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Objective: Postpartum depression (PPD) is a common and serious mental health 
complication after childbirth, with potential negative consequences for both the 
mother and her infant. This study aimed to develop an explainable machine 
learning model to predict the risk of PPD and to identify its key predictive factors.

Methods: A retrospective analysis was conducted on 1,065 women who 
attended their 6-week postpartum follow-up visit at a tertiary maternal and 
child healthcare hospital in Shenyang, China, from January to December 
2021. Feature selection was performed using LASSO regression and the Boruta 
algorithm. Eight machine learning algorithms were then employed to construct 
the prediction models. Model performance was evaluated according to the area 
under the receiver operator characteristic curve (AUC), sensitivity, specificity, 
recall, F1 score, and accuracy. Shapley additive explanations (SHAP) were used 
to visualize the features of the model and individual case predictions.

Results: Among the 1,065 women, 251 (23.5%) developed PPD. An 11-variable 
prediction model was developed, with XGBoost showing the best performance 
on both training and validation sets. After optimizing the model parameters and 
applying 10-fold cross-validation, the model achieved an average accuracy 
of 0.95, an average AUC of 0.955, average precision of 0.945, and average 
specificity of 0.985, indicating excellent predictive performance. The key 
predictive factors included weight gain during pregnancy, relationship with 
the mother-in-law, sleep quality, marital relationship, planned pregnancy, fetal 
sex preference, pregnancy-related anxiety, pelvic-floor muscle endurance, 
cervix status, attendance at prenatal education classes, and postpartum care 
satisfaction.

Conclusion: The XGBoost model demonstrated optimal performance at 
predicting PPD and can aid healthcare professionals to identify high-risk 
individuals. The SHAP method enhanced the model’s interpretability, facilitating 
a better understanding of the causes of PPD, how to prevent it, and how to 
improve patient outcomes.
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1 Introduction

Postpartum depression (PPD) is a prevalent mental disorder 
affecting women following childbirth (1). It is characterized by 
persistent depressive moods, emotional distress, and a notable loss of 
interest in daily activities. Epidemiological studies indicate that the 
prevalence of PPD varies widely across different regions, ranging from 
5.0 to 26.32% (1–3). PPD has a profound impact on the physical and 
mental wellbeing of mothers, significantly diminishing their quality 
of life (2). It can have long-lasting adverse effects on the mother–infant 
relationship, as well as on the cognitive, emotional, and behavioral 
development of newborns (4). Therefore, it is crucial to identify high-
risk mothers early and implement timely interventions to reduce the 
incidence of PPD and enhance both maternal and infant health.

In response to this growing global concern, mental healthcare for 
postpartum women has received increasing attention in recent years. 
International guidelines, such as those from the American College of 
Obstetricians and Gynecologists (ACOG), and Chinese national 
guidelines, emphasize the importance of routine screening for PPD 
during the perinatal period (5). In China, the standard of care for 
postpartum mental health typically includes routine screening for 
depressive symptoms during postnatal follow-up visits, such as the 
6-week postpartum check-up (6). Recommended screening tools 
include standardized instruments such as the Edinburgh Postnatal 
Depression Scale (EPDS) and the Patient Health Questionnaire-9 
(PHQ-9), which have been widely validated in both research and 
clinical practice (7, 8). Such screening aims to enable early detection 
and intervention, in line with tertiary prevention principles, to 
minimize the adverse effects of PPD on mothers and their infants. 
However, the practical implementation of these guidelines can 
be  inconsistent, with variations in follow-up frequency and 
intervention strength across different regions and healthcare settings 
(9). Moreover, some perinatal women who develop PPD may 
be inclined to hide their clinical symptoms as a result of social stigma 
(10). Consequently, there is a pressing need for more effective and 
precise approaches to predict and prevent PPD.

Recent advancements in machine learning have demonstrated its 
powerful capability to process data and recognize patterns in the 
medical field and particularly to predict the risk of PPD (11, 12). 
Compared to traditional statistical methods such as logistic regression, 
machine learning algorithms can effectively handle high-dimensional 
data and complex non-linear relationships, uncovering hidden 
patterns that enhance predictive performance (13). However, current 
research remains in its nascent stages, with challenges such as small 
sample sizes and limited variable selection that affect the accuracy and 
clinical applicability of these models (14). Furthermore, existing 
studies rarely incorporate multidimensional risk factors, including 
postpartum physical examinations and pelvic-floor muscle function 
assessments, which further limit the clinical relevance of the models. 
While some studies have utilized machine learning methods for PPD 
prediction, there is a notable lack of comprehensive algorithm 
comparisons, parameter optimization, and exploration of model 
stability. Specifically, in Shenyang, China, models based on local data 
are absent, making it difficult to account for region-specific risk 
factors. To enhance the clinical utility of models, Shapley additive 
explanations (SHAP) could improve their interpretability, clarify the 
contribution of individual variables to the prediction, and increase 
model transparency and clinical operability (15). Therefore, 

developing a PPD risk prediction model based on comprehensive data 
and accurate algorithms remains a key focus of research.

This study aimed to construct a PPD risk prediction model using 
machine learning algorithms and incorporating multiple risk factors. 
We systematically compared the predictive performance of various 
algorithms to select the optimal model and facilitate its clinical 
application. The SHAP method was used to visually interpret the 
results of the model, to assist clinicians at identifying high-risk 
populations, and to implement timely interventions.

2 Methods

2.1 Sample selection

The participants in this study were women who visited a tertiary 
maternal and child healthcare hospital in Shenyang, China, for 
postpartum check-ups 6 weeks after giving birth, between January and 
December 2021. All participants underwent routine 6-week postpartum 
follow-up examinations conducted by trained physicians and nurses. 
During these examinations, clinical data were collected, including 
general health status, obstetric history, past medical history, and 
abdominal/pelvic dynamics. The follow-up assessments included a 
comprehensive health evaluation and adhered strictly to standardized 
clinical procedures to ensure data reliability and consistency. In addition, 
socio-psychological information was gathered through telephone 
follow-ups. Trained researchers conducted structured phone interviews 
with each participant to collect data on prenatal care, psychological 
education, and other psychosocial factors that might influence PPD. The 
telephone interviews were designed to ensure data accuracy and 
completeness. All collected data were entered into a database with strict 
confidentiality measures to safeguard participant privacy and 
data integrity.

