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Background: Endoplasmic reticulum (ER) stress is recognized as a pivotal factor 
in the initiation and advancement of osteosarcoma; however, its implications for 
patient prognosis remain poorly understood.
Methods: Our objective was to elucidate the prognostic implications and 
immune infiltration patterns associated with endoplasmic reticulum (ER) stress 
in osteosarcoma patients through the synthesis of existing osteosarcoma 
datasets and the application of advanced bioinformatics methodologies.
Results: Our findings elucidate distinct and heterogeneous expression 
patterns of endoplasmic reticulum (ER) stress-related genes in osteosarcoma, 
contrasting sharply with those identified in osteocytes and mesenchymal 
stem cells. We developed a robust ER stress model comprising ten ER stress-
associated genes specifically tailored for osteosarcoma patients. This model 
was constructed utilizing univariate analysis and least absolute shrinkage and 
selection operator (LASSO) regression techniques. The predictive robustness 
and applicability of the model were ascertained through receiver operating 
characteristic (ROC) curve analysis and validation against external datasets. 
Notably, stratification based on the model demonstrated statistically significant 
correlations with patient survival outcomes. Furthermore, protein–protein 
interaction network analyses unveiled several pathways pertinent to tumor 
biology and immune responses. Intriguingly, the low-risk cohort exhibited 
enhanced immune infiltration, with the density of Th1 cell infiltration showing 
a positive correlation with increased patient risk, thereby highlighting its 
potential as a prognostic biomarker. Differential gene clustering analysis further 
underscored the critical role of ER stress models in prognostic predictions. 
Finally, our study identifies the IL4 signaling pathway is significantly associated 
with a good prognosis (p < 0.01), and may play a potential protective role for 
osteosarcoma, observed at the single-cell level by modulating macrophage 
polarization. The cause and effect relationship needs to be confirmed.
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Conclusion: Our findings suggest that evaluating endoplasmic reticulum stress 
levels and associated models in osteosarcoma patients could inform clinical 
interventions and enhance patient outcomes.
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1 Introduction

Osteosarcoma mainly originates at the end of the long bone such 
as the outer part of the femur, the proximal tibia, which accounts for 
about 5% of solid tumors in children, has a high metastatic potential, 
and the incidence of lung metastasis reaches 40%, which is one of the 
leading causes of cancer-related death in adolescents (1). This alarming 
statistic has galvanized extensive research efforts aimed at enhancing 
therapeutic strategies and improving patient prognoses (2, 3). 

Bioinformatics has emerged as a pivotal tool in these investigations, 
facilitating the analysis of miRNA, lncRNA, and circular RNA in 
osteosarcoma, alongside genome-wide analyses to pinpoint viable 
biomarkers for treatment (4–7). Additionally, investigations into 
immune cell infiltration within the osteosarcomatous 
microenvironment have aimed to elucidate their influence on disease 
outcomes and to delineate potential avenues for immune modulation 
(8, 9). Accumulating evidence indicates that factors such as cellular 
apoptosis, the tumor microenvironment (TME), competitive 
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Schematic diagram of the prognostic framework for dynamic integration of endoplasmic reticulum stress in osteosarcoma.
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endogenous RNA, and endoplasmic reticulum stress (ER stress) play 
integral roles in the pathogenesis and progression of osteosarcoma. 
However, the intricate relationship between ER stress and osteosarcoma 
remains insufficiently elucidated.

In the complex landscape of cancer evolution, the tumor 
microenvironment (TME) the TME exerts multifaceted metabolic 
stressors on infiltrating immune cells, encompassing acidosis, hypoxia, 
nutrient deprivation, and ER stress (10, 11). The endoplasmic 
reticulum (ER) is indispensable for maintaining cellular homeostasis 
and functionality, overseeing a myriad of fundamental processes. The 
onset of the ER stress response is instigated by the misfolding and 
accumulation of proteins in the ER lumen, coupled with the 
dysregulation of calcium balance. This cascade activates mechanisms 
such as the unfolded protein response, the ER overload response, and 
the caspase-12 mediated apoptosis pathway, which ultimately impede 
tumor progression by modulating the behavior of myeloid cells within 
the TME (12, 13). Moreover, the intrinsic ER stress response of 
malignant cells has been shown to significantly affect tumor evolution 
by influencing the functionality of concomitant immune cell 
populations (14). Notably, XBP1, a pivotal regulator of ER stress, has 
been associated with lipid metabolism in dendritic cells (DCs), 
subsequently inhibiting anti-tumor immune responses in T cells while 
facilitating tumor advancement (15). Recent breakthroughs in single-
cell RNA sequencing technologies have provided an enriched 
understanding of the heterogeneous and phenotypically diverse cell 
populations that populate the immune microenvironment (16).

Despite the recognized significance of ER stress in the framework 
of cancer pathogenesis, few studies have comprehensively explored its 
implications in osteosarcoma through bioinformatics-driven analysis. 
Consequently, the establishment of a robust model and the 
identification of predictive prognostic biomarkers related to ER stress 
in osteosarcoma emerge as critical endeavors, potentially offering 
reliable therapeutic targets to enhance patient outcomes.

In this study, we propose a novel model of ER stress and identify 
candidate genes associated with this pathway in the context of 
osteosarcoma. We systematically investigate the role of ER stress in the 
disease, culminating in the development of an innovative prognostic 
model that strives to uncover biomarkers for improved prognostication 
through bioinformatics. Additionally, our analysis incorporates 
aspects of immune cell infiltration. Intriguingly, at the single-cell level, 
the IL4 signaling pathway has been elucidated as conferring a 
favorable prognosis for osteosarcoma patients through both the 
developmental and progressive phases of the disease. This finding 
offers new insights into potential clinical interventions for patients 
grappling with osteosarcoma.

2 Methods

2.1 Data collection and endoplasmic 
reticulum-related gene acquisition

In order to investigate the biological characteristics of 
osteosarcoma, we  conducted data collection and endoplasmic 
reticulum (ER)-related gene acquisition. We  collected multiple 
transcriptome data related to osteosarcoma from various sources. 
Specifically, we  enrolled 88 patients with osteosarcoma from the 
therapeutically applicable research to generate effective treatments 

(TARGET) database (https://ocg.cancer.gov/programs/target) and 
screened two osteosarcoma transcriptome data acquisition numbers 
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) as 
GSE33383 and GSE21257. To examine the potential biological 
functions and characteristics of ER stress in patients with 
osteosarcoma, we collected 256 previously published ER stress-related 
genes (17). We conducted a thorough investigation of their potential 
associations with osteosarcoma.

2.2 Principal component analysis

The implementation of principal component analysis on ER stress 
genes in osteosarcoma patients was executed utilizing the “factoExtra” 
package in conjunction with R 4.1.0 software.

2.3 Consistent clustering

To explore the variance in expression levels of ER stress genes in 
patients with osteosarcoma, we  initially standardized Log2 (Gene 
Expression +1) using the transcriptome data of these patients. 
Subsequently, we  conducted a consensus clustering of ER genes, 
utilizing the unsupervised clustering algorithm incorporated within 
R 4.1.0 software’s “ConsensusClusterPlus” package (18).

2.4 Construction of ER stress prognosis 
model

Fifty genes that have been found to be  associated with the 
prognosis of patients suffering from osteosarcoma were carefully 
screened using univariate Cox regression. Subsequently, a 
comprehensive analysis was undertaken utilizing the least absolute 
shrinkage and selection operator (LASSO) algorithm to identify ten 
ER stress-related genes that were then used to establish a prognostic 
model for the disease. These ten genes comprise ADD1, CCL2, 
CCND1, STC2, FBXO6, TOR1A, PML, ATP6V0D1, MAP3K5, and 
MAGEA3. The ER stress-related scores were calculated through the 
utilization of the following formula: risk score = ∑ 
I  [Coefficient(mRNAi) × Expression(mRNAi)]. Based on the 
computed scores, patients were categorized into either high-risk or 
low-risk groups. The survival curve was established with the aid of the 
“survminer” of R 4.1.0 package while the time-dependent receiver 
operating characteristic curve (ROC) was created utilizing the 
“timeROC” package of R 4.1.0 software. The methodology employed 
to verify the set was identical to the one described above.

2.5 Protein network interaction and 
pathway enrichment analysis

Our screening process was conducted with exceptional rigor to 
identify molecules that exhibited a strong correlation (>0.7) with the 
model compounds. The resulting protein network interaction diagram 
was meticulously constructed using the software, Cytoscape 3.6.1. 
Furthermore, the prognostic potential of the identified proteins was 
comprehensively evaluated by leveraging sophisticated computational 

https://doi.org/10.3389/fmed.2025.1566387
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/


Wang et al.� 10.3389/fmed.2025.1566387

Frontiers in Medicine 04 frontiersin.org

techniques, such as GO and KEGG pathway enrichment analysis, 
which were executed using the “clusterProfiler” package in R 4.1.0.

2.6 Immunity correlation analysis

We employed rigorous data standardization methods to analyze 
transcriptome data from patients with osteosarcoma, with the 
objective of elucidating immune cell infiltration patterns. To achieve 
this, we utilized the “Xcell” package in R 4.1.0 software, which enabled 
the enrichment of 64 cells and matrix, immune, and microenvironment 
scores, including an array of immune cells (19). Furthermore, 
we conducted a comprehensive stratification analysis of ER stress.

2.7 Differential analysis and gene set 
enrichment analysis (GSEA)

We conducted an differential analysis of ER stress by comparing 
high and low-risk groups, and by setting stringent parameters of 
|logFC| > 2 and p < 0.05, we obtained 302 ER stratified prognostic 
genes that were crucial for determining the prognosis and survival of 
patients with osteosarcoma. Moreover, through consistent clustering 
methods, we were able to identify the significant pathways that these 
genes were involved in. To further elucidate their functions, 
we performed pathway enrichment analysis using the “clusterProfiler” 
package in R 4.1.0, which allowed us to identify the GO pathways that 
were enriched. Finally, we annotated the 302 genes using gene set 
variation analysis (GSVA), and through H.all.v7.4. Symbols.gmt, 
we obtained 25 hallmark pathways that were significantly enriched.

2.8 Single cell data analysis

Single-cell data were procured from the GEO database, yielding a 
total of 11 osteosarcoma samples with the GSE152048. 
We meticulously conducted preprocessing measures (nUMI > = 500) 
& (nGene > = 250) & (log10GenesPerUMI > 0.80) & 
(mitoRatio < 0.20), resulting in the screening of 128,259 cells. To 
eliminate batch effects, we standardized the 11 samples by “harmony” 
package of R 4.1.0 (Supplementary Figures S1A,B). Through 
T-Distributed Stochastic Neighbor Embedding (TSNE) dimension 
reduction, these cells were segregated into 45 subpopulations with a 
resolution of 0.8(Supplementary Figure S1C). Cell cycle states of 11 
samples were calculated by CellCycleScoring function 
(Supplementary Figure S1D). We  employed the R 4.1.0 package 
“SingleR” and consulted the “HