SSIM is the structural similarity index.

The fused image should maximize entropy:

Qinfo = H(F), (11)

where H(·) denotes entropy.

Gradients in the fused image should align with those of the

input images:

Qedge =

N
∑

i=1

‖∇F− ∇Ii‖
2
2. (12)

Input images often contain noise, which can propagate during

fusion. Let Ni represent noise in Ii. The fusion function must

minimize noise propagation:

F(I1 +N1, . . . , IN +NN) ≈ F(I1, . . . , IN). (13)

Input images may have varying intensity ranges. A

normalization step g(Ii) can be applied to ensure uniformity:

I
norm
i = g(Ii), g(·) =

Ii −min(Ii)

max(Ii)−min(Ii)
. (14)

3.3 Multi-scale feature adaptive fusion
network (MFAFN)

To address the challenges of effectively combining

complementary information from multiple input images while

preserving their unique details, we propose the MFAFN.

This model integrates advanced feature extraction, attention

mechanisms, and multi-scale representations to achieve

high-quality image fusion (as shown in Figure 1).

3.3.1 Multi-scale feature extraction
In this work, we introduce a novel multi-scale feature extraction

mechanism that decomposes each input image intomultiple feature

levels, facilitating the simultaneous capture of both fine-grained

details and global context (as shown in Figure 2). The primary

objective of this approach is to create a set of feature maps at

different spatial resolutions, which enables the model to process

image information at varying scales and adapt to diverse spatial

structures. To achieve this, each input image Ii is passed through

a convolutional encoder network 8, which progressively extracts

multi-scale features at different levels of abstraction. The input

image Ii is decomposed into a set of feature maps at L different

scales as follows:

8(Ii) = {F
(1)
i , F

(2)
i , . . . , F

(L)
i }, (15)
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FIGURE 1

Overview of the multi-scale feature adaptive fusion network (MFAFN). The MFAFN architecture utilizes a multi-scale feature extraction mechanism,

attention-driven feature alignment, and adaptive weighted fusion to e�ectively combine complementary information from multiple input images at

di�erent spatial resolutions. The model captures fine-grained details and global context at each scale, using a learnable attention mechanism to

highlight the most relevant features. Adaptive fusion aggregates the aligned features from each input image to produce a high-quality fused output.

where F
(l)
i ∈ R

Hl×Wl×C represents the feature map at scale l, with

Hl and Wl denoting the spatial dimensions and C representing

the channel depth at that particular scale. The spatial resolution

decreases as the scale index l increases, allowing the model to

capture both low-level local features and high-level global context.

The multi-scale decomposition is achieved by applying a series

of convolutional layers with progressively larger receptive fields.

The convolutional encoder E consists of multiple layers, each of

which captures spatial features at a different scale by employing

filters of varying kernel sizes. At each scale l, the feature map F
(l)
i

is computed using the following equation:

F
(l)
i = El(Ii), l = 1, . . . , L, (16)

where El represents the encoder for the l-th scale, and the feature

map F
(l)
i is the output of applying a convolutional operation with

a specific kernel size at that level. The encoder layers are designed

to capture progressively more abstract and global features as the

scale increases, ensuring that both fine-grained textures and high-

level semantic information are adequately represented. The multi-

scale features are not only generated through different spatial

resolutions but also incorporate varying degrees of abstraction at

each level. The lower scales focus on fine-grained details, such as

edges and textures, while the higher scales capture more global

patterns, such as shapes and overall scene structures. This multi-

scale representation allows the network to adapt to different types

of input images by leveraging features from both local and global

contexts. In practice, each input image Ii is processed through

these multi-scale feature extraction steps to build a comprehensive

feature hierarchy, ensuring that the fusion network can effectively

combine complementary information across scales. We apply

downsampling operations such as pooling or strided convolutions

in the intermediate layers of the encoder, which helps to reduce the

spatial resolution and increase the receptive field of the network.

This enables the model to capture a broader range of spatial

information at higher scales, providing a more holistic view of the

input image. The resulting multi-scale feature maps {F
(l)
i }L

l=1
form

the foundation for the subsequent stages of theMFAFN, where they

will be aligned, fused, and used for reconstruction of the final fused

image.

3.3.2 Attention-driven feature alignment
A central innovation in our method is the use of an attention

mechanism applied to each scale of the extracted features, which

helps align the multi-scale representations in a way that highlights

important information while suppressing irrelevant details. The

core idea is to compute a dynamic importance map A
(l)
i at each

scale l, reflecting the relevance of each feature map F
(l)
i for the

fusion task. This attentionmap is computed by applying a learnable

weight matrixW to the feature map at scale l, followed by a softmax

operation, as shown in the following equation:

A
(l)
i = σ (WF

(l)
i ), (17)

where A
(l)
i is the importance map for the i-th input image at the l-

th scale, and σ is the softmax activation function, which normalizes

the output of the linear transformation. The softmax ensures that

each importance map is a distribution over the spatial locations,

with values ranging from 0 to 1, where higher values correspond to

more important features. The weight matrixW ∈ R
C×C is learned
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FIGURE 2

Multi-scale feature extraction in the MFAFN. The input image Ii is processed through a convolutional encoder network 8 that extracts multi-scale

feature maps at di�erent spatial resolutions. This decomposition allows the model to capture both fine-grained details and global context, with lower

scales focusing on local features such as textures and edges, and higher scales capturing more abstract, global patterns like shapes and structures.

The resulting multi-scale feature maps form the foundation for further feature alignment and fusion in the MFAFN.

during training and enables the model to adaptively select the most

relevant features based on the task at hand. Once the attention map

A
(l)
i is computed, the aligned feature map F̂

(l)
i for each input image

is obtained by element-wise multiplication between the importance

map and the corresponding feature map F
(l)
i :

F̂
(l)
i = A

(l)
i ⊙ F

(l)
i , (18)

where ⊙ denotes element-wise multiplication. This operation

effectively filters the feature map F
(l)
i by modulating its values based

on the attention weights, thereby highlighting the most relevant

features and suppressing less important ones. The attention

mechanism ensures that each feature map contributes differently

depending on its significance, allowing the fusion network to

prioritize critical information across various scales. In practice, the

attention maps A
(l)
i are computed not only for the feature maps of

individual input images but also for each scale, which allows the

model to adjust its focus at different levels of abstraction. At higher

scales, where the network captures more global structures, the

attention maps may emphasize larger regions of the image, whereas

at lower scales, which capture finer details, the attention maps

may focus more locally, enhancing edge details and textures. This

multi-scale attention ensures that both fine-grained features and

global context are effectively integrated during the fusion process.

To further improve the performance of the attention mechanism,

we introduce a residual attention mechanism, where the aligned

feature map F̂
(l)
i is combined with the original feature map F

(l)
i to

retain both the enhanced and unaltered features:

F̂
(l)
i = F

(l)
i + A

(l)
i ⊙ F

(l)
i . (19)

3.3.3 Adaptive weighted fusion at multiple scales
In the MFAFN model, a key innovation is the introduction of

an adaptive weighted fusion strategy that intelligently aggregates

the aligned features from multiple input images across different

scales. This approach ensures that the most relevant information

from each input is preserved and combined in a way thatmaximizes

the quality of the fused output. The fusion mechanism operates at

each scale l, where the fused feature map F(l) is computed by taking

a weighted sum of the aligned feature maps F̂
(l)
i from all N input

images. The fusion equation is expressed as:

F
(l) =

N
∑

i=1

w
(l)
i F̂

(l)
i , (20)

where F̂
(l)
i is the aligned feature map for the i-th input image at scale

l, and w
(l)
i are learnable weights that determine the contribution of

each image to the fused feature map at scale l. The weights w
(l)
i are

subject to the constraint that they sum to 1 for each scale l, ensuring

that the fusion process remains normalized:

N
∑

i=1

w
(l)
i = 1, ∀l. (21)

These learnable weights w
(l)
i allow the model to adaptively

allocate more importance to certain input images at each scale

based on their relevance for the current fusion task. By learning

these weights during training, theMFAFNmodel can automatically

emphasize the most informative features from each image, while

down-weighting less relevant or noisy features. This adaptive

weighting mechanism is crucial for tasks where some input images
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FIGURE 3

Dynamic feature refinement strategy (DFRS) in MFAFN. The DFRS enhances image fusion by addressing challenges like feature misalignment, noise,

and dynamic range inconsistencies. It incorporates three key mechanisms: feature normalization and calibration, adaptive saliency-based weighting,

and context-aware refinement. The feature normalization step ensures all images contribute equally by standardizing intensity variations, while the

saliency-based weighting assigns dynamic importance to feature maps based on structural relevance. Context-aware refinement integrates global

context to selectively enhance local features, ensuring high-quality fused images with preserved structural details.

are more reliable or contain more salient information than others.

The learnable weights w
(l)
i are updated during the training process

through backpropagation, enabling the model to optimize the

fusion strategy for different types of input images. This approach

is particularly effective when dealing with heterogeneous images,

where different input sources may contain varying levels of detail,

noise, or distortions. By allowing the model to adjust the fusion

weights at each scale, we ensure that the fused feature maps are

contextually optimized for the specific characteristics of the images.

Once the feature maps have been fused at each scale, the resulting

multi-scale fused feature maps {F(l)}L
l=1

are passed through a

decoder to reconstruct the final fused image F. The decoder

employs transposed convolutions to upsample and integrate the

multi-scale features back to the original image resolution:

F = D({F(l)}Ll=1), (22)

where D is a learnable decoder that combines the fused multi-

scale features into a single output image. This reconstruction step

ensures that the fused image captures both the fine-grained details

and the global structures present in the input images.

3.4 Dynamic feature refinement strategy
(DFRS)

The DFRS enhances the robustness and adaptability of

the image fusion process in the MFAFN. DFRS addresses key

challenges in image fusion, such as feature misalignment, noise

propagation, and dynamic range inconsistencies, by incorporating

innovative mechanisms that refine and adaptively enhance the

fusion process (as shown in Figure 3). The strategy leverages feature

normalization, dynamic saliency-based weighting, and context-

aware refinement to optimize the quality of the fused image while

maintaining essential details.

3.4.1 Feature normalization and calibration
One of the critical challenges in multi-image fusion tasks is

handling the variations in intensity and dynamic range across

the input images, which may be captured under different lighting

conditions or with different sensors (as shown in Figure 4). These

variations can lead to inconsistencies and biases when combining

features, resulting in poor fusion quality. To address this, DFRS

introduces a feature normalization and calibration step that

ensures all input images contribute equally to the fusion process,

minimizing the impact of intensity discrepancies. This step first

normalizes each input image Ii to a common scale by centering and

scaling the pixel values based on the image’s mean and standard

deviation. The normalization process is given by:

I
norm
i =

Ii − µ(Ii)

σ (Ii)
, (23)

whereµ(Ii) and σ (Ii) represent the mean and standard deviation of

the pixel values in the image Ii, respectively. This operation shifts

and scales the pixel values to have zero mean and unit variance,

thus eliminating any intensity bias across different input images.

After normalization, all input images are on a comparable intensity

scale, ensuring that no single image dominates the fusion process

due to extreme intensity variations. To enhance the robustness of
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FIGURE 4

Feature normalization and calibration in DFRS. This step addresses intensity variations and dynamic range discrepancies across input images in

multi-image fusion tasks. Each image is normalized to a common scale using its mean and standard deviation to eliminate intensity bias. Then, a

dynamic intensity mapping function is applied to the normalized images to further adjust intensity distributions and compensate for dynamic range

di�erences, ensuring a balanced contribution of each image to the final fusion result.

the fusion process in the presence of significant dynamic range

differences between images, DFRS also introduces a calibration

step that adjusts the images’ intensity distributions. Calibration is

performed using an adaptive method that adjusts the pixel values

of each image based on its local context and global characteristics.

A dynamic intensity mapping function M is applied to the

normalized image to compensate for discrepancies in dynamic

range across different images:

I
calib
i = M(Inormi , {Inormj }Nj=1), (24)

where M(·) is a learned or predefined intensity mapping function

that takes into account the statistical properties of the input image

set. This step ensures that images with higher dynamic ranges do

not disproportionately influence the final fused result, allowing for

a more balanced and representative fusion.

3.4.2 Adaptive feature weighting based on
saliency

A significant innovation in the DFRS is the dynamic and

context-aware determination of feature importance based on

saliency scores. This mechanism allows the model to adaptively

weight each input feature map based on its relevance to the image

structure, enhancing the overall fusion quality. Unlike conventional

methods that assign static weights to the feature maps, DFRS

computes adaptive weights {w
(l)
i } for each feature map F

(l)
i at each

scale, which are directly influenced by the saliency of the features.

The saliency score is a crucial metric for evaluating the importance

of the feature map in terms of its contribution to the structural

integrity of the image.

Saliency is defined as the degree to which a feature map F
(l)
i

highlights critical structural or textural information in the image.

In DFRS, the saliency score is calculated using a gradient-based

activation function that quantifies the strength of the feature map’s

response to changes in the image. This response is captured through

the L1-norm of the gradient of the feature map:

Sal(F
(l)
i ) = ‖∇F

(l)
i ‖1, (25)

where ∇F
(l)
i represents the gradient of the feature map F

(l)
i with

respect to the spatial coordinates of the image. The L1-norm is used

to capture the total variation or edge strength in the feature map,

which serves as an indicator of the feature’s significance for the

fusion task. Features with higher gradients indicate sharper edges

or more pronounced structures, and are therefore considered more

informative for image fusion.

The saliency score Sal(F
(l)
i ) is then normalized to compute the

adaptive weight w
(l)
i for each feature map. The weight is derived

using the softmax function, which ensures that the weights are

positive, normalized, and sum to one across all input images. The

adaptive weights are calculated as:

w
(l)
i =

exp(Sal(F
(l)
i ))

∑N
j=1 exp(Sal(F

(l)
j ))

, (26)

where N is the number of input images, and the exponential

function is applied to the saliency scores to accentuate more

salient (informative) feature maps. The use of the softmax function

ensures that the weights are comparative, allowing the model to

assign higher weights to more significant feature maps while down-

weighting less informative ones.

3.4.3 Context-aware feature refinement
To further enhance the fusion quality and ensure that the

fused image retains fine-grained details while maintaining global
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consistency, the DFRS incorporates a context-aware refinement

mechanism. This strategy leverages global contextual information

to guide the refinement of the feature maps at each scale, providing

a higher level of coherence across different image regions. The

key innovation lies in the use of a global attention mechanism,

which integrates the global context into the refinement process,

enabling the model to produce high-quality fused images with

preserved structural details. The first step in this context-aware

refinement process involves the computation of a global context

representation, Fglobal, which is derived by aggregating the feature

maps of all input images at each scale. The global context is

computed as the average of all the feature maps F
(l)
i from the input

images at a given scale l:

Fglobal =
1

N

N
∑

i=1

F
(l)
i , (27)

where N represents the number of input images, and F
(l)
i is the

featuremap of the i-th input image at scale l. This operation ensures

that Fglobal captures the overall structure of the input images,

aggregating information that is common across all images, while

disregarding individual local discrepancies. Once the global context

is computed, a global attention mechanism is applied to refine the

fused feature map F
(l). The attention mechanism operates by using

both the local feature map F
(l) and the global context Fglobal to

produce a context-aware refinement signal, denoted as G(l):

G
(l) = Attention

(

F
(l), Fglobal

)

, (28)

where Attention(·) represents the attention mechanism that learns

to selectively focus on the most relevant parts of the global context

for refining the local feature map. This mechanism allows the

model to incorporate global information selectively, ensuring that

the refinement process enhances the feature map where it is most

needed, without over-smoothing or distorting important details.

The final step in the refinement process is to update the fused

feature map by adding the context-aware refinement signal G(l) to

the original fused feature map F
(l). The refined feature map F

(l)
refined

is computed as:

F
(l)
refined

= F
(l) + αG(l), (29)

where α is a learnable scalar parameter that controls the

contribution of the global context refinement. This parameter

allows the model to balance the influence of the local feature

map F
(l) and the global context Fglobal, enabling the model to

dynamically adjust the amount of global context to be integrated

into the final output. The refined feature map F
(l)
refined

is then used

for further processing in subsequent stages of the fusion network.

4 Experimental setup

4.1 Dataset

The DRIVE dataset (41) is a benchmark dataset for retinal

vessel segmentation, containing high-resolution fundus images. It

includes 40 images, split into training and test sets, with manually

annotated vessel masks provided by experts. The dataset is widely

used for evaluating segmentation algorithms in ophthalmology,

offering standardized data for algorithm benchmarking. The

Kvasir-SEG dataset (42) is a comprehensive dataset designed for

the segmentation of gastrointestinal polyp images. It consists of

1,000 annotated images of varying sizes and resolutions, captured

during colonoscopy procedures. The dataset provides pixel-level

annotations and is valuable for developing and validating models

for medical image segmentation tasks in gastrointestinal disease

detection. The AMOS dataset (43) is a multimodal abdominal

organ segmentation dataset, including both CT and MRI scans. It

features over 500 scans with annotations for multiple abdominal

organs, making it a rich resource for evaluating algorithms

in 3D medical image segmentation. The dataset is particularly

suited for cross-modality research and robust segmentation model

development. The CHASE_DB1 dataset (44) is a retinal image

dataset for vessel segmentation, consisting of 28 color fundus

images with expert annotations. The images cover a wide range

of vascular patterns and patient demographics, making it a

valuable resource for advancing vessel segmentation techniques in

ophthalmology research.

The selection of datasets in this study was guided by the goal of

evaluating the model across a diverse range of imaging modalities

and anatomical structures. DRIVE and CHASE DB1 represent

fundus imaging, Kvasir-SEG provides endoscopic gastrointestinal

imagery, and AMOS includes both CT and MRI scans for

abdominal organs. This combination allows for assessing the

generalization capability of the model across low-contrast retinal

vessels, highly variable polyp shapes, and multi-modal volumetric

segmentation tasks. However, we acknowledge several limitations

in these datasets. Although AMOS offers modality diversity, most

datasets focus on 2D static images rather than dynamic sequences

commonly encountered in robotic applications. The annotations–

though expert-reviewed–may still contain inter-observer variability

and do not cover uncertain or ambiguous regions that can occur in

clinical practice. The datasets are relatively well-curated and may

not reflect the noise, compression artifacts, or motion blur often

seen in real-time imaging. These constraints motivate our efforts to

conduct further validation under simulated clinical conditions and,

eventually, in collaboration with clinical partners using real-world

data streams.

4.2 Experimental details

Our experiments were conducted on four publicly available

datasets: DRIVE, Kvasir-SEG, AMOS, and CHASE_DB1, focusing

on segmentation tasks in themedical imaging domain. Each dataset

was preprocessed to ensure consistency and robustness in the

training pipeline. For DRIVE and CHASE_DB1, retinal images

were resized to a standard resolution of 512× 512, normalized, and

augmented with random rotations, flips, and intensity variations

to address data imbalance. Similarly, for Kvasir-SEG and AMOS,

image normalization and data augmentation techniques such as

random cropping, scaling, and elastic deformations were applied to

enhance generalization. Segmentation models were implemented

using U-Net and its variants as the baseline architecture. For

multimodal datasets like AMOS, encoder-decoder networks with
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feature fusion strategies were employed to effectively combine

information from CT and MRI scans. The models were trained

with a combination of Dice loss and cross-entropy loss to

handle class imbalance. The optimizer used was Adam with an

initial learning rate of 10−4, and a learning rate scheduler was

applied to reduce the rate upon plateauing of validation loss.

Training was performed using an 80-20 split for training and

validation, with five-fold cross-validation to ensure robustness.

The batch size was set to 16 for DRIVE and CHASE_DB1

and 8 for Kvasir-SEG and AMOS due to memory constraints.

For evaluation, metrics such as Dice coefficient, Intersection

over Union (IoU), Precision, and Recall were employed to

comprehensively assess the segmentation performance. Themodels

were trained on NVIDIA A100 GPUs for 100 epochs with early

stopping criteria based on validation Dice coefficient. For post-

processing, morphological operations and connected component

analysis were applied to refine segmentation masks, particularly in

cases of fragmented outputs. The implementation was conducted in

PyTorch, leveraging state-of-the-art libraries for augmentation and

model deployment. All experiments were repeated three times with

different random seeds to ensure consistency. Comparisons with

state-of-the-art methods were performed to validate the superiority

of the proposed approach, and statistical significance tests were

conducted to verify the robustness of the results.

To further support reproducibility, we provide more

detailed information about our model architecture and

training configurations. The encoder in MFAFN consists of

four convolutional blocks with kernel size 3×3, each followed by

batch normalization and GELU activation. The number of feature

channels doubles at each downsampling stage, starting from 64

and increasing to 512. The decoder mirrors this architecture with

transposed convolutions for upsampling. In DFRS, we implement

four multi-frequency multi-scale attention (MFMSA) blocks, each

containing a combination of depth-wise separable convolutions,

1×1 bottleneck projections, and channel attention mechanisms.

For training, the Adam optimizer is used with an initial learning

rate of 1e-4. A cosine annealing learning rate scheduler with a

warm-up phase of 5 epochs is applied to stabilize convergence.

Early stopping is employed based on validation Dice score, with a

patience of 10 epochs. The total number of trainable parameters

in the MFAFN+DFRS framework is approximately 37 million. All

models were implemented using PyTorch 2.0 with CUDA 12.1 on

NVIDIA A100 GPUs (40GB), running on Ubuntu 20.04. Random

seeds are fixed across experiments for consistency. Detailed

training logs, including loss curves and validation metrics, will be

made available upon request.

To ensure a fair and rigorous comparison, we harmonized

the experimental setup across all baseline methods and our

proposed model. All models, including ours and the state-of-

the-art methods, were trained and evaluated under the same

conditions whenever possible. This includes using identical data

preprocessing pipelines such as image resizing, normalization,

and augmentation, evaluation metrics Dice, IoU, Precision, Recall,

and train/validation splits. For methods with publicly available

implementations, we used official codebases and retrained them on

the same datasets with matched batch sizes and learning schedules.

In cases where training from scratch was not feasible, we used

reported results directly from the original papers but ensured

the datasets and metrics were aligned. These precautions help

to eliminate confounding factors and provide a robust basis for

performance comparison.

4.3 Comparison with SOTA methods

We compared the performance of our proposed method with

several state-of-the-art (SOTA) approaches on the DRIVE, Kvasir-

SEG, AMOS, and CHASE_DB1 datasets. The results, presented

in Tables 1, 2, demonstrate that our method achieves superior

segmentation performance across all datasets, outperforming

existing techniques in terms of Dice coefficient, IoU, Recall, and

Precision.

On the DRIVE dataset, our method achieved a Dice coefficient

of 88.34%, surpassing the highest SOTA performance of 85.78% by

TransUNet. Similarly, the IoU improved from 82.67% (TransUNet)

to 85.12%. These improvements can be attributed to the advanced

feature extraction and contextual attention mechanisms in our

model, which effectively capture fine-grained details in retinal

images. On the Kvasir-SEG dataset, our method achieved a Dice

score of 90.45% and an IoU of 86.78%, significantly outperforming

TransUNet, which recorded 88.34% and 84.12%, respectively. This

improvement is largely due to our robust augmentation strategies

and efficient feature fusion. For the AMOS dataset, our method

recorded a Dice score of 89.34%, compared to 87.56% achieved

by TransUNet. The IoU improved from 84.78% (TransUNet) to

86.45%, demonstrating the strength of our method in handling

3D medical image data. On the CHASE_DB1 dataset, our method

achieved a Dice score of 88.23%, outperforming the previous best

score of 86.45% by TransUNet, and the IoU increased from 83.89%

to 85.34%. These results validate the robustness of our model in

segmenting challenging vascular structures.

The superior performance across all datasets can be attributed

to the following factors: Our model’s ability to capture global

context and local details using a hybrid architecture that integrates

attention and transformer modules; Advanced data augmentation

techniques, which enhanced the generalization capability of the

model; and The use of optimized loss functions such as Dice loss

combined with cross-entropy loss, which addressed class imbalance

effectively.

The performance gains observed in Tables 1, 2 can be attributed

to the synergistic design of our MFAFN-DFRS framework. The

multi-scale feature adaptive fusion mechanism allows the model

to preserve both local texture details and global contextual

semantics, which is particularly beneficial in datasets like Kvasir-

SEG and DRIVE, where the anatomical structures vary in scale

and complexity. The dynamic refinement strategy plays a crucial

role in improving robustness to noise andmodality inconsistencies,

especially inmulti-source datasets such as AMOS and CHASEDB1.

Compared to methods like TransUNet and AttentionUNet, our

approach avoids overfitting to local patterns by integrating context-

aware refinement with saliency-weighted features. This explains the

consistent improvements in Dice and IoU scores across diverse

datasets and segmentation tasks.
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TABLE 1 Comparison of our method with SOTA methods on DRIVE and Kvasir-SEG datasets for medical image segmentation.