The inclusion criteria for the study were as follows: (1) participants 
who returned for postpartum check-up at 6 weeks, (2) who underwent 
PPD screening, and (3) who volunteered to participate. Exclusion 
criteria included (1) women with pre-existing mental illnesses or 
severe organic diseases, such as heart, liver, or kidney conditions, and 
(2) participants with incomplete basic information. This study was 
approved by the Ethics Committee of Shenyang Maternal and Child 
Health Hospital (Approval No. 2023-017-01).

2.2 Research variables

A structured Chinese-language questionnaire was developed, 
informed by a literature review and expert consultations, to 
systematically collect data from postpartum women (16). Data 
collection involved two main sources: (1) clinical information 
obtained from standardized medical records completed by trained 
physicians and nurses during the 6-week postpartum visit, and (2) 
psychosocial data gathered through structured telephone interviews 
conducted by trained researchers.

Collected variables were grouped into four domains: demographic 
information, pregnancy and delivery variables, postpartum health 
conditions, and psychological and social factors, as detailed below. 
Demographic information included age, educational level, body mass 
index (BMI, kg/m2), family economic status, smoking and alcohol 

https://doi.org/10.3389/fmed.2025.1565374
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al. 10.3389/fmed.2025.1565374

Frontiers in Medicine 03 frontiersin.org

history, and pre-pregnancy menstrual cycle abnormalities (defined as 
menstrual cycles shorter than 21 days or longer than 35 days). 
Pregnancy and delivery variables encompassed parity, adverse 
obstetric history (including spontaneous abortion, induced abortion, 
termination of pregnancy, and ectopic pregnancy), gestational weight 
gain, pregnancy-related complications (e.g., thyroid dysfunction, 
gestational hypertension, and gestational diabetes), mode of delivery, 
perineal outcomes, instrumental delivery, manual placental removal, 
number of fetuses, preterm birth, abnormal birth weight (<2,500 g or 
≥4,000 g), and adequacy of breast milk. Postpartum health conditions 
included self-reported pain, urinary and bowel dysfunction, and 
clinical assessments at the 6-week follow-up, including vaginal 
bleeding/discharge, abnormal pelvic or abdominal findings (including 
the vulva, vagina, cervix, uterus, and adnexa), hemorrhoids, and 
abdominal scars. Pelvic floor function was comprehensively evaluated, 
including measurements of muscle strength (Oxford grading 0–5), 
muscle endurance (0–5 s), tenderness, and dynamic pelvic pressure 
(cmH2O). Psychological and social factors—including perinatal sleep 
quality, fetal sex preference, participation in prenatal education, 
prenatal anxiety, satisfaction with postpartum confinement, marital 
relationship, and relationship with in-laws—were assessed via self-
report during telephone interviews. A summary of the collected 
variables and their corresponding data sources is presented in Table 1.

2.3 Postpartum depression screening

The Chinese version of the EPDS was used to assess PPD. The 
EPDS is a widely used self-report tool for screening PPD. It consists 
of 10 items. Each item is scored based on the frequency of symptoms, 
ranging from 0 (not at all) to 3 (almost always), with a total score 
ranging from 0 to 30. A higher score indicates more severe depression. 
The Chinese version of the EPDS has been shown to have good 
internal consistency (Cronbach’s α = 0.714) and test–retest reliability 
(Cronbach’s α = 0.814) (17). In this study, a total score of ≥9 on the 
EPDS indicated PPD (18).

2.4 Statistical analysis and model 
construction

Data analysis was performed using DecisionLinnc 1.1.1.9, a 
platform that integrates multiple programming environments.1 It 
supports data processing, data analysis, and machine learning and 
offers an intuitive visual interface for conducting operations (19).

2.4.1 Missing data imputation
To minimize the impact of missing data on model construction, 

variables with a missing rate of less than 20% were addressed using 
appropriate imputation methods (20). For continuous variables, the 
k-nearest neighbor algorithm was employed for imputation. Missing 
values were filled based on the characteristics of similar samples (21). 
For categorical variables, multiple imputation was applied, generating 
several imputed datasets and combining the results for subsequent 

1 https://www.statsape.com/

analysis (20). Variables with a missing rate greater than 20% were 
excluded from the dataset.

2.4.2 Statistical description
Continuous variables were tested for normality using the 

Kolmogorov–Smirnov test. As all continuous variables followed a 
non-normal distribution, they were described using the median 
(interquartile range) and compared between groups using the Mann–
Whitney U test. Categorical variables were presented as percentages 
(%), and differences between groups were assessed using Pearson’s 
chi-squared test.

2.4.3 Dataset splitting
When constructing the prediction model, the dataset was 

randomly split into a training set (comprising 70% of the total data) 
and a test set (comprising 30%). This commonly used 7:3 split aims to 
balance the need for sufficient training data with the necessity of 
evaluating model generalizability on unseen data (20). Such a ratio has 
been widely adopted in previous machine learning studies in 
healthcare domains (22, 23).

2.4.4 Feature selection
Feature selection was performed on the training set using LASSO 

regression and the Boruta algorithm. LASSO regression, through L1 

TABLE 1 Overview of collected variables and data sources.

