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Objective: By gathering data on patients with intraoperative blood transfusion 
and investigating the factors influencing intraoperative blood transfusion in 
patients, we aimed to construct a dynamic nomogram decision-making model 
capable of continuously predicting the probability of intraoperative blood 
transfusion in patients. This was done to explore a new mode of individualized 
and precise blood transfusion and to guide doctors to make timely and 
reasonable blood transfusion decisions and save blood resources.

Methods: Data of surgical patients in our hospital from 2019 to 2023 were 
collected. Among them, 705 patients who had blood transfusions were the 
experimental group, and 705 patients without intraoperative blood transfusions 
were randomly selected as the control group. Preoperative and intraoperative 
indicators of 1,410 patients were collected. 80% of the data set was used as the 
training set and 20% as the test set. In the training set, independent risk factors 
affecting intraoperative blood transfusion in patients were obtained through 
Lasso regression and binary logistic regression analysis, and the regression 
model was established and validated.

Results: Through Lasso regression with cross-validation and binary logistic 
regression analysis, the independent risk factors affecting patients’ intraoperative 
blood transfusion decision-making were determined as ASAs (III) (OR = 3.009, 
95% CI = 1.311–6.909), surgical grading (IV) (OR = 3.772, 95% CI = 1.112–
12.789), EBL (OR = 1.003, 95% CI = 1.002–1.004), preHGB (OR = 0.932, 
95% CI = 0.919–0.946), LVEF (OR = 1.063, 95% CI = 1.028–1.098), Temp 
(OR = 57.14, 95% CI = 9.740–35.204), preAPTT (OR = 1.147, 95% CI = 1.079–
1.220), and preDD (OR = 1.127, 95% CI = 1.048–1.212). The area under the curve 
(AUC) of the receiver operating characteristic curve (ROC) of the training set 
was 0.983, p < 0.05. By calculating the Jordon index, when the Jordon index 
reached its maximum value, the corresponding diagnostic probability threshold 
was 0.515. When the model predicted that the probability threshold was 0.515, 
the sensitivity was 0.939 and the specificity was 0.964. These independent risk 
factors were introduced into R statistical software to fit the intraoperative blood 
transfusion decision-making dynamic nomogram model. The goodness of fit 
test of the model for the training set was χ2 = 111.85, p < 0.01, and the AUCs of 
the training set and the testing set were 0.983 and 0.995, respectively, p < 0.05. 
The calibration curve showed that the predicted probability of the model was in 
good agreement with the observed probability. Clinical decision curves (CDA) 
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and clinical impact curves were plotted to evaluate the clinical utility of the 
model and the net benefit of the model.

Conclusion: Variables were screened by Lasso regression, the model was 
developed by binary logistic regression, and a dynamic nomogram model for 
intraoperative transfusion decision-making was successfully fitted using R 
software. This model had good goodness of fit, discrimination, and calibration. 
The model can dynamically and instantaneously predict the probability of 
blood transfusion and its 95% confidence interval under the current patient 
indicators by selecting the patient’s independent risk factors in the drop-down 
mode during the operation. It can assist doctors in making a reasonable blood 
transfusion decision quickly and save blood resources.

KEYWORDS

blood transfusion decision-making, nomogram modeling, Lasso regression, 
peroperative, transfusion

1 Introduction

As an important therapeutic measure, blood transfusion provides 
protection for patients’ life safety and is widely used in clinical 
practice. At the same time, blood transfusion is also a double-edged 
sword, and the benefits of blood transfusion therapy can only 
be maximized by choosing the right blood products at the right time 
and transfusing them to the right patients in the right dosages (1). 
Inappropriate transfusion therapy may pose a greater risk to patients, 
and there is a large body of literature reporting that allogeneic blood 
transfusion may cause fever, allergies, and many other risks to patients 
(2, 3). Patients with hemoglobin between 70 and 100 g/L are 
determined according to the patient’s degree of anemia, 
cardiopulmonary compensatory function, the presence of an 
increased metabolic rate, and age. How exactly do clinicians make 
decisions about blood transfusions based on the above risks? At 
present, there are no specific quantitative norms in the clinic; whether 
the need for blood transfusion and the amount of blood transfusion 
can only be based on the experience of clinicians to make decisions, 
clinicians have a looser grasp of the transfusion trigger, resulting in 
the irrational use of blood.