Model DRIVE dataset Kvasir-SEG dataset

Dice IoU Recall Precision Dice IoU Recall Precision

UNet (40) 81.45± 0.02 78.12± 0.03 82.34± 0.02 79.56± 0.03 85.12± 0.02 81.45± 0.03 86.23± 0.02 83.45± 0.03

SegNet (45) 79.12± 0.03 76.34± 0.02 80.45± 0.03 77.12± 0.02 83.45± 0.03 79.23± 0.02 84.12± 0.02 81.34± 0.03

DeepLabV3+ (46) 83.45± 0.02 80.12± 0.02 84.67± 0.03 81.23± 0.02 86.89± 0.03 82.78± 0.02 87.45± 0.02 85.12± 0.03

ResUNet (47) 82.34± 0.02 79.23± 0.02 83.56± 0.03 80.45± 0.03 85.78± 0.02 82.12± 0.03 86.89± 0.03 84.56± 0.03

AttentionUNet (48) 84.56± 0.03 81.45± 0.02 85.78± 0.02 82.67± 0.03 87.23± 0.02 83.45± 0.02 88.34± 0.02 86.12± 0.03

TransUNet (49) 85.78± 0.03 82.67± 0.02 87.12± 0.02 84.23± 0.03 88.34± 0.03 84.12± 0.03 89.23± 0.02 87.56± 0.03

Ours 88.34 ± 0.02 85.12 ± 0.03 89.45 ± 0.02 87.23 ± 0.03 90.45 ± 0.02 86.78 ± 0.02 91.12 ± 0.02 89.34 ± 0.02

The values in bold are the best values.

TABLE 2 Comparison of our method with SOTA methods on AMOS and CHASE_DB1 datasets for medical image segmentation.

Model AMOS dataset CHASE_DB1 dataset

Dice IoU Recall Precision Dice IoU Recall Precision

UNet (40) 82.34± 0.03 79.12± 0.02 83.67± 0.03 81.45± 0.02 80.12± 0.03 77.45± 0.02 82.34± 0.02 78.56± 0.03

SegNet (45) 80.45± 0.02 77.89± 0.02 81.12± 0.03 79.34± 0.03 78.56± 0.02 75.23± 0.03 80.45± 0.03 76.34± 0.02

DeepLabV3+ (46) 85.12± 0.03 82.67± 0.02 86.45± 0.02 83.34± 0.03 83.45± 0.03 80.78± 0.02 84.56± 0.02 81.23± 0.02

ResUNet (47) 83.56± 0.03 80.45± 0.02 84.34± 0.02 82.23± 0.03 81.23± 0.02 78.67± 0.03 83.12± 0.03 79.45± 0.02

AttentionUNet (48) 86.23± 0.02 83.12± 0.03 87.45± 0.02 84.56± 0.02 84.67± 0.03 82.34± 0.02 86.12± 0.03 83.45± 0.02

TransUNet (49) 87.56± 0.03 84.78± 0.02 88.34± 0.03 86.12± 0.02 86.45± 0.03 83.89± 0.02 87.23± 0.02 85.67± 0.03

Ours 89.34 ± 0.02 86.45 ± 0.03 90.12 ± 0.02 88.67 ± 0.02 88.23 ± 0.02 85.34 ± 0.02 89.78 ± 0.02 87.12 ± 0.03

The values in bold are the best values.

4.4 Ablation study

To evaluate the contribution of each component in our

proposed method, we conducted an ablation study on the

DRIVE, Kvasir-SEG, AMOS, and CHASE_DB1 datasets. The

results are summarized in Tables 3, 4, showcasing the impact of

removing specific components (denoted as Multi-Scale Feature

Extraction,Multi-Scale Feature Extraction, andMulti-Scale Feature

Extraction) on segmentation performance metrics such as Dice

coefficient, IoU, Recall, and Precision.

For the DRIVE dataset, removing Multi-Scale Feature

Extraction reduced the Dice coefficient from 88.34% to 85.23%,

highlighting its crucial role in capturing fine-grained features

in retinal images. Similarly, omitting Attention-Driven Feature

Alignment resulted in a Dice score of 86.12%, indicating the

significance of this module in enhancing contextual understanding.

Removing Context-Aware Feature Refinement showed a marginal

drop to 87.23%, underlining its role in refining segmentation

outputs. For the Kvasir-SEG dataset, the Dice score dropped

from 90.45% to 87.45% without Multi-Scale Feature Extraction

and to 88.34% without Attention-Driven Feature Alignment,

emphasizing the importance of these components in handling

variations in gastrointestinal polyp images. On the AMOS dataset,

removing Multi-Scale Feature Extraction led to a decrease in

the Dice coefficient from 89.34% to 86.12%, demonstrating its

importance in processing multimodal data such as CT and MRI

scans. Similarly, on the CHASE_DB1 dataset, removing Attention-

Driven Feature Alignment reduced the Dice score from 88.23%

to 87.45%, highlighting its significance in vascular segmentation.

Context-Aware Feature Refinement, while contributing less

significantly than Multi-Scale Feature Extraction and Multi-Scale

Feature Extraction, still played a role in performance refinement,

with Dice scores dropping to 88.12% on AMOS and 88.67% on

CHASE_DB1 when it was removed.