Domain Variables Data source

Demographic 

information

Age, body mass index (BMI, kg/m2), 

educational level, family economic 

status, smoking history, alcohol 

history, pre-pregnancy menstrual 

irregularities

Postpartum visit

Pregnancy and 

delivery variables

Parity, adverse obstetric history, 

gestational weight gain, pregnancy-

related complications, mode of 

delivery, perineal outcomes, 

instrumental delivery, manual 

removal of placenta, number of 

fetuses, preterm birth, abnormal birth 

weight, adequacy of breast milk

Postpartum visit

Postpartum 

health

Vaginal bleeding/discharge, abnormal 

pelvic/abdominal findings (including 

the vulva, vagina, cervix, uterus, and 

adnexa), hemorrhoids, abdominal 

scars, pelvic floor muscle strength 

(Oxford scale), pelvic floor muscle 

endurance, pelvic floor tenderness, 

pelvic dynamic pressure (cmH₂O), 

postpartum pain, urinary 

dysfunction, bowel dysfunction

Postpartum visit

Psychological and 

social

Perinatal sleep quality, fetal sex 

preference, attendance at prenatal 

education, prenatal anxiety, 

satisfaction with postpartum 

confinement, marital relationship, 

in-law relationship

Telephone 

interview
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regularization, handles high-dimensional data, reduces 
multicollinearity, and selects significant features (24). A total of 100 
lambda values were used, with the optimal parameter selected through 
10-fold cross-validation, based on minimizing the cross-validation 
error (minimization rule). The Boruta algorithm is based on random 
forests. It evaluates the importance of features and further enhances 
the robustness of feature selection (15). In the Boruta feature-selection 
process, the confidence level was set to 0.01, the maximum number of 
iterations was set at 100, and the Bonferroni method was used to 
adjust the significance level for multiple comparisons. After 
independent feature selection using both methods, the intersection of 
the results was taken to ensure that the selected features exhibited 
greater stability and interpretability in the model.

2.4.5 Prediction model construction and 
validation

To balance the distribution between PPD and non-PPD samples, 
and to mitigate the adverse impact of class imbalance on model 
training, we employed the synthetic minority oversampling technique 
(SMOTE) for oversampling the minority class (PPD samples). 
SMOTE generates synthetic samples by interpolating between 
minority-class samples, thereby increasing the number of PPD 
samples and improving sample quality (25). This prevents overfitting 
and enhances the model’s ability to recognize the PPD class, ultimately 
improving overall model performance.

Based on the variables selected through LASSO regression and the 
Boruta algorithm, eight machine learning models were constructed in 
the training set: a support vector machine (SVM), extreme gradient 
boosting (XGBoost), categorical boosting (CatBoost), naive Bayes 
(NB), random forests (RF), logistic regression, light gradient boosting 
machine (LightGBM), and adaptive boosting (AdaBoost). These 
models were designed to evaluate the performance of different 
algorithms in classification tasks. All models were constructed using 
the training set, and their performance was validated on an internal 
validation set. The predictive performance of the models was evaluated 
using several key metrics (26). The area under the receiver operating 
characteristic curve (AUC) assessed the model’s ability to distinguish 
between positive and negative samples. Sensitivity (recall) measured 
the proportion of correctly identified positive cases, and specificity 
evaluated the proportion of correctly identified negative cases. The F1 
score, a harmonic mean of precision and recall, provided a balanced 
assessment, particularly for imbalanced datasets. Accuracy reflected 
the overall correctness of the model’s predictions. In addition, the 
Matthews correlation coefficient (MCC) was calculated to provide a 
reliable evaluation metric that accounts for true and false positives and 
negatives, offering a more informative and balanced assessment, 
especially when the dataset is imbalanced. Together, these metrics 
offered a comprehensive evaluation of the models’ performance.

To further optimize the models that performed best on both the 
training and test sets, a combination of grid search and 10-fold cross-
validation was used to fine-tune their hyperparameters. After 
identifying the optimal hyperparameters, the models were retrained 
on the entire dataset using these optimal settings. Subsequently, 10-fold 
cross-validation was performed on the whole dataset to provide a more 
robust assessment of model performance. In addition, decision curve 
analysis (DCA) and precision–recall curves (PR curves) were plotted 
to demonstrate the real clinical utility of the models (27, 28). In DCA, 
the “treat all” strategy assumes that all patients are classified as high risk 

and would receive further psychological assessment or intervention, 
while the “treat none” strategy assumes no patients receive intervention. 
The net benefit of each model was compared with these two reference 
strategies across a range of threshold probabilities, providing an 
intuitive assessment of clinical value. The PR curve illustrates the 
trade-off between precision and recall across different thresholds, 
which is especially informative when dealing with imbalanced datasets.

2.4.6 SHAP explainability analysis
We employed the SHAP method to interpret the model outputs. 

SHAP is a game-theoretic technique that measures the impact of each 
input feature on the predictions of a model by assigning SHAP values 
(15). These values indicate the importance of each feature in the 
prediction process. SHAP values reflect the contribution of a feature 
to the prediction results, ensuring that the contributions from different 
features are fairly distributed. Specifically, a positive SHAP value 
indicates a positive influence on the prediction, and negative one 
signifies negative influence. Values close to zero suggest that the 
feature has a minimal contribution to the prediction result. 
We selected SHAP over other feature importance methods, such as 
Gini importance or permutation importance, because it provides 
consistent and locally accurate estimates, as well as both global and 
individual-level interpretability. This allows for clearer visualization 
and understanding of each feature’s impact on individual and overall 
predictions, which is essential for clinical decision support (29). To 
demonstrate the specific contributions of each feature to the prediction 
results, we used SHAP to generate bar charts, beeswarm plots, and 
force plots. Bar charts quantify the overall importance of each feature, 
beeswarm plots reveal the variation in feature impacts across different 
samples, and force plots illustrate the contribution of each feature for 
a specific sample. By evaluating the SHAP values of selected samples, 
we quantified the specific influence of each feature on the prediction, 
offering a deeper understanding of the model’s decision-making 
process. This analysis method not only highlights feature importance 
but also provides clear explanations for individual predictions, making 
the model’s decisions more transparent and easier to interpret. A 
summary of the entire methodological workflow is presented in 
Figure 1.