In recent years, many scholars have devoted themselves to the 
research of perioperative blood management, and many research 
results have been achieved. Professor Liu Jin’s team at West China 
Hospital of Sichuan University took the lead in establishing the 
Perioperative Transfusion Trigger Score (POTTS), which is based 
on the rate of epinephrine infusion, oxygen concentration, basal 
metabolic rate, and angina to calculate the minimum hemoglobin 
concentration required to maintain a balance between the patient’s 
supply and oxygen consumption. A number of studies have shown 
that the application of the POTTS can effectively reduce the 
intraoperative transfusion rate and blood transfusion volume, as 
well as reduce postoperative complications and postoperative 
mortality and reduce the hospitalization costs of patients (4–7). 
While the application of the scale is based on the patient’s 
hemoglobin test value, which reflects the patient’s hemoglobin 
concentration at the time of blood draw, the application of the 
POTTS scale to patients with acute, sustained blood loss is 
dependent on continuous bedside hemoglobin testing, which may 
be  difficult to achieve in primary care settings, limiting the 
application of the scale.

In recent years, restrictive transfusion strategy has been 
gradually applied to clinical practice, and the decision point for 
transfusion in restrictive transfusion strategy is hemoglobin 
70–80 g/L. More studies have shown that a restrictive transfusion 
strategy can reduce perioperative transfusion, reduce the risk of 
rebleeding, and not increase the risk of a poor prognosis compared 
with an open transfusion strategy (8–11), and it is also a more 
effective and economical blood transfusion strategy. However, 
there is no specific standard for the transfusion trigger of this 
strategy, and most researchers have set it at 70–80 g/L. This 
strategy also does not consider the patient’s cardiopulmonary 
function, basal metabolic rate, or other factors that affect the 
balance of blood oxygen supply and fails to achieve an 
individualized blood transfusion. Some studies have shown a 
higher risk of using restrictive transfusion strategies for patients 
with American Society of Anesthesiologists scores of grade III or 
higher (12).

In this study, we  added preoperative as well as intraoperative 
metrics that may affect a patient’s intraoperative blood transfusion to 
the restrictive transfusion strategy in an attempt to create an 
individualized, continuously monitored, dynamic columnar chart 
model that will help physicians make rapid intraoperative transfusion 
decisions and conserve blood resources.

2 Data and methods

2.1 Variable collection

The transfusion information management system was used to 
collect the preoperative variables of patients undergoing elective 
surgery. Preoperative variables: age, gender, body weight (W), 
preoperative hemoglobin concentration (preHGB), left ventricular 
ejection fraction (LVEF), lung function indexes (PCO2, SaO2), liver 
function indexes (TP, ALT, AST, and TBIL), coagulation index 
(prePLT, prePT, preAPTT, preINR, preTT, preFib, and preDD), kidney 
function (Cr, eGFR), blood type, and other indexes. Intraoperative 
variables: intraoperative temperature (Temp), estimated intraoperative 
blood loss (EBL), crystalloid input, shock index, heart rate, blood 
pressure, surgical grade, anesthesia grade (ASA), and so on. Temp was 
recorded at the start of transfusion for transfused patients and at the 
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start of surgery for non-transfused patients. All data were organized 
using Excel.

2.2 Study subjects

The study subjects are patients undergoing elective surgery in our 
hospital from 2019 to 2022. A total of 1,410 cases. The inclusion 
criteria were (1) elective surgery patients aged 18–75 years; (2) 
preoperative Hb greater than 60 g/L; and (3) patients’ permanent 
residence at an altitude of less than 2,500 meters and complete pre- 
and post-surgical data. Exclusion criteria: (1) cardiac surgery, burn 
surgery, intraoperative uncontrollable major blood loss; (2) patients 
with severe blood disorders (hemophilia, hemolytic anemia, 
thalassemia, iron-deficiency anemia, megaloblastic anemia, and 
aplastic anemia); and (3) American Society of Anesthesiologists scores 
(grades V–VI). After 1,410 patients passed the inclusion/exclusion 
criteria, a total of 1,017 patients were included in the study, including 
422 transfused patients and 595 non-transfused patients.

