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Objectives: To explore the utility of machine learning-based ultrasound 
radiomics for predicting TP53 gene mutation in hepatocellular carcinoma (HCC).

Methods: 154 HCC patients with 182 lesions from 2019 to 2024 were reviewed 
retrospectively. All lesions were randomly split into the training set (n = 129) 
and the test set (n = 53), and ultrasound radiomics features were extracted 
and selected. Extreme gradient boosting tree (XGBoost), decision tree (DT), 
random forest (RF), support vector machine (SVM), and logistic regression (LR) 
were used to construct the ultrasound radiomics models, the clinical models, 
and the combined models. The predictive performance of various models was 
evaluated by the area under the curve (AUC), accuracy, calibration curve, and 
decision curve analysis (DCA).

Results: Among the 182 lesions, 102 were confirmed as mutant TP53 and 80 
were confirmed as wild-type TP53. The ultrasound radiomics model obtained 
an AUC of 0.778 and an accuracy of 0.774  in the test set. The clinical model 
achieved an AUC of 0.761 and an accuracy of 0.710  in the test set. Notably, 
integrating clinical features with ultrasound radiomics further enhanced 
predictive performance. The XGBoost-based combined model exhibited the 
highest predictive performance among all models, achieving an AUC of 0.846 
and an accuracy of 0.823  in the test set. The decision curve analysis and 
calibration curve revealed that the XGBoost-based combined model provided 
the highest clinical benefit and exhibited strong predictive consistency.

Conclusion: Machine learning-based ultrasound radiomics signatures accurately 
predict TP53 gene mutations in HCC. The XGBoost-based combined model, 
which combined ultrasound radiomics features with clinical features, showed 
the best performance and represented a promising noninvasive approach for 
screening TP53-mutated HCC.
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1 Introduction

Hepatocellular carcinoma (HCC) ranks third among cancer-
related causes of mortality worldwide, posing a significant public 
health challenge (1). Surgical resection and liver transplantation 
remain the primary treatment options for HCC. However, the 
postoperative recurrence rate reaches up to 70% within 5 years (2). 
Despite advancements in immunotherapy that have expanded 
treatment options for HCC, the prognosis remains poor, with a five-
year survival rate of only 15% (3). The poor prognosis of HCC is 
largely attributable to the highly heterogeneous and aggressive 
biological behavior of the tumor (4). Numerous studies have identified 
various tumor-specific gene mutations in HCC, which play a crucial 
role in regulating its biological behavior (5–7). Characterizing the 
genetic profile of HCC offers valuable insights for developing 
personalized treatment strategies and assessing prognosis.

TP53 is a crucial tumor suppressor gene that regulates multiple 
signaling pathways and plays a key role in cellular processes, including 
apoptosis, cellular senescence, and DNA repair (8, 9). TP53 mutations 
are the most prevalent genetic alterations in HCC, occurring in 15–40% 
of advanced cases (10). Mutations in TP53 result in the loss of its 
regulatory function, thereby promoting tumorigenesis (11). Moreover, 
TP53 mutations cause excessive nuclear accumulation of the p53 
protein, which serves as a specific indicator of malignancy (12). TP53 
mutations are associated with HCC tumor staging, elevated AFP levels, 
poor prognosis, and vascular invasion (13–16). Mutant TP53 enhances 
the aggressiveness and metastatic potential of HCC by inducing 
epithelial-mesenchymal transition (EMT) (17). Recent studies have 
demonstrated that TP53 status influences the tumor immune 
microenvironment (TIME) (18–21). Specifically, wild-type TP53 fosters 
a tumor-suppressive microenvironment, whereas mutant TP53 
contributes to an immunosuppressive microenvironment and promotes 
tumor immune evasion (22). Furthermore, TP53 has emerged as a 
promising target for antitumor therapies, demonstrating significant 
clinical potential in HCC-targeted treatments (23). Thus, identifying 
TP53 mutation status is crucial for guiding personalized treatment 
strategies and improving patient prognosis. Specifically, it enables 
clinicians to tailor therapeutic approaches, including surgical planning, 
adjuvant therapy selection, and follow-up monitoring, thereby 
optimizing clinical outcomes for HCC patients with different 
TP53 statuses.

In clinical practice, preoperative assessment of TP53 gene status 
primarily relies on immunohistochemistry (IHC) of biopsy tissue 
(24). However, spatial sampling errors during biopsy procedures may 
limit the accuracy of detection results, failing to fully capture tumor 
heterogeneity (25). Moreover, invasive procedures pose risks of 
bleeding, infection, and potential tumor dissemination (26). Therefore, 
there is an urgent need for a non-invasive approach capable of 
accurately predicting TP53 gene status in HCC prior to surgery.

As an emerging technology, radiomics enables the high-throughput 
extraction of quantitative features from medical images, which provides 
more information on tumor phenotypes in a noninvasive manner from 
a multi-dimensional and multi-space perspective (27, 28). Radiomics 
overcomes the limitations of traditional molecular detection techniques 
and enables the comprehensive evaluation of the biological characteristics 
of tumors in a non-invasive manner (29). Previous studies have 
demonstrated the favorable performance of radiomics models based on 
computed tomography (CT) and magnetic resonance imaging (MRI) 

images in predicting the TP53 gene status in rectal cancer and 
endometrial cancer (30, 31). However, limited radiomics studies have 
focused on predicting TP53 gene status in HCC. To date, only one study 
has highlighted the potential of CT-derived texture features in predicting 
TP53-mutated HCC (32). Ultrasound is a radiation-free real-time 
imaging technology with convenient operation and low economic cost, 
making it highly valuable for early screening and prognostic monitoring 
of HCC (33, 34). The integration of ultrasound and radiomics has shown 
significant potential in the diagnosis and treatment monitoring of 
HCC. It has been widely applied in pathological grading, therapeutic 
efficacy assessment, and biomarker prediction in HCC (35–37). 
However, the ultrasound radiomics features of TP53-mutated HCC have 
not been investigated.

The study aims to investigate the potential of ultrasound radiomics 
models to predict TP53 mutation status, in the hope of offering a novel 
method to promote the precision diagnosis and treatment of HCC.

2 Methods

2.1 Case inclusion

The ethics committee of our hospital granted approval for this 
retrospective study [Ethical number: (2021) Ethics Application No. 
(01)], and informed consent was waived.

In this study, we  consecutively evaluated patients who were 
postoperative histopathologically confirmed as HCC from January 
2019 to January 2024 in our hospital. The inclusion criteria were as 
follows: (1) patients with pathologically confirmed HCC; (2) IHC 
results include p53; (3) liver ultrasound within 1 month before 
surgery; (4) no history of previous antitumor treatment; and (5) no 
history of other malignancies. The inclusion and exclusion process of 
the study is illustrated in Figure  1. Finally, 182 lesions from 154 
patients were enrolled in this study. All lesions were partitioned into 
a training set (n = 129) and a test set (n = 53) by stratified sampling at 
a ratio of 7:3. The training set was used to train the model, and the test 
set was used to verify the model performance.

2.2 Clinical data and IHC

Clinical data of patients were collected from the electronic health 
record management system, including demographic characteristics 
such as age, sex, and preoperative laboratory parameters such as 
hepatitis B surface antigen (HBsAg), alpha-fetoprotein (AFP), 
aspartate aminotransferase (AST), alanine aminotransferase (ALT), 
total bilirubin (TBIL), albumin level (ALB), and prothrombin time 
(PT), as well as conventional ultrasound features such as lesion echo 
signal, lesion diameter, and doppler flow signal.

TP53 gene status was evaluated based on p53 IHC expression 
patterns. Two pathologists independently assessed p53 expression 
following a previously described method (16). Both pathologists 
were blinded to the patient’s clinical and imaging data. p53 
expression was evaluated according to the proportion of tumor cells 
with positive nuclear staining. Positive expression was defined as 
10% or more of tumor cells with positive nuclear staining. Abnormal 
complete deletion was defined as the complete absence of tumor cell 
staining, with positive staining in internal controls (normal stromal 
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cells). Negative expression was defined as less than 10% of tumor 
cells with positive nuclear staining. Positive expression or abnormal 
complete deletion were identified as mutant TP53, while negative 
expression was identified as wild-type TP53 (24).

The preparation of p53 immunohistochemical sections and the 
detection methods for experimental indicators are detailed in 
Supplementary material 1.

2.3 Image acquisition

The ultrasound examination was performed following a 
standardized protocol. The ultrasound examination was conducted 
using Philips EPIQ 7, GE Vivid E9, or HIVISION Ascendus (C715; 
frequency range: 1–5 MHz). All patients fasted for 8 h and underwent 
liver ultrasound in the supine position. The maximum diameter, echo 
signal, and Doppler flow signal of lesions were assessed by two 
radiologists with 5 years of liver ultrasound experience. Both 
radiologists were blinded to the clinical and pathological information 
of the patients. The image indicating the maximum diameter of the 
lesion was saved in digital imaging and communications in medicine 
(DICOM) format for subsequent image segmentation. In total, 182 
ultrasound images from 182 lesions were included for further analysis.

2.4 Image segmentation

The region of interest (ROI) of the HCC lesions was manually 
segmented using ITK-SNAP software (version 3.8.0) (38). The 
ROIs of all lesions were manually delineated by a radiologist along 
the tumor margin. To assess the reproducibility of the features, 30 
HCC lesions were randomly selected and their ROIs were 
independently delineated by another radiologist. Both radiologists 
were blinded to the clinical and pathological information of the 
patients. The intraclass correlation coefficient (ICC) was 
calculated to assess the reproducibility of the features. An ICC 
value closer to 1 indicates higher reliability. Only features with an 
ICC value of ≥ 0.80 were included in the subsequent feature 
selection. Figure  2 illustrates the representative segmentation 
results of the HCC lesions.

2.5 Image preprocessing

Before extracting features, the images were preprocessed to 
ensure isotropy. First, the ultrasound images were normalized 
using the mean and standard deviation to mitigate the effects of 
variations in scanners and parameters. Subsequently, the images 

FIGURE 1

Flowchart of study inclusion and exclusion.
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were resampled using the B-spline interpolation algorithm, 
standardizing the pixel size of all images to 1 mm × 1 mm. This 
step ensured uniform spatial resolution across all images. Finally, 
the images were subjected to gray-level discretization to constrain 
the gray-level value of each pixel in the interval of [0, 255] (39).

2.6 Feature extraction and selection

The original images were processed with 14 types of filters for 
noise reduction, and derived images were obtained. Ultrasound 
radiomics features were subsequently extracted from both the 
original and derived images utilizing the Pyradiomics package 
(version 2.1.2) in Python. The features were categorized into the 
following 7 classes: (1) first-order features, (2) shape features, (3) 
gray-level dependence matrix (GLDM), (4) gray-level 
co-occurrence matrix (GLCM), (5) gray-level run length matrix 
(GLRLM), (6) gray-level size-zone matrix (GLSZM), and (7) 
neighboring gray-tone-difference matrix (NGTDM). Except for 
the shape features, all other ultrasound radiomics features were 
computed from the original and derived images. To ensure 
uniform data distribution, the feature data were subjected to 
Z-score normalization.

Since the extracted features were high-dimensional, this may 
result in computational inefficiency and overfitting. Therefore, 
feature selection was required to screen the features most relevant 
to the model performance. First, the features with an ICC value of 

less than 0.8 were removed. Second, the variance threshold 
method was employed to exclude features with zero variance. 
Then, the maximal information coefficient (MIC) was calculated 
to evaluate the correlation between features and the target 
variables, and features with an MIC value of zero were eliminated. 
Finally, 24 features with the highest information were screened 
using the embedded method in combination with extreme 
gradient boosting (XGBoost).

2.7 Model establishment and evaluation

To address the imbalance in the dataset, we  employed 
synthetic oversampling techniques (SMOTE) (40). The Python 
scikit-learn package (version 0.23.2) was utilized to build the 
model. Since each algorithm has distinct core principles and areas 
of applicability, their performance varies across different types of 
data. Five supervised learning classifiers were employed to build 
the ultrasound radiomics models, clinical models, and combined 
models to identify the optimal model, namely extreme gradient 
boosting (XGBoost), decision tree (DT), random forest (RF), 
support vector machine (SVM), and logistic regression (LR). 
Hyperparameter tuning is crucial for optimizing the 
performance of machine learning models. We applied random 
search and grid search methods to select the optimal 
hyperparameters for the machine learning models (Supplementary  
material 2).

FIGURE 2

Example of delineating region of interest (ROI) on grayscale ultrasound images. (A) The lesion segmentation image and original image of a patient with 
wild-type TP53. (B) The lesion segmentation image and original image of a patient with mutant TP53.
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First, the ultrasound radiomics models were developed using 
the 24 screened radiomics features. Then, clinical models were 
constructed using the clinical features of patients, such as sex, age, 
HBsAg, Child-Pugh class, AFP, AST, ALT, ALB, GGT, PT, liver 
cirrhosis, splenomegaly, tumor diameter. Finally, the combined 
models were developed by incorporating clinical characteristics 
and radiomics features.

The predictive performance of each model was analyzed using 
the area under the curve (AUC) and accuracy. Decision curve 
analysis (DCA) was used to calculate the clinical net benefits of 
the optimal ultrasound radiomics model, the optimal clinical 
model, and the optimal combined model, thereby evaluating the 
clinical value of all three models. The calibration curve was 
employed to assess the calibration degree of the optimal model.

The study procedure is illustrated in Figure 3.

2.8 Statistical analysis

SPSS 26.0 and R 4.4.1 were employed for statistical analysis. 
Continuous variables were analyzed using the t-test or Mann–
Whitney U test. Categorical variables were analyzed using the 
Chi-square test. Statistical significance was defined as p < 0.05.

3 Results

3.1 Clinical characteristics of lesions

In this study, a total of 182 lesions were finally included, with 102 
classified as mutant TP53 and 80 as wild-type TP53. The training set 
and test set, respectively, comprised 129 and 53 lesions. The clinical 

FIGURE 3

The radiomics workflow. ROI, region of interest; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, albumin; 
AUC, the area under the curve.
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characteristics of wild-type TP53 and mutant TP53 in the training and 
test sets are presented in Table 1. In the training set, AST existed a 
significant difference in the two groups (p < 0.05). In the test set, 
significant differences were observed in AFP levels and tumor 
diameter between the two groups (p < 0.05). In addition, 
we  conducted a comparison of the clinical features between the 
training set and the test set. Except for portal hypertension and TBIL, 
there were no notable differences in other clinical and conventional 
ultrasound features between the training and test sets 
(Supplementary Table 1).

3.2 Feature extraction and selection

We extracted a total of 1,409 ultrasound radiomics features from 
the images. Of the extracted features, 256 features were eliminated due 
to ICC < 0.8. Next, 20 features exhibiting zero variance and 612 
features with MIC value of zero were removed by applying the 
variance threshold and mutual information method. After further 
dimensionality reduction using the embedded method and XGBoost, 
the 24 most relevant radiomics features were finally selected 
(Figure  4). The detailed characteristics are provided in 
Supplementary Table 2.

3.3 Performance of ultrasound radiomics 
models and clinical models

We used five machine learning algorithms (XGBoost, DT, RF, 
SVM, and LR) to build ultrasound radiomics models and clinical 
models, and analyze and compare their predictive performance. 
Table 2 provides the detailed predictive performance of the ultrasound 
radiomics models and the clinical models. The ROC curves of the 
models are illustrated in Figures 5A,B,D,E.

Among the five ultrasound radiomics models, the DT classifier 
exhibited the best predictive performance, with an AUC value of 0.778 
and an accuracy of 0.774  in the test set. The AUC values of the 
ultrasound radiomics models based on XGBoost, SVM, RF, and LR 
were 0.745, 0.768, 0.738, and 0.684, respectively, with corresponding 
accuracies of 0.710, 0.726, 0.742, and 0.661.

Among the five clinical models, the RF classifier performed best, 
with an AUC value of 0.761 and an accuracy of 0.710 in the test set. 
The AUC values of XGBoost, SVM, DT, and LR-based clinical models 
were 0.739, 0.688, 0.744, and 0.726, respectively, with corresponding 
accuracies of 0.661, 0.661, 0.726, and 0.661.

3.4 Predictive performance of combined 
models

The predictive performance of the combined models is shown in 
Table 2 and Figures 5C,F. The AUC values of XGBoost, SVM, RF, DT, 
and LR-based combined models in the test set were 0.846, 0.774, 
0.853, 0.778, and 0.768, respectively. The XGBoost and RF models 
exhibited higher AUC values. However, the accuracy and sensitivity 
of the XGBoost model were 0.823 and 0.806, which were significantly 
superior to those of the RF model (0.774 and 0.710). Therefore, the 
XGBoost-based combined model performed best.

3.5 Comparison of performance of 
different models

We compared and analyzed the performance of the optimal 
ultrasound radiomics model, the optimal clinical model, and the 
optimal combined model. As shown in Figure  6A, the combined 
model demonstrated optimal predictive performance among the three 
models, with a higher AUC value in the test set (0.846). DCA 
demonstrated that the combined model provided superior clinical net 
benefit, indicating its higher utility in clinical practice (Figure 6B). The 
calibration curve showed that the combined model had a satisfactory 
agreement between the predicted TP53 status and the actual TP53 
status (Figure 6C). The confusion matrix showed that the combined 
model effectively distinguished both wild-type TP53 and mutant 
TP53, without any class bias (Figure 7).

4 Discussion

TP53 mutation is one of the most common gene mutations in 
HCC, which plays an important role in tumor development, metastasis, 
and the regulation of tumor microenvironment (TME) (5). In routine 
clinical practice, the determination of TP53 gene status primarily relies 
on IHC of surgical resection specimens or biopsy tissues. While IHC 
is a reliable and standardized method for assessing TP53 status, its 
invasive nature, delayed diagnosis, and high cost may limit the 
prevalence of its clinical detection. Therefore, there is a need for a 
noninvasive and cost-effective method for the preoperative assessment 
of TP53 gene status. Kitao et al. found that vasodilatation in the arterial 
phase of dynamic CT and relatively low signal in the hepatobiliary 
phase of gadoxetic acid-enhanced MRI were independent predictors 
of TP53-mutated HCC (AUC: 0.770) (41). Wu et al. performed texture 
analysis on CT images of HCC patients and found that texture 
parameters had a predictive effect on TP53 mutation (AUC: 0.621–
0.792) (32). In the current study, the ultrasound radiomics model and 
the combined model achieved AUC of 0.778 and 0.846, respectively, 
demonstrating similar performance to CT and MRI models. The 
results indicated that ultrasound images contained significant 
information related to TP53 mutation and possessed substantial 
potential for clinical application. Furthermore, compared with CT or 
MRI, ultrasound offers advantages such as real-time imaging, 
convenience, non-radiation, and lower cost, making it a more suitable 
imaging tool for large-scale screening and long-term monitoring.

Ultrasound radiomics technology extracts and analyzes quantitative 
features from medical images, thereby uncovering potential biological 
information and enabling a comprehensive evaluation of tumor 
heterogeneity. An ultrasound radiomics study conducted by Zhang 
et al. to predict the expression status of Ki-67 in HCC showed that the 
ultrasomics model (AUC: 0.861, accuracy: 0.674) outperformed the 
clinical model (AUC: 0.700, accuracy: 0.651) (42). This finding aligned 
with our study results. The superior diagnostic performance of 
radiomics arises from its ability to detect subtle phenotypic variations 
and spatial heterogeneity, thereby providing a more comprehensive 
diagnostic perspective compared to conventional clinical features. Wu 
et al. only analyzed the correlation between texture parameters of CT 
images and TP53-mutated HCC (32). However, other radiomics 
features, such as higher-order features, also play a significant role in the 
evaluation of HCC. In this study, we extracted and analyzed all types of 
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TABLE 1 Clinical characteristics of TP53 status in the training set and the test set.