3 Results

3.1 Baseline characteristics

We collected information from 1,065 women at 6 weeks 
postpartum. The average age of participants was 29.66 years, and 251 
women (23.5%) screened positive for PPD based on EPDS scores >9. 
The baseline characteristics are presented in Table 2. Significant group 
differences were observed across four domains. In terms of 
demographic information, women with PPD were slightly younger 
(p = 0.020), had lower educational attainment (p = 0.022), poorer 
economic status (p = 0.001), a higher prevalence of smoking 
(p < 0.001), and more frequent pre-pregnancy menstrual cycle 
abnormalities (p = 0.013). For pregnancy and delivery variables, those 
with PPD gained more weight during pregnancy (p = 0.011) and were 
more likely to report insufficient breast milk production (p = 0.008). 
Regarding postpartum health, higher rates of postpartum pain 
(p = 0.004) and urinary dysfunction (p = 0.019) were found in the 
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FIGURE 1

Analysis workflow for the development and evaluation of models. k-NN, k-nearest neighbors; SMOTE, synthetic minority oversampling technique; 
LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; XGBoost, extreme gradient boosting; CatBoost, categorical 
boosting; NB, naive Bayes; RF, random forest; LightGBM, light gradient boosting machine; AUC, area under the receiver operating characteristic curve; 
MCC, Matthews correlation coefficient.

https://doi.org/10.3389/fmed.2025.1565374
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al. 10.3389/fmed.2025.1565374

Frontiers in Medicine 06 frontiersin.org

TABLE 2 Comparison of baseline characteristics in the non-PPD and PPD groups.

Variables Total (N = 1,065) Non-PPD (N = 814) PPD (N = 251) p

Age (years), M (Q1, Q3) 29 (27–32) 29 (27–32) 29 (26–31) 0.020

Weight Gain During Pregnancy (Kg), M (Q1, Q3) 15 (11–20) 15 (11–19) 15 (12–20) 0.011

Body Mass Index (kg/m2), M (Q1, Q3) 24.038 (22.231–26.346) 24.093 (22.309–26.444) 23.855 (21.859–26.195) 0.384

Diastasis Recti (cm), M (Q1, Q3) 2 (1.5–2.5) 2 (1.5–2.5) 2 (1.5–2.5) 0.195

Pelvic Pressure (cmH2O), M (Q1, Q3) 63 (57–72) 63 (57–71) 63.2 (58–75) 0.552

Education Level(%), M (Q1, Q3)

  Below High School 93 (8.73) 65 (7.99) 28 (11.16) 0.022

  Below Bachelor’s Degree 536 (50.33) 398 (48.89) 138 (54.98)

  Bachelor’s Degree or Above 436 (40.94) 351 (43.12) 85 (33.86)

Economic Level (%)

  Poor 432 (40.56) 316 (38.82) 116 (46.22) 0.001

  Moderate 516 (48.45) 419 (51.47) 97 (38.65)

  Good 117 (10.99) 79 (9.71) 38 (15.14)

Smoke (%)

  Yes 125 (11.74) 79 (9.71) 46 (18.33) <0.001

  No 940 (88.26) 735 (90.29) 205 (81.67)

Drink (%)

  Yes 78 (7.32) 58 (7.13) 20 (7.97) 0.757

  No 987 (92.68) 756 (92.87) 231 (92.03)

Preterm birth (%)

  Yes 73 (6.85) 51 (6.27) 22 (8.76) 0.220

  No 992 (93.15) 763 (93.73) 229 (91.24)

Number of births (%)

  1 1,055 (99.06) 807 (99.14) 248 (98.80) 0.915

  2 10 (0.94) 7 (0.86) 3 (1.20)

Cesarean section (%)

  Yes 448 (42.07) 336 (41.28) 112 (44.62) 0.387

  No 617 (57.93) 478 (58.72) 139 (55.38)

Painless delivery (%)

  Yes 551 (51.74) 421 (51.72) 130 (51.79) 1.000

  No 514 (48.26) 393 (48.28) 121 (48.21)

Episiotomy (%)

  Yes 192 (18.03) 145 (17.81) 47 (18.73) 0.814

  No 873 (81.97) 669 (82.19) 204 (81.27)

Perineal laceration (%)

  Yes 453 (42.54) 345 (42.38) 108 (43.03) 0.914

  No 612 (57.46) 469 (57.62) 143 (56.97)

Forceps delivery (%)

  Yes 32 (3.00) 23 (2.83) 9 (3.59) 0.685

  No 1,033 (97.00) 791 (97.17) 242 (96.41)

Manual removal of placenta (%)

  Yes 158 (14.84) 118 (14.50) 40 (15.94) 0.646

  No 907 (85.16) 696 (85.50) 211 (84.06)

Vaginal bleeding (%)

  Yes 216 (20.28) 162 (19.90) 54 (21.51) 0.642

(Continued)
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TABLE 2 (Continued)

Variables Total (N = 1,065) Non-PPD (N = 814) PPD (N = 251) p

  No 849 (79.72) 652 (80.10) 197 (78.49)

Postpartum pain (%)

  Yes 222 (20.85) 153 (18.80) 69 (27.49) 0.004

  No 843 (79.15) 661 (81.20) 182 (72.51)

Urinary dysfunction (%)

  Yes 157 (14.74) 108 (13.27) 49 (19.52) 0.019

  No 908 (85.26) 706 (86.73) 202 (80.48)

Bowel dysfunction (%)

  Yes 166 (15.59) 122 (14.99) 44 (17.53) 0.384

  No 899 (84.41) 692 (85.01) 207 (82.47)

Thyroid abnormalities during pregnancy (%)

  Yes 44 (4.13) 35 (4.30) 9 (3.59) 0.752

  No 1,021 (95.87) 779 (95.70) 242 (96.41)

Pregnancy induced hypertension (%)

  Yes 29 (2.72) 23 (2.83) 6 (2.39) 0.882

  No 1,036 (97.28) 791 (97.17) 245 (97.61)

Gestational diabetes (%)

  Yes 169 (15.87) 131 (16.09) 38 (15.14) 0.793

  No 896 (84.13) 683 (83.91) 213 (84.86)

Pregnancy complications (%)

  Yes 242 (22.72) 189 (23.22) 53 (21.12) 0.543

  No 823 (77.28) 625 (76.78) 198 (78.88)

Fetal weight abnormality (%)

  Yes 409 (38.40) 304 (37.35) 105 (41.83) 0.229

  No 656 (61.60) 510 (62.65) 146 (58.17)

Pre-pregnancy menstrual cycle abnormalities (%)

  Yes 132 (12.39) 89 (10.93) 43 (17.13) 0.013

  No 933 (87.61) 725 (89.07) 208 (82.87)

Primipara (%)

  Yes 866 (81.31) 657 (80.71) 209 (83.27) 0.415

  No 199 (18.69) 157 (19.29) 42 (16.73)

Adverse obstetric history (%)

  Yes 337 (31.64) 246 (30.22) 91 (36.25) 0.086

  No 728 (68.36) 568 (69.78) 160 (63.75)

Adequate breast milk (%)

  Yes 684 (64.23) 541 (66.46) 143 (56.97) 0.008

  No 381 (35.77) 273 (33.54) 108 (43.03)

Feeding method (%)

  Breastfeeding 897 (84.23) 685 (84.15) 212 (84.46) 0.985

  Mixed Feeding 168 (15.77) 129 (15.85) 39 (15.54)

Abdominal scar (%)

  Yes 422 (39.62) 312 (38.33) 110 (43.82) 0.138

  No 643 (60.38) 502 (61.67) 141 (56.18)

Pubic symphysis pain (%)

  Yes 265 (24.88) 190 (23.34) 75 (29.88) 0.044

(Continued)
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TABLE 2 (Continued)

Variables Total (N = 1,065) Non-PPD (N = 814) PPD (N = 251) p

  No 800 (75.12) 624 (76.66) 176 (70.12)

Vulva (%)

  Normal 624 (58.59) 476 (58.48) 148 (58.96) 0.949

  Abnormal 441 (41.41) 338 (41.52) 103 (41.04)

Vagina (%)

  Normal 835 (78.40) 638 (78.38) 197 (78.49) 1.000

  Abnormal 230 (21.60) 176 (21.62) 54 (21.51)

Cervix (%)

  Normal 916 (86.01) 704 (86.49) 212 (84.46) 0.481

  Abnormal 149 (13.99) 110 (13.51) 39 (15.54)

Uterus (%)

  Normal 1,037 (97.37) 792 (97.30) 245 (97.61) 0.964

  Abnormal 28 (2.63) 22 (2.70) 6 (2.39)

Adnexa (%)

  Normal 1,033 (97.00) 789 (96.93) 244 (97.21) 0.986

  Abnormal 32 (3.00) 25 (3.07) 7 (2.79)

Hemorrhoids (%)

  Yes 453 (42.54) 341 (41.89) 112 (44.62) 0.489

  No 612 (57.46) 473 (58.11) 139 (55.38)

Pelvic floor tenderness (%)

  Yes 89 (8.36) 67 (8.23) 22 (8.76) 0.891

  No 976 (91.64) 747 (91.77) 229 (91.24)

Pelvic floor muscle strength (%)

  0 22 (2.07) 19 (2.33) 3 (1.20) 0.180

  1 381 (35.77) 305 (37.47) 76 (30.28)

  2 355 (33.33) 258 (31.70) 97 (38.65)

  3 206 (19.34) 155 (19.04) 51 (20.32)

  4 78 (7.32) 58 (7.13) 20 (7.97)

  5 23 (2.16) 19 (2.33) 4 (1.59)

Pelvic floor muscle endurance (%)

  0 78 (7.32) 65 (7.99) 13 (5.18) 0.363

  1 498 (46.76) 387 (47.54) 111 (44.22)

  2 285 (26.76) 215 (26.41) 70 (27.89)

  3 135 (12.68) 97 (11.92) 38 (15.14)

  4 50 (4.69) 35 (4.30) 15 (5.98)

  5 19 (1.78) 15 (1.84) 4 (1.59)

Type I pelvic floor muscles (%)

  0 315 (29.58) 244 (29.98) 71 (28.29) 0.956

  1 273 (25.63) 209 (25.68) 64 (25.50)

  2 131 (12.30) 100 (12.29) 31 (12.35)

  3 80 (7.51) 62 (7.62) 18 (7.17)

  4 34 (3.19) 27 (3.32) 7 (2.79)

  5 232 (21.78) 172 (21.13) 60 (23.90)

Type II pelvic floor muscles (%)

  0 212 (19.91) 160 (19.66) 52 (20.72) 0.914

(Continued)
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PPD group. Finally, within the psychological and social domain, 
women with PPD were more likely to report fetal sex preference 
(p < 0.001), unplanned pregnancy (p < 0.001), no prenatal education 
(p = 0.041), poor perinatal sleep (p < 0.001), prenatal anxiety 
(p < 0.001), dissatisfaction with the postpartum experience 
(p = 0.002), and poor marital and in-law relationships (both 
p < 0.001).

The samples were randomly split into a training group (745 cases) 
and a testing group (320 cases) in a 7:3 ratio. In the training set, the 
non-PPD group accounted for 76.78% (n = 572) and the PPD group 
for 23.22% (n = 173), while in the testing set, the non-PPD group 
comprised 75.62% (n = 242) and the PPD group 24.38% (n = 78). 
There was no significant difference in the prevalence of PPD between 
the training and testing sets (p = 0.684). However, significant 
differences between the two sets were observed in preterm birth, 

painless delivery, forceps delivery, and gestational diabetes (all 
p < 0.05), while no significant differences were found in the other 
variables. This indicates that the baseline characteristics of the training 
and testing sets were generally balanced and comparable. Details of 
the group differences are provided in Supplementary Table 1.