2.3 Statistical methods

All data were collated using Microsoft Excel and processed using 
SPSS 25 statistical software. Count data were expressed as the number 
of cases or percentage and analyzed by the χ2 test; measurement data 
were expressed as the mean standard deviation and analyzed by t-test 
or non-parametric test. Forest plots and ROC curves were drawn 
using GraphPad Prisms, and RStudio statistical software was used to 
complete the fitting of the dynamic nomogram model, the Hosmer 
goodness-of-fit test, and to draw calibration correction curves, clinical 
decision curves (CDA), and clinical impact curves. All analyses were 
performed with α = 0.05 as the test level and p < 0.05 as the difference 
was statistically significant.

3 Research results

3.1 Baseline patient characteristics

Baseline characteristics of 1,017 patients with 422 (41.5%) 
intraoperative erythrocyte transfusions and 595 (58.5%) intraoperative 
non-transfused erythrocytes are shown in Table 1. All variables did 
not conform to normal distribution by the normality test, expressed 
as medians with upper  and lower quartiles. Mann–Whitney and 
chi-square tests between groups showed statistical differences except 
for systolic blood pressure, preoperative PLT, PCO2, SaO2, Cr, 
and eGFR.

3.2 Lasso regression and cross-validation

Through Lasso regression with cross-validation, the 11 potential 
risk factors that were most relevant to intraoperative blood transfusion 
of patients were screened out when Log (λ) took the value of 1SE, as 
shown in Table 2. The introduction of a logarithmically scaled penalty 
coefficient (λ) induces a sparsity-promoting mechanism: as the 
regularization strength increases, the magnitudes of the regression 

coefficients are progressively shrunk toward zero, with non-significant 
variables ultimately being excluded from the model when their 
coefficients reach exact zero. Lasso regression path diagram shown in 
Figure 1, Lasso regression with cross-validation shown in Figure 2. 
The final model retained 11 predictors by employing the optimal 
regularization parameter (λ) determined through one-standard-error 
rule, which selects the most parsimonious configuration within one 
standard error of the minimum binomial deviance observed during 
cross-validation.

3.3 Binary logistic regression modeling

The potential risk factors screened by Lasso regression analysis 
were introduced into binary logistic regression analysis to establish a 
regression model. Through the binary logistic regression analysis, the 
potential risk factors affecting patients’ intraoperative blood 
transfusion decisions were anesthesia classification (ASA III), surgical 
grade (SurgicalGrade IV), estimated intraoperative blood loss (EBL), 
preoperative hemoglobin concentration (preHGB), left ventricular 
ejection fraction (LVEF), intraoperative temperature (Temp), 
preoperative APTT (preAPTT), and preoperative D-D (preDD). A 
forest plot of intraoperative transfusion risk was plotted for 
visualization, as shown in Figure  3. Multi-indicator combined 
diagnostic ROC curves, as well as separate diagnostic ROC curves, 
were plotted for the model, and the area under the working curve 
(AUC) of the subjects was calculated separately. The Youden index was 
used to calculate the predictive probability threshold for the multi-
indicator combined diagnostic curve, and the predictive probability 
threshold was 0.515, the sensitivity was 0.939, and the specificity was 
0.964, as shown in Figures 4, 5.

3.4 Fitting a dynamic nomogram model

The independent risk factors affecting patients’ intraoperative 
blood transfusion decisions derived from binary logistic regression 
were introduced into the RStudio statistical software; the random seed 
was set to 1, and the sample function was called to use 80% of the 
dataset as the training set and 20% as the test set. The training set data 
will be plotted in a dynamic nomogram model for intraoperative 
blood transfusion decision-making. We  deployed the nomogram 
model on the web page through R software. By clicking on the website 
address on any terminal, the model can be opened. The web version 
of the model is shown in Figure  6. The categorical variables are 
selected through the drop-down menu, the continuous variables are 
selected by sliding the slider to select the value, and the probability of 
intraoperative transfusion of the patient, as well as the 95% CI, can 
be  calculated by clicking on Predict, and when the probability is 
greater than the critical probability of 0.515, then the patient should 
be transfused to treat the intraoperative situation.