Characteristic Training set (n = 129) Test set (n = 53)

Wt TP53 (n = 58) Mut TP53 (n = 71) p-value Wt TP53 (n = 22) Mut TP53 (n = 31) p-value

Age (years) 59.55 ± 10.18 57.11 ± 8.60 0.143 58.09 ± 11.04 56.32 ± 7.15 0.514

Sex 0.172 0.720

  Male 49(84.50) 53(74.60) 19(86.40) 25(80.60)

  Female 9(15.50) 18(25.40) 3(13.60) 6(19.40)

HBsAg 0.802 0.025

  Negative 15(25.90) 17(23.90) 7(31.80) 2(6.50)

  Positive 43(74.10) 54(76.10) 15(68.20) 29(93.50)

Child-Pugh class 0.213 0.686

  A 49(84.50) 65(91.50) 20(90.90) 26(83.90)

  B-C 9(15.50) 6(8.50) 2(9.10) 5(16.10)

Liver cirrhosis 0.681 0.120

  No 6(10.30) 9(12.70) 1(4.50) 7(22.60)

  Yes 52(89.70) 62(87.30) 21(95.50) 24(77.40)

Portal hypertension 0.878 0.724

  No 36(62.10) 45(63.40) 17(77.30) 26(83.90)

  Yes 22(37.80) 26(36.60) 5(22.70) 5(16.10)

AFP (ng/mL) 0.173 0.027

  <400 44(75.90) 46(64.80) 19(86.40) 18(58.10)

  >400 14(24.10) 25(35.20) 3(13.60) 13(41.90)

ALT (U/L) 27.85(22.95,39.20) 27.70(21.30,55.90) 0.581 30.00(19.95,51.08) 30.80(22.60,50.40) 1.000

AST (U/L) 30.15(22.68,46.00) 38.20(24.30,59.30) 0.044 30.55(21.63,49.65) 32.10(24.20,44.30) 0.396

ALB (g/L) 39.26 ± 5.43 39.33 ± 5.36 0.943 39.04 ± 6.02 38.65 ± 6.70 0.831

TBIL (μmol/L) 13.60(10.43,19.88) 13.80(9.40,19.60) 0.541 11.50(7.45,16.88) 11.40(8.90,13.80) 0.921

GGT (U/L) 57.65(33.28,93.30) 60.10(24.50,142.60) 1.000 73.05(33.93,135.48) 58.30(29.00,111.60) 0.613

PT (s) 12.65(11.98,13.93) 12.40(11.80,13.20) 0.233 12.40(11.98,12.80) 12.40(11.60,13.30) 0.906

Splenomegaly 0.701 0.454

  No 33(56.90) 38(53.50) 15(68.20) 18(58.10)

  Yes 25(43.10) 33(46.50) 7(31.80) 13(41.90)

Tumor diameter (mm) 34.00(24.00,53.00) 34.00(19.00,64.00) 0.755 30.50(18.75,40.25) 40.00(24.00,65.00) 0.034

Echo signal 0.929 0.301

  Low 33(56.90) 38(53.50) 10(45.50) 10(32.30)

  Equal 9(15.50) 12(16.90) 6(27.30) 6(19.40)

  High 16(27.60) 21(29.60) 6(27.30) 15(48.40)

Margin 0.677 0.089

  Clear 38(65.50) 44(62.00) 9(40.90) 20(64.50)

  Obscure 20(34.50) 27(38.00) 13(59.10) 11(35.50)

Shape 0.217 0.908

  Regular 30(51.70) 29(40.80) 11(50.00) 15(48.40)

  Irregular 28(48.30) 42(59.20) 11(50.00) 16(51.60)

Doppler flow signal 0.802 0.454

  No 38(65.50) 48(67.60) 15(68.20) 18(58.10)

  Yes 20(34.50) 23(32.40) 7(31.80) 13(41.90)

Tumor location 0.602 0.445

  Left lobe 11(19.00) 11(15.50) 2(9.10) 6(19.40)

  Right lobe 47(81.00) 60(84.50) 20(90.90) 25(80.60)

Wt TP53, wild-type TP53; Mut TP53, mutant TP53; HBsAg, hepatitis B surface antigen; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, 
albumin; TBIL, total bilirubin; GGT, Gamma-glutamyltransferase; PT, prothrombin time.
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ultrasound radiomics features. Finally, 24 most significant ultrasound 
radiomics features were selected, of which 21 were higher-order features 
and the remaining features were first-order features and texture 
features. First-order features reflect the distribution of voxel intensity 
values, such as mean, minimum, and skewness. Texture features, 
namely second-order features, describe the spatial relationships 
between voxels exhibiting similar gray values within ROI, which reflect 
tumor heterogeneity. Common texture features include GLCM, GLDM, 
and others (43). Higher-order features refer to radiomics features 
extracted from filter-processed images, capturing more complex details 
and more clearly reflecting subtle changes within the tumor (44). 
Among the 21 higher-order features extracted, 17 were wavelet features, 
while the rest were square root, logarithmic, and exponential features. 
Our results demonstrate that wavelet features are crucial for predicting 
TP53 mutation status, consistent with previous studies (30). Wavelet 