3.2 Feature selection

First, LASSO regression was performed on the variables in the 
training set, resulting in the identification of 33 variables associated 
with PPD at lambda.min = −4.876 (Figures 2A,B). Then, Boruta 
feature selection was conducted with a confidence level of 0.01, a 
maximum of 100 iterations, and Bonferroni adjustment for multiple 
comparisons. Figure  2C displays the results, in which the 

TABLE 2 (Continued)

Variables Total (N = 1,065) Non-PPD (N = 814) PPD (N = 251) p

  1 144 (13.52) 113 (13.88) 31 (12.35)

  2 123 (11.55) 98 (12.04) 25 (9.96)

  3 99 (9.30) 75 (9.21) 24 (9.56)

  4 74 (6.95) 57 (7.00) 17 (6.77)

  5 413 (38.78) 311 (38.21) 102 (40.64)

Fetal sex preference (%)

  Yes 287 (26.95) 196 (24.08) 91 (36.25) <0.001

  No 778 (73.05) 618 (75.92) 160 (63.75)

Planned pregnancy (%)

  Yes 745 (69.95) 598 (73.46) 147 (58.57) <0.001

  No 320 (30.05) 216 (26.54) 104 (41.43)

Prenatal education class (%)

  Yes 404 (37.93) 322 (39.68) 81 (32.27) 0.041

  No 661 (62.07) 491 (60.32) 170 (67.73)

Perinatal sleep status (%)

  Good 626 (58.78) 510 (62.65) 116 (46.22) <0.001

  Average 268 (25.16) 223 (27.40) 45 (17.93)

  Poor 171 (16.06) 81 (9.95) 90 (35.86)

Prenatal anxiety (%)

  Yes 217 (20.38) 116 (14.25) 101 (40.24) <0.001

  No 848 (79.62) 698 (85.75) 150 (59.76)

Satisfaction With postpartum confinement (%)

  Satisfied 762 (71.55) 602 (73.96) 160 (63.75) 0.002

  Unsatisfied 303 (28.45) 212 (26.04) 91 (36.25)

Marital relationship (%)

  Good 955 (89.67) 759 (93.24) 196 (78.09) <0.001

  Poor 110 (10.33) 55 (6.76) 55 (21.91)

In law relationship (%)

  Good 879 (82.54) 708 (86.98) 171 (68.13) <0.001

  Poor 186 (17.46) 106 (13.02) 80 (31.87)

PPD, postpartum depression; M, median; Q1, 1st quartile; Q3, 3rd quartile; pregnancy complications, including thyroid disorders, gestational hypertension, and gestational diabetes; adverse 
obstetric history, including spontaneous abortion, induced abortion, termination of pregnancy, and ectopic pregnancy.
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FIGURE 2

Results of feature selection. (A) Trajectory of variables selected by the LASSO regression model. (B) Ten-fold cross-validation curve for lambda 
selection; the vertical axis represents the cross-validation mean (CVM), that is, the mean cross-validation error for each lambda value. The left dashed 
line marks the optimal lambda value (lambda.min), and the right dashed line marks the lambda value within one standard error of the minimum 
(lambda.1se). (C) Results from the Boruta algorithm for feature selection. Red boxplots represent features confirmed as important. Green, blue, and 
purple boxplots indicate the distributions of shadow features used as the baseline for comparison. Features with importance significantly higher than 
the best shadow were retained for model development. (D) Common predictive variables selected by both Boruta and LASSO.

importance of each original feature is compared with that of 
randomly generated shadow features (green, blue, and purple 
boxplots). Features marked in red (“confirmed”) demonstrated 
significantly higher importance than the shadow features and were 
therefore retained, resulting in 15 important predictors for 
subsequent model development. Finally, by cross-referencing the 
features selected by both Boruta and LASSO regression, a common 
subset of 11 predictive features was identified (Figure 2D): weight 
gain during pregnancy, mother-in-law relationship, sleep quality, 
marital relationship, planned pregnancy, fetal sex preference, 
pregnancy-related anxiety, pelvic-floor muscle endurance, cervix 
condition, satisfaction with postpartum confinement, and 
participation in prenatal education. These features were used for the 
subsequent model construction.

3.3 Model construction and performance 
comparison

After completing the feature selection process, the SMOTE 
algorithm was applied to balance the data in the training set to address 
the issue of data imbalance. Following this, the final training set 
consisted of 1,162 cases: 581 from the PPD group and 581 from the 
non-PPD group.

Eight machine learning models were built to identify the risk of 
PPD in mothers 6 weeks after giving birth. The performance of each 
model on the training set was evaluated using accuracy, recall, F1 
score, MCC, specificity, and AUC (Figures  3A, C). The results 
showed that all models exhibited high performance at predicting 
PPD, with AdaBoost, XGBoost, and LightGBM achieving the best 
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results. Their accuracy rates were 0.98, 0.979, and 0.978, respectively, 
and they demonstrated excellent performance in key metrics such 
as the AUC and precision, indicating strong discrimination ability 
between positive and negative samples. CatBoost and RF also 
performed well, with accuracies of 0.957 and 0.837, respectively. By 
contrast, NB and SVM performed poorly across all metrics, 
especially NB, which had a high false-negative rate of 40%, limiting 
its applicability.

To identify the optimal model, all models were further validated 
on the test set, with results presented in Figures 3B, D. The results 
showed that CatBoost, XGBoost, and LGBM all maintained stable 
and comparable performance on the test set, with AUCs of 0.93, 
0.936, and 0.93, respectively, demonstrating good generalization 
ability. On the other hand, AdaBoost performed excellently on the 
training set, with an AUC of only 0.858 on the test set, indicating 
potential overfitting.

3.4 Hyperparameter optimization and 
validation of the optimal model

Given the strong generalization ability, balanced accuracy and 
recall, high specificity, and relatively stable performance of the 
XGBoost model on both the training and test sets, it was selected as 
the optimal model. Hyperparameter optimization was performed 
using a combination of grid search and 10-fold cross-validation. The 
final XGBoost model, constructed based on the optimal parameters, 
was evaluated through 10-fold cross-validation. The results revealed 
an average accuracy of 0.95, average AUC of 0.955, average precision 
of 0.945, and average specificity of 0.985, demonstrating superior 
performance. Furthermore, the PR curve (Figure 4A) and DCA curve 
(Figure  4B) generated through 10-fold cross-validation exhibited 
favorable net benefits across a range of thresholds, confirming the 
model’s robustness and clinical utility. The PR curve (Figure  4A) 

FIGURE 3

Performance and comparison of predictive models. (A) ROC curve for the training dataset. (B) ROC curve for the test dataset. (C) Evaluation metrics for 
the training dataset. (D) Evaluation metrics for the test dataset. AdaBoost, adaptive boosting; CatBoost, categorical boosting; LightGBM, light gradient 
boosting machine; Logistic, logistic regression; NB, naive Bayes; RF, random forest; SVM, support vector machine; XGBoost, extreme gradient 
boosting; MCC, Matthews correlation coefficient.
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revealed that the model achieved robust precision and recall across 
various thresholds, reflecting strong discriminative ability in 
identifying women at risk for PPD. In the DCA plot, the “treat all” 
strategy represents a hypothetical scenario where all postpartum 
women are assumed to be at high risk and thus receive intervention 
(such as psychological evaluation or preventive counseling), while the 
“treat none” strategy corresponds to no intervention for any women. 
The net benefit of our prediction model consistently exceeded both 
“treat all” and “treat none” strategies across multiple thresholds, 
indicating superior clinical utility in identifying women most likely to 
benefit from targeted intervention.