3.5 Model validation and evaluation

Validate the training set as well as the test set model, respectively. The 
Resource Selection package was loaded, and the Hosmer test was called 
to do the model fit goodness-of-fit test, χ2 = 111.85, p < 0.01. The AUC 
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of ROC of the subjects was used to evaluate the model’s discriminative 
ability, and the AUC of the training set and the test set was 0.983 and 
0.995, p < 0.05, respectively. The model discrimination is shown in 

Figure 7. Bootstrap was used to repeat the sampling 1,000 times to draw 
the calibration curve to evaluate the calibration of the model. The 
calibration curve showed that the predicted probability of the model and 

TABLE 1 Baseline characteristics of the study population.

Variable Total (n = 1,017) No transfusion 
(n = 595)

Transfusion 
(n = 422)

Z/χ2 p

Gender, n (%) 10.179 0.002

  Male 421 (41) 271 (46) 150 (36)

  Female 596 (59) 324 (54) 272 (64)

Age 49 (34, 64) 46 (33, 57) 53 (39, 69) −6.221 <0.001

Wt 60 (52, 65) 60 (54, 68) 57 (50, 65) −4.710 <0.001

SBP 110 (100, 122) 111 (104, 120) 110 (100, 125.75) −1.820 0.069

DBP 68 (60, 77) 69 (61, 78) 68 (60, 75) −2.645 0.008

SI 0.69 (0.61, 0.8) 0.68 (0.6, 0.75) 0.73 (0.63, 0.9) −6.837 <0.001

HR 78 (70, 88) 75 (69.5, 82) 84 (73, 95.75) −8.983 <0.00

ASAs, n (%) 208.626 <0.001

  I–II 772 (76) 548 (92) 224 (53)

  III 171 (17) 39 (7) 132 (31)

  IV 74 (7) 8 (1) 66 (16)

Temp 36.2 (36.2, 36.5) 36.2 (36.2, 36.2) 36.5 (36.3, 36.6) −20.194 <0.001

LVEF 72 (66, 79) 71 (65, 78) 74 (67, 80) −4.257 <0.001

FiO2 2 (2, 2) 2 (2, 2) 2 (2, 2) −4.824 <0.001

EBL 50 (10, 200) 10 (10, 50) 200 (50, 800) −19.183 <0.001

preHGB 125 (98, 143) 137 (124, 151) 94.5 (80, 112) −21.203 <0.001

prePLT 191 (145, 241) 194 (149, 235) 188.5 (137, 257) −0.007 0.995

PCO2 40 (36, 44) 40 (36, 44) 41 (37, 44) −1.436 0.151

preINR 0.99 (0.95, 1.04) 0.98 (0.95, 1.02) 1.01 (0.96, 1.1) −7.131 <0.001

preAPTT 28.7 (25.4, 33.6) 26.6 (24.3, 29.1) 33.2 (29.52, 37.1) −16.217 <0.001

preFib 3.21 (2.62, 3.99) 3.28 (2.76, 3.88) 3.11 (2.34, 4.08) −2.918 0.004

preTT 16.8 (16, 17.6) 16.9 (16.3, 17.7) 16.4 (15.6, 17.48) −5.489 <0.001

preD-D 0.34 (0, 1.3) 0.17 (0, 0.47) 1.05 (0, 4.12) −11.649 <0.001

TP 69.8 (63, 76) 73.4 (67.85, 77.6) 64.4 (55.5, 70.68) −14.350 <0.001

ALT 20.7 (16.3, 28.3) 20.3 (16.6, 26.35) 21.8 (16.02, 34.68) −3.102 0.002

TBIL 10.4 (7, 15.2) 11.1 (7.7, 16.1) 9.45 (6.12, 13.97) −3.790 <0.001

Cr 56.2 (44.3, 74.9) 57.3 (44.4, 74.2) 54.9 (44.0, 75.3) −0.028 0.978

eGFR 88 (72.9, 104.3) 89.1 (75.2, 104.3) 87.5 (66.8, 105.8) −1.409 0.159

BG, n (%) 31.893 <0.001

  A 287 (28) 148 (25) 139 (33)

  B 285 (28) 186 (31) 99 (23)

  O 321 (32) 167 (28) 154 (36)

AB 124 (12) 94 (16) 30 (7)

SG, n (%) 86.952 <0.001

  I–II 104 (10) 77 (13) 27 (6)

  III 692 (68) 448 (75) 244 (58)

  IV 221 (22) 70 (12) 151 (36)

ASAs, American Society of Anesthesiologists system; SI, Shock Index; LVEF, left ventricular ejection fraction; FiO₂, fraction of inspired oxygen; EBL, estimated blood loss (mL); BG, blood 
group; SG, surgical risk classification.
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the observed probability were in good agreement; the calibration curve 
is shown in Figure 8. The clinical utility of the predictive model was 
rigorously evaluated through decision curve analysis (DCA) and clinical 
impact curves (CIC). As demonstrated in Figure 9, the decision curve 
revealed superior net benefit of the model-guided strategy compared to 
both the “treat-all” and “treat-none” extreme scenarios across a clinically 
relevant threshold probability range. Furthermore, the clinical impact 
curve quantified the projected clinical consequences, indicating that the 
model achieves a favorable balance between true-positive identifications 
and false-positive interventions at population scale.

4 Discussion

In this study, the 11 potential risk factors most related to 
intraoperative blood transfusion were first screened by Lasso 
regression and then analyzed by multifactorial binary logistic 
regression to find out the independent risk factors for intraoperative 

blood transfusion. Patients with anesthesia grades I and II had good 
anesthesia and surgical tolerance and a smooth anesthesia process. 
There is a certain danger in anesthesia for grade III patients, and the 
preparation before anesthesia should be  sufficient, and effective 
measures should be  taken for possible complications during 
anesthesia, and active prevention should be made. The anesthesia risk 
of grade IV patients was extremely high. Grade V and VI patients 
were not included in this study because of their extremely critical 
condition, poor tolerance of anesthesia, and the risk of death at any 
time. In the present study, anesthesia grade III was an independent 
risk factor for intraoperative blood transfusion, same as Patil et al. 
(13–15). However, Runge et al. (16, 17) showed that anesthesia grades 
III and IV were independent risk factors for intraoperative blood 
transfusion. This study only showed that anesthesia grade III was an 
independent risk factor for intraoperative blood transfusion. The 
reason for this may be that the data of this study came from a tertiary 
general hospital, the comprehensive strength is not enough, the 
critical patients have been transferred to the higher level of medical 
units, and anesthesia grade IV accounted for only 7% of the study 
cases. This study shows that surgical grading is also an independent 
risk factor for blood transfusion. 4-grade surgeries are defined as 
those that are high-risk and complicated in process, difficult, with 
increased difficulty of invasive intraoperative procedures and 
increased need for blood transfusion. Liu et al. (18), in his study of 
blood transfusion in major emergency abdominal surgery, also found 
that the type of surgery is a risk factor for perioperative transfusion. 
Intraoperative bleeding is unavoidable, and large intraoperative blood 
loss easily leads to a drop in blood pressure, decreased blood volume, 
increased heart rate compensation, and excessive blood loss will lead 
to excessive loss of red blood cells, platelets, coagulation factors, and 
other important components of the body, leading to hemodilution 
and coagulation disorders and entering a vicious cycle of blood loss 
and coagulation disorders. Intraoperative blood loss increases the 
need for intraoperative transfusion, and the study in this paper is 
similar to the existing studies (19–21) that intraoperative blood loss 
is an independent risk factor for intraoperative transfusion in 
patients. Patients with preoperative anemia exhibit lower hemoglobin 
levels and insufficient oxygen-carrying capacity of the blood, leading 
to tissue hypoxia, which makes patients less tolerant during surgery 
and exposes them to higher risks of cardiovascular risk, infection risk, 
and increased postoperative complications. Surgical blood loss 
directly leads to a further increase in blood volume and anemia, and 
severe anemia may lead to severe intraoperative hypoxia, increasing 
the risk of patient death. Preoperative anemia greatly increases the 
probability of intraoperative blood transfusion in patients and is an 
independent risk factor for intraoperative blood transfusion. Erben 
et  al. (22), Attawettayanon et  al. (23), and other researchers also 
concluded that preoperative anemia is an independent risk factor for 
intraoperative blood transfusion in patients. The left ventricular 
ejection fraction (LVEF) is an important index for assessing the 
pumping function of the heart, and its decline may be associated with 
cardiovascular disease, myocardial infarction, and other pathologies. 
Decreased LVEF leads to insufficient oxygen supply to vital organs 
throughout the body, and patients may exhibit increased heart rate 
and decreased blood pressure. The vital organs are hypoxic and have 
a decreased tolerance capacity, thus increasing the probability of 
intraoperative blood transfusion in patients. Some researchers have 
suggested a correlation between LVEF <35% and intraoperative blood 

TABLE 2 Lasso regression Log (λ) taking the value of 1SE.