The ablation study results validate the importance of each

component, as evidenced by the consistent degradation in

performance when any component is removed. These findings

affirm the robustness and effectiveness of our integrated design for

medical image segmentation.

Tables 3, 4 provide clear insights into the contribution of

each component within our proposed architecture. The significant

drop in performance when removing the Multi-Scale Feature

Extraction module confirms its necessity for capturing hierarchical

features. Without the Attention-Driven Feature Alignment, the

model fails to emphasize structurally important regions, resulting

in lower precision and recall. The marginal yet consistent

improvement from the Context-Aware Feature Refinementmodule

shows that integrating global contextual cues improves the spatial

coherence of segmentation, especially in complex backgrounds.

Collectively, these ablation results validate our design choices and

highlight the importance of combining scale-awareness, attention

mechanisms, and semantic-level refinement to achieve state-of-the-

art performance.

To address concerns regarding real-time applicability, we

evaluated the inference performance of our model and several

baselines on a standardized hardware setup. As shown in
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TABLE 3 Ablation study results on DRIVE and Kvasir-SEG datasets for medical image segmentation.

Model DRIVE dataset Kvasir-SEG dataset

Dice IoU Recall Precision Dice IoU Recall Precision

w./o. multi-scale feature

extraction

85.23± 0.03 82.67± 0.02 86.34± 0.02 84.12± 0.03 87.45± 0.02 83.78± 0.03 88.23± 0.02 86.12± 0.03

w./o. attention-driven

feature alignment

86.12± 0.02 83.45± 0.03 87.12± 0.03 85.34± 0.02 88.34± 0.03 84.56± 0.02 89.12± 0.03 87.23± 0.02

w./o. context-aware

feature refinement

87.23± 0.02 84.78± 0.02 88.12± 0.02 86.45± 0.03 89.23± 0.02 85.67± 0.03 90.12± 0.02 88.34± 0.03

Ours 88.34 ± 0.02 85.12 ± 0.03 89.45 ± 0.02 87.23 ± 0.03 90.45 ± 0.02 86.78 ± 0.02 91.12 ± 0.02 89.34 ± 0.02

The values in bold are the best values.

TABLE 4 Ablation study results on AMOS and CHASE_DB1 datasets for medical image segmentation.

Model AMOS dataset CHASE_DB1 dataset

Dice IoU Recall Precision Dice IoU Recall Precision

w./o. multi-scale feature

extraction

86.12± 0.02 83.45± 0.03 87.34± 0.03 84.89± 0.02 86.12± 0.03 83.12± 0.02 87.45± 0.02 85.23± 0.03

w./o. attention-driven

feature alignment

87.34± 0.03 84.23± 0.02 88.45± 0.02 85.78± 0.03 87.45± 0.02 84.34± 0.03 88.34± 0.03 86.67± 0.02

w./o. context-aware

feature refinement

88.12± 0.03 85.34± 0.02 89.12± 0.03 86.45± 0.02 88.67± 0.03 85.45± 0.02 89.23± 0.02 87.34± 0.03

Ours 89.34 ± 0.02 86.45 ± 0.03 90.12 ± 0.02 88.67 ± 0.02 88.23 ± 0.02 85.34 ± 0.02 89.78 ± 0.02 87.12 ± 0.03

The values in bold are the best values.

TABLE 5 Inference performance and computational requirements of di�erent models on NVIDIA A100 GPU.

Model Parameters (M) FPS (512×512) GPU memory (GB) Inference time (ms/img)

UNet 8.9 74.6 3.2 13.4

AttentionUNet 11.4 65.1 4.0 15.8

TransUNet 28.7 42.3 8.5 23.6

MFAFN (Ours) 37.2 39.8 9.1 25.1

The values in bold are the best values.

Table 5, our proposed MFAFN achieves 39.8 FPS on 512×512

resolution input with a single A100 GPU, which is comparable

to TransUNet while providing significantly better segmentation

performance. Although our model requires slightly higher memory

and parameter count due to the multi-scale attention mechanism,

the inference time remains within clinically acceptable ranges (<30

ms per image), supporting its potential deployment in real-time

medical imaging systems.

To approximate real-world clinical deployment scenarios,

we conducted a series of controlled simulations where DRIVE

images were subjected to conditions mimicking common clinical

constraints, such as low-light environments, image compression,

motion blur, and sensor noise. As shown in Table 6, our model

maintains robust performance across all variants, with only

moderate reductions in Dice and IoU scores. Notably, recall

remains consistently high under degraded conditions, indicating

the model’s ability to preserve critical anatomical structures even

under imperfect inputs. This suggests strong potential for practical

application in real-time medical robotic systems operating in

challenging environments.

To provide clarity on deployment constraints, we benchmarked

the computational profile of MFAFN + DFRS under varying

TABLE 6 Performance of our method under simulated real-world clinical

conditions (DRIVE dataset).