3.5 SHAP-based model interpretability 
analysis

We evaluated the relative importance of various factors 
influencing the susceptibility to PPD in women. Figure 5A presents 
the feature importance ranking in the XGBoost model, with the 
vertical axis ordered by descending importance, and the horizontal 
axis representing the average SHAP values. The analysis identified 
five key factors affecting PPD: satisfaction with postpartum 
confinement, prenatal anxiety, mother-in-law relationship, weight 
gain during pregnancy, and whether the fetal sex met expectations. 
Figure 5B illustrates the SHAP values for each feature in the XGBoost 
model, where the horizontal axis shows the SHAP values and the 
vertical axis ranks the features based on their cumulative SHAP 
values. Each data point corresponds to an instance, with the X-axis 
indicating the SHAP value of the corresponding feature. To provide 
a clearer understanding of the model’s decision-making process, 
we  performed a detailed analysis on a representative sample, as 
shown in the figure. Figure 5C demonstrates the prediction process 
for this sample, with red indicating a positive contribution, blue 
representing a negative impact, and the f(x) value corresponding to 
the SHAP value for each factor.

4 Discussion

4.1 Postpartum depression screening 
positive rate

PPD is a common complication in women, posing significant 
risks to both maternal and neonatal health and bringing substantial 
social and economic burdens. In this study, the overall positive 
screening rate for depression in women at 6 weeks postpartum was 
23.57% (251/1065), which is higher than the global reported rate of 
14% (95% CI: 12.0–15.0%) and the rate of 21.4% (95% CI: 15.2–27.6%) 
reported in China (1, 17). These differences may be  attributed to 
factors such as the different screening tools used, the timing of the 
screenings, the standards applied, regional variations, and sample sizes 
across studies (1, 17). Although these differences may be influenced 
by cultural, economic, and lifestyle factors, as well as selection bias 
inherent in this study, they still underscore the importance of 
addressing PPD. This highlights the urgent need for clinical prevention 
and treatment efforts to reduce the incidence and mitigate the harmful 
effects of PPD, ultimately promoting maternal mental health.

4.2 Postpartum depression risk predictors 
and interpretability analysis

We used postpartum follow-up data at 6 weeks, specifically 
incorporating gynecological assessments (such as pelvic-floor muscle 
function tests), to provide a comprehensive clinical context for the 
PPD prediction model. Given that the data were derived from routine 
postpartum checks at 6 weeks, the model benefits from high 
practicality and clinical feasibility. By combining the Boruta algorithm 
and LASSO regression, we  accurately identified 11 key features 
associated with PPD: gestational weight gain, mother-in-law 
relationship, sleep quality, marital relationship, planned pregnancy, 
fetal sex preference, prenatal anxiety, pelvic-floor muscle endurance, 

FIGURE 4

Comprehensive evaluation of the XGBoost model. (A) Precision–recall (PR) curve. (B) Decision curve analysis (DCA) curve. XGB, extreme gradient 
boosting. The “treat all” curve represents the benefit rates for all cases with intervention, while the “treat none” curve represents the benefit rates for all 
cases without intervention.
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cervix status, prenatal education class, and postpartum satisfaction. 
These findings are consistent with those from previous studies, further 
validating the relevance of these factors for predicting PPD (1, 17, 30).

To enhance the clinical applicability of the model, we utilized the 
SHAP method for both global and local explanations, clearly 
identifying the contribution of each predictor to the model’s decision-
making process. The SHAP values revealed that satisfaction with 
postpartum confinement, prenatal anxiety, mother-in-law 
relationship, gestational weight gain, and fetal sex preference were the 
top five features. Satisfaction with postpartum confinement reflects 
the mother’s psychological wellbeing, and inadequate support during 
this period may increase the risk of depression (31–33). Prenatal 
anxiety often persists postpartum, exacerbating depressive tendencies 
(30). The relationship with the mother-in-law influences the maternal 
family support system, and a strained relationship significantly 
increases emotional distress (16, 34). Gestational weight gain may 
elevate depression risk through mechanisms such as inflammation 
pathways and weight-related anxiety (35, 36). Finally, in East Asian 
cultures, a mismatch between expected and actual fetal sex may 
trigger feelings of disappointment, thereby increasing the likelihood 
of depression (1, 37).

4.3 Performance of postpartum depression 
risk prediction model

Eight machine learning algorithms were employed in our study to 
construct a PPD prediction model based on 11 clinical variables 

collected at 6 weeks postpartum. The results demonstrated that the 
XGBoost algorithm performed exceptionally well, exhibiting strong 
discriminative power and calibration ability. In addition, it showed 
significant net benefits in clinical practice. The stability and accuracy 
of the model were further confirmed by performing 10-fold cross-
validation on the entire dataset.