features may capture complex information associated with the TP53 
mutation status in HCC. The wavelet filter decomposes the original 
image into high-frequency and low-frequency sub-images, allowing for 
multi-scale analysis through wavelet functions. Wavelet transform 
enables a deeper understanding of the spatial heterogeneity of tumors 
(45). Previous studies have also demonstrated that wavelet features are 
powerful tools for analyzing image information and hold significant 
value in radiomics research (35, 46). Furthermore, incorporating 
clinical features with ultrasound radiomics features improved predictive 
performance, highlighting the complementary role of clinical data in 
radiomics models. This aligned with previous studies, which have 
demonstrated that integrating multi-source information enhances the 
robustness and generalizability of predictive models (47–49).

The dominance of the XGBoost-based combined model may 
be  attributed to its intrinsic compatibility with multi-source 

FIGURE 4

Weight histogram of 24 the radiomics features.
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TABLE 2 The performance of the models in the training set and the test set.

Model Training set Test set

Group Classifier ACC SEN SPE AUC (95%CI) p-value ACC SEN SPE AUC (95%CI) p-value

Clinical XGBoost 0.845 0.915 0.775 0.905 (0.844–0.948) <0.0001 0.661 0.645 0.677 0.739 (0.612–0.842) 0.0002

DT 0.831 0.944 0.718 0.903 (0.842–0.946) <0.0001 0.726 0.774 0.677 0.744 (0.617–0.846) 0.0001

RF 0.761 0.803 0.718 0.812 (0.738–0.872) <0.0001 0.710 0.742 0.677 0.761 (0.635–0.860) <0.0001

SVM 0.894 0.944 0.845 0.974 (0.933–0.994) <0.0001 0.661 0.710 0.613 0.688 (0.557–0.800) 0.0071

LR 0.669 0.718 0.620 0.726 (0.645–0.798) <0.0001 0.661 0.710 0.613 0.726 (0.598–0.832) 0.0006

Radiomics XGBoost 0.930 0.958 0.901 0.978 (0.938–0.995) <0.0001 0.710 0.710 0.710 0.745 (0.618–0.847) 0.0003

DT 0.880 0.986 0.775 0.964 (0.919–0.988) <0.0001 0.774 0.839 0.710 0.778 (0.655–0.874) <0.0001

RF 0.838 0.873 0.803 0.917 (0.859–0.957) <0.0001 0.742 0.742 0.742 0.738 (0.611–0.841) 0.0003

SVM 0.775 0.746 0.803 0.881 (0.816–0.929) <0.0001 0.726 0.677 0.774 0.768 (0.643–0.866) <0.0001

LR 0.704 0.704 0.704 0.768 (0.690–0.835) <0.0001 0.661 0.645 0.677 0.684 (0.553–0.796) 0.0084

Combined XGBoost 0.923 0.958 0.887 0.984 (0.946–0.997) <0.0001 0.823 0.806 0.839 0.846 (0.732–0.925) <0.0001

DT 0.901 0.986 0.817 0.969 (0.926–0.991) <0.0001 0.758 0.774 0.742 0.778 (0.655–0.874) <0.0001

RF 0.866 0.915 0.817 0.926 (0.870–0.963) <0.0001 0.774 0.710 0.839 0.853 (0.740–0.930) <0.0001

SVM 0.887 0.944 0.831 0.976 (0.936–0.994) <0.0001 0.758 0.806 0.710 0.774 (0.650–0.871) <0.0001

LR 0.753 0.775 0.732 0.847 (0.777–0.902) <0.0001 0.742 0.742 0.742 0.768 (0.643–0.866) <0.0001

ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, the area under the curve.
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features. XGBoost, an advanced gradient boosting algorithm, 
offers notable advantages in scalability and training speed. It 
incorporates regularization terms and second-order Taylor 
expansion in the objective function, effectively controlling model 
complexity, mitigating overfitting, and enhancing generalizability 
and predictive accuracy (50). Consistent with our finding, 
previous radiomics studies have also reported superior 
performance of the XGBoost classifier compared to other 
classifiers, further supporting the reliability of our modeling 
approach (48, 49).