Independent variable Log (λ) = 1SE

(Intercept) −0.267

Gender /

Age /

Wt /

SBP 0.031

DBP /

PI /

HR 1.021

ASA 0.512

Temp 11.860

LVEF 1.948

FiO2 /

EBL 6.330

preHGB −8.554

prePLT /

PCO2 /

preINR /

preAPTT 10.970

preFib /

preTT /

preDD 5.483

preTP −1.215

preALT /

preAST /

preTBIL /

preCr /

preeGFR /

BG /

SurgicalGrade 0.311
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transfusion in patients (24), which is similar to the findings of this 
paper. Intraoperative hypothermia is common in patients undergoing 
surgery, and medications, trauma, ambient temperature, type of 
anesthesia, and the extent and duration of the procedure can affect 
core temperature. Perioperative hypothermia has a greater impact on 
patient coagulation and increases the risk of intraoperative blood loss. 
Elevated perioperative body temperature accelerates metabolism and 

also increases the patient’s need for blood transfusion. Therefore, 
aggressive preoperative, intraoperative, and postoperative 
temperature management is needed to minimize the risk of 
perioperative hypothermia or hyperthermia. Simon Rauch (25, 26) 
and others concluded that intraoperative hypothermia increases the 
risk of intraoperative blood transfusion and is an independent risk 
factor for intraoperative blood transfusion. In this paper, we showed 

FIGURE 1

Lasso regression path diagram.

FIGURE 2

Lasso regression cross-validation results.
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that elevated intraoperative body temperature increases the risk of 
intraoperative blood transfusion and that elevated body temperature 
increases the patient’s metabolic rate and oxygen consumption, 
leading to significant hypoxia and thus increasing the probability of 
transfusion. Guerra-Londono et  al. (27) concluded that blood 
transfusion in patients undergoing hyperthermic intraperitoneal heat 
infusion chemotherapy (HIPEC) is associated with hyperthermia 
(≥39°C). In contrast to the perioperative transfusion pointer scale 

(POTTS), the transfusion trigger also increased with higher central 
body temperature and increased transfusion requirements. During 
surgery, coagulation indices play an important role in decision-
making for intraoperative blood transfusion, and the present study 
showed that prolonged preoperative APTT and elevated preoperative 
D-dimer were independent risk factors for intraoperative blood 
transfusion. Kim et al. (28) study concluded that an INR greater than 
1.2 was an independent risk factor for intraoperative blood 

FIGURE 3

Forest plot of intraoperative blood transfusion risk.

FIGURE 4

Multi-indicator independent diagnostic ROC curve.
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FIGURE 6

Intraoperative blood transfusion dynamic nomogram model.

transfusion. The important predictors of intraoperative blood 
transfusion in cesarean delivery were found in the model, including 
surgical method, surgical site, and coagulation-related indexes by 
Chen et al. (29). There are more factors influencing intraoperative 
blood transfusion, and previous studies have been seen. Arshi et al. 
(15) suggested that age, female sex, and low body weight are 

predictors of blood transfusion after hip fracture surgery in the 
elderly. Stoleriu et al. (30), in a retrospective cohort study in a high-
volume thoracic surgical center, found that perioperative allogeneic 
transfusion in patients undergoing resection for primary lung cancer 
risk factors were female, platelet count, and RhD blood group. 
Pardessus et  al. (31) concluded that increased intraoperative 
crystalloid fluid intake was a major predictor of intraoperative 
allogeneic transfusion in adolescents undergoing surgery for 
idiopathic scoliosis. Lee et al. (32) concluded that age greater than 
85 years and type 2 diabetes mellitus were risk factors for 
intraoperative blood transfusion in total shoulder arthroplasty. 
Wagner et al. (33) also found smoking to be an independent risk 
factor for intraoperative blood transfusion. Walczak et al. also found 
creatinine to be a predictor of perioperative blood transfusion.

In this paper, we  included the risk factors that previous 
researchers believed might affect intraoperative blood transfusion, 
and based on Lasso and multifactorial regression analysis, 
we integrated multiple predictive indicators and then fitted a dynamic 
nomogram with the help of R statistical software so that we could 
quickly and continuously calculate the probability of transfusion 
according to the patients’ ever-changing indicators during the 
operation to achieve individualized and precise guidance for blood 
transfusion. Our model can address the limitations of restrictive 
transfusion strategies by integrating dynamic personalized 
parameters. While restrictive strategies reduce unnecessary 
transfusions, they often ignore key factors such as cardiopulmonary 
function, metabolic rate, and intraoperative variables. Our nomogram 
model incorporates preoperative hemoglobin (preHGB), ASA, 
surgical classification, estimated blood loss (EBL), left ventricular 
ejection fraction (LVEF), and coagulation markers (preAPTT, 

FIGURE 5

Multi-indicator combined diagnostic ROC curve.
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preDD), which are capable of real-time adjustments based on patient 
physiology. For ASA type III patients, our model accounts for the 
reduction in physiologic reserve by weighting variables such as LVEF 
and intraoperative temperature (Temp). For example, ASA type III 
patients with elevated temperature (indicating a hypermetabolic 
state) or low LVEF (impaired cardiac output) may require blood 
transfusion when hemoglobin levels are above a restrictive threshold 
to ensure adequate oxygen delivery. In contrast, hemodynamically 
stable ASA III patients with minimal bleeding can safely avoid 
transfusion even when hemoglobin levels approach 70 g/L. This 
subtle approach reduces under-transfusion (risk of hypoxia) and 
over-transfusion (risk of complications). For patients with low 
hemoglobin (preHGB), the model dynamically adjusts 
recommendations by integrating EBL and coagulation status. A 

patient with a preHGB of 80 g/L may not need a transfusion if he or 
she has low bleeding and normal coagulation, whereas a patient with 
the same preHGB may need a transfusion if he  or she has a 
significantly increased EBL and a prolonged preAPTT. The model 
may reduce unnecessary transfusions: in patients with adequate 
compensatory mechanisms, e.g., high LVEF and stable body 
temperature, even with a slightly lower preHGB, the model may 
suggest postponing transfusion and reducing transfusion-related 
risks. However, the data in this paper come from a single-center 
hospital, the modeling sample size is small and there may be sampling 
errors; the types of surgical diseases are small, and the proportion of 
level IV surgeries is low; in addition, the accuracy of the estimation 
of intraoperative blood loss depends on the doctor’s experience, and 
the blood loss in the anesthesia record is often lower than the actual 

FIGURE 7

Model discrimination between training and test set.

FIGURE 8

Training set and test set model calibration curve.
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amount of blood loss. In addition, the intraoperative temperature in 
this paper is the temperature at the time of blood transfusion, which 
may not reflect the fluctuation of the patient’s temperature throughout 
the operation. To improve the accuracy of the model, first, to address 
potential sampling bias and improve generalizability, we will integrate 
additional intraoperative variables in future iterations of the model, 
including dynamic vital sign trends (e.g., hemodynamic fluctuations), 
advanced coagulation profiles (e.g., thromboelastometry), oxygen 
balance metrics (e.g., mixed venous oximetry), autologous blood 
recovery, and anticoagulant regimens. Second, to minimize 
geographic and institutional bias, we are collaborating with hospitals 
in different regions (Asia, Europe, and North America) and in 
different healthcare settings (tertiary centers, community hospitals) 
to compile a multicenter dataset that includes heterogeneous surgical 
populations, rare procedures, and underrepresented populations. 
Finally, we are designing a rigorous external validation framework to 
assess the model’s performance in different transfusion practices 
(restrictive vs. liberal strategies), surgical specialties (e.g., trauma, 
oncology), and resource-limited settings. This multi-stage effort will 
not only validate the model’s discriminatory power and calibration, 
but will also ensure its adaptation to global clinical workflows. We are 
committed to reporting these advances in subsequent publications, 
with the ultimate goal of providing a universally applicable tool for 
precision transfusion medicine.
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