In recent years, machine learning has been widely applied to 
predict the risk of PPD. Zhang et al. achieved high accuracy using 
a random forests algorithm (14). However, their model lacked 
interpretability as it did not clearly identify which features were 
most influential in predicting PPD. This “black-box” nature makes 
it difficult for clinicians to understand or trust the model’s 
predictions, thereby limiting its clinical usefulness. Moreover, many 
studies directly exclude missing data samples, which could lead to 
sample selection bias (44). In our study, for variables with a missing 
rate less than 20%, missing data were handled using a combination 
of multiple imputation and k-nearest neighbors, enhancing the 
accuracy, reliability, and generalizability of the predictive model 
while avoiding selection and prediction biases (20, 25). Compared 
with traditional methods, the improvements in this study ensured 
greater model stability and better predictive performance (38). 
Furthermore, in PPD clinical research, imbalanced datasets are 
common, and traditional statistical methods have limited 
effectiveness at handling class imbalance (11, 12). In recent years, 
improved sampling methods and classification algorithms have 
been increasingly applied to address this issue (25). Unlike 
traditional oversampling methods that duplicate samples, the 
SMOTE algorithm generates new samples of the minority class by 

FIGURE 5

SHAP visualizations for interpreting the machine learning model. (A) SHAP bar plot. (B) SHAP beeswarm plot. (C) SHAP force plot.
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creating synthetic neighbors, thus avoiding data inflation and 
increased training complexity (15). In our study, we  used the 
SMOTE algorithm to balance the dataset by increasing the number 
of minority-class samples, improving inter-group comparability. 
The results demonstrated that SMOTE significantly enhanced 
model performance, improved minority-class identification, and 
thus improved overall classification accuracy.

XGBoost is an efficient algorithm based on the gradient 
boosting tree framework, known for its ability to handle large-scale 
datasets, missing values, and efficient parallel computation (39, 40). 
It is particularly suitable for complex feature spaces and non-linear 
problems. In recent years, XGBoost has been widely applied in the 
medical field, demonstrating excellent performance in areas such as 
sepsis, cardiovascular diseases, and renal injury (39, 41, 42). 
Compared to traditional logistic regression, XGBoost constructs 
models by integrating multiple weak classifiers, allowing it to 
capture non-linear relationships and enhance generalization (40). 
In addition, it exhibits strong robustness to outliers and noisy data. 
Hochman et al. analyzed Israel’s electronic health records database 
and built a predictive model based on XGBoost to assess the risk of 
developing PPD within 1 year (43). The model achieved an AUC of 
0.712 (95% CI: 0.690–0.733), indicating moderate predictive ability. 
Moreover, the XGBoost algorithm can automatically interpret 
interactions among independent variables and handle missing data 
in decision tree branches, thereby improving model performance. 
Our study further validated the effectiveness of XGBoost for PPD 
prediction. However, model performance may vary depending on 
factors such as the population, variable selection, and parameter 
tuning. Therefore, it is essential to select an appropriate algorithm 
based on experimental needs and data characteristics and to ensure 
model performance and interpretability after a thorough 
exploration and evaluation of the data.

4.4 Limitations

The retrospective design of our study renders it subject to 
confounding factors and selection bias, which could limit the 
validity and generalizability of the results. The relevant variables 
were retrospectively collected, and information bias may exist. In 
addition, the study was conducted at a single center with a 
relatively small sample size, which affects the robustness and 
applicability of the findings. Future multi-center studies are 
needed to enhance the generalizability of the model across 
different settings. Although this study incorporated a wide range 
of clinical and demographic variables, some potential confounders 
such as biomarkers, genetics, lifestyle, and environmental factors 
may have been overlooked. This could affect the accuracy of the 
results. In addition, several predictors in our model—such as fetal 
sex preference, satisfaction with postpartum confinement, and 
mother-in-law relationship—are culturally specific and may not 
generalize well to populations in other sociocultural contexts. The 
study relied on screening scales for diagnosis, lacking 
confirmatory diagnostic assessments, which may reduce 
diagnostic precision. Furthermore, the study only assessed risk 
factors at 6 weeks postpartum and did not involve long-term 
follow-ups, limiting the ability to capture the dynamic changes in 

depressive symptoms. Finally, internal validation was performed 
only on the development dataset, and no external validation was 
conducted. Despite these limitations, our findings provide 
important insights into the use of interpretable machine learning 
models for PPD risk prediction, underscoring their potential to 
improve early identification and targeted intervention in clinical 
practice. Further validation in larger and more diverse populations 
will be  essential to confirm these results and facilitate 
clinical implementation.

4.5 Clinical implications and application 
potential

Building upon the demonstrated strengths of XGBoost, our 
study assessed its applicability in predicting PPD using clinical and 
psychosocial data obtained during routine 6-week postpartum 
visits. The model achieved favorable predictive performance in our 
dataset, suggesting its potential as a supportive tool to assist in 
identifying women at elevated risk of PPD. Importantly, the 
identification of key modifiable risk factors also provides an 
opportunity for early, targeted intervention during the perinatal 
period. For example, modifiable factors such as poor sleep quality, 
prenatal anxiety, strained marital or mother-in-law relationships, 
and low satisfaction with postpartum care could potentially 
be  addressed through targeted counseling, psychoeducation, or 
strengthened perinatal support services. When used judiciously, the 
model may aid in tailoring preventive strategies and optimizing 
screening efforts, particularly in settings where mental health 
resources are limited. Nevertheless, these findings should 
be interpreted with caution, and further validation in larger, multi-
center cohorts is warranted to ensure broader applicability.

To enhance clinical integration, the model could be deployed 
through web-based calculators, mobile applications, or embedded 
within electronic health record systems. However, practical 
implementation requires addressing interoperability with existing 
hospital systems and ensuring that healthcare providers receive 
adequate support to interpret machine learning-derived outputs, 
including SHAP-based explanations. Moreover, potential 
misclassification—such as false positives or false negatives—
carries clinical and psychological implications. These 
considerations highlight the importance of using model 
predictions to complement, rather than replace, clinical judgment 
and longitudinal symptom monitoring. Efforts should also 
be made to minimize the potential psychological impact of risk 
labeling and ensure appropriate communication and counseling 
are provided when needed.

5 Conclusion

In this study, we developed an XGBoost model to predict the risk 
of PPD in women 6 weeks after delivery. Our findings suggest that the 
XGBoost model holds potential as a clinically useful tool, with 
enhanced interpretability through SHAP values, which help clinicians 
better understand relevant risk factors. However, the single-center 
nature of this study and the lack of biological variables may limit 
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generalizability. Further prospective, multi-center validation is 
required before clinical implementation.
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