Our study presented a novel approach for the preoperative 
identification of high-risk HCC patients with TP53 mutations. 

This study may be helpful in the following aspects. First, surgeons 
should consider a more aggressive surgical approach for HCC 
patients predicted to have TP53 mutations, due to the heightened 
risk of recurrence and microvascular invasion (51). Second, 
oncologists may adjust treatment strategies, as TP53 mutations are 
linked to resistance to certain systemic therapies, highlighting the 
potential need for alternative targeted treatments or combination 
therapies (52). Third, radiologists should conduct more rigorous 
imaging surveillance to detect early tumor progression or 
recurrence. Meanwhile, pathologists need to meticulously assess 
tumor characteristics in pathological specimens, combining the 
radiomics prediction, to provide more precise diagnostic 

FIGURE 5

The ROC curves of machine learning models in the training set of (A) the clinical models, (B) the radiomics models, and (C) the combined models, and 
the test set of (D) the clinical models, (E) the radiomics models, and (F) the combined models.

FIGURE 6

Comparison of the performance of three models in the test set. (A) ROC curve of three models. (B) Decision curve analysis (DCA) for three models. 
(C) Calibration curve of the combined model.
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information (53). Finally, patients predicted to have TP53 
mutations should adhere to a personalized treatment regimen and 
undergo intensive follow-up.

There were some limitations in this study. First, as a 
retrospective single-center study, it had a limited sample size and 
lacked external validation. In the future, we plan to conduct a 
large-scale, multi-center study to validate the generalizability of 
this model. Second, due to the retrospective nature, there were 
variations in ultrasound equipment and scanning parameters. 
Despite image preprocessing and ICC tests, potential confounding 
factors may still have influenced the results. Third, this study 
employed IHC to assess TP53 gene status instead of gene 
sequencing technology. Although IHC is widely used in clinical 
practice due to its feasibility and cost-effectiveness, its ability to 
differentiate TP53 gene status is limited. To enhance the accuracy 
and reliability of future research, gene sequencing technology will 
be  incorporated to precisely determine TP53 mutation status. 
Additionally, this study only used gray-scale ultrasound images in 
the current study and did not include contrast-enhanced 
ultrasound, elastography, CT, or other images. In the future, 
we plan to conduct a multi-modal radiomics study to enhance 
predictive performance and clinical applicability.

5 Conclusion

The machine learning-based ultrasound radiomics model was 
able to effectively predict the TP53 mutation status in HCC. When 
combined with clinical information, the performance of the 
ultrasound radiomics model can be  further enhanced. The 
XGBoost-based combined model exhibited the highest predictive 
performance, highlighting its potential as a powerful tool for TP53 
mutation prediction. While these findings require validation with 
larger sample sizes, ultrasound radiomics provides a non-invasive 
and efficient approach for detecting TP53 gene mutation. This 
approach facilitates the preoperative screening of high-risk 
individuals for TP53 mutation and aids in the development of 
personalized treatment strategies for HCC patients.
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Glossary

HCC - Hepatocellular carcinoma

ICC - Intraclass correlation coefficient

XGBoost - Extreme gradient boosting

SVM - Support vector machine

RF - Random forest

DT - Decision tree

LR - Logistic regression

AUC - Area under the curve

DCA - Decision curve analysis

TME - Tumor microenvironment

AFP - Alpha-fetoprotein

ALT - Alanine aminotransferase

AST - Aspartate aminotransferase

ALB - Albumin level

TBIL - Total bilirubin

PT - Prothrombin time

DICOM - Digital Imaging and Communications in Medicine

GLCM - Gray-level co-occurrence matrix

GLDM - Gray-level dependence matrix

GLRLM - Gray-level run length matrix

GLSZM - Gray-level size-zone matrix

NGTDM - Neighboring gray-tone-difference matrix

MIC - Maximal Information Coefficient

ROI - Region of interest
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