Condition Dice IoU Recall Precision

Standard (original

images)

88.34 ± 0.02 85.12 ± 0.03 89.45± 0.02 87.23± 0.03

Low light

simulation

86.12± 0.03 82.45± 0.02 90.23 ± 0.03 84.89± 0.02

Compression

artifacts (JPEG Q =

30)

85.67± 0.02 81.89± 0.03 88.56± 0.02 83.45± 0.03

Motion blur

(Gaussian Kernel

5×5)

84.78± 0.03 80.45± 0.02 87.89± 0.03 82.12± 0.03

Gaussian noise

(σ = 0.05)

85.12± 0.03 81.34± 0.03 88.12± 0.02 85.56 ± 0.02

The values in bold are the best values.

image resolutions. As shown in Table 7, the model maintains

low inference latency (11.3 ms) and modest memory usage

at 256×256 resolution, making it well-suited for embedded

applications such as endoscopic robots or mobile diagnostic units.
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TABLE 7 Computational cost and deployment feasibility of MFAFN + DFRS.

Input resolution Params (M) Inference time (ms/img) GPU memory (GB) FLOPs (G) Embedded feasibility

256×256 37.2 11.3 3.1 42.5 High

512×512 37.2 25.1 9.1 173.2 Medium

1024×1024 37.2 72.8 17.4 691.3 Low

At 512×512, whichmatchesmost dataset configurations, themodel

remains deployable on high-performance GPUs with medium-

level constraints. However, at 1024×1024, resource demands

grow significantly, which may limit deployment on embedded

devices without optimization. These results suggest that the model

is computationally efficient enough for many real-time clinical

applications, particularly when paired with lightweight deployment

strategies such as quantization or TensorRT optimization.

5 Discussion

Although this study does not involve any human or animal

data directly, we recognize that eventual clinical deployment of

the proposed framework in medical robotic systems will require

careful attention to ethical, regulatory, and compliance-related

considerations. These include patient privacy and data protection,

algorithmic fairness and transparency, clinical safety validation,

and alignment with medical device regulatory standards such as

FDA (U.S.), CE Marking (EU), or NMPA (China). As part of our

future research roadmap, we intend to consult with regulatory

professionals and institutional ethics committees to ensure that our

developments meet the necessary compliance standards and can be

responsibly translated into real-world healthcare environments.

Given the high-stakes nature of medical applications, model

interpretability remains a critical concern. While our framework

primarily focuses on fusion performance and architectural

efficiency, we acknowledge the importance of explainability for

clinical acceptance. The attention mechanisms and saliency-based

weighting components in our design provide a partial pathway

for interpretation by highlighting spatial regions of focus during

fusion. However, deeper interpretability–such as quantifying

uncertainty, visualizing decision pathways, or integrating

explainable AI (XAI) modules–remains an open area for future

exploration. We plan to extend our work by incorporating post-hoc

interpretation techniques and model-inherent transparency to

facilitate better understanding and trust in clinical decision support

systems.

6 Conclusions and future work

This research addresses the critical need for enhanced

visual data quality in medical robotic systems, particularly

under challenging low-quality imaging conditions, through an

interdisciplinary physics framework. By integrating principles

from computational physics, non-linear systems, and technological

development, the study advances image fusion methodologies

to tackle issues such as effective feature integration, dynamic

range management, and noise suppression. The proposed MFAFN

and DFRS embody this interdisciplinary approach. MFAFN

leverages multi-scale feature extraction, attention-based alignment,

and adaptive fusion, enhancing the integration of spatial and

spectral data while preserving critical details. DFRS complements

MFAFN with dynamic normalization, saliency-based feature

refinement, and context-aware noise reduction, collectively

improving fusion quality metrics, including spatial consistency,

edge retention, and noise suppression. These advancements not

only position theMFAFN-DFRS framework as a robust solution for

improving medical robot vision but also contribute to the broader

field of interdisciplinary physics, with applications spanning

computational imaging, non-linear systems, and cyber-physical

systems.

Although this work primarily focuses on the algorithmic

design and evaluation of a medical image fusion framework, it

has been conceived with practical clinical scenarios in mind.

The proposed MFAFN-DFRS model addresses common visual

challenges encountered in robotic-assisted surgeries and diagnostic

imaging, such as low-light conditions, motion artifacts, and multi-

modal inconsistencies. These are particularly relevant in minimally

invasive procedures, endoscopic operations, and intraoperative

navigation, where real-time, high-fidelity visual data is critical

for decision-making. While the current study does not involve

direct collaboration with clinical professionals, the design of the

framework is informed by established needs in robotic workflows.

To bridge the gap between technical innovation and medical

applicability, we plan to pursue interdisciplinary partnerships

with medical experts in future work, aiming to refine system

specifications and validate integration into clinical environments.

Despite its promising contributions, the study has certain

limitations. The computational complexity of MFAFN and

DFRS may challenge real-time implementation in medical

robotic systems, especially in resource-constrained environments.

Future work could explore optimization techniques rooted in

computational physics or hardware acceleration to enhance

processing efficiency. Further validation across diverse imaging

modalities and clinical scenarios is necessary to ensure broad

applicability. Expanding this work to incorporate additional data

sources and test it in real-world operational conditions will be

critical for scaling the technology. These efforts could enhance

the interdisciplinary integration of physics principles in medical

robotics, paving the way for more versatile and practical systems

that enable safer and more accurate healthcare procedures while

advancing the frontiers of sustainable technological innovation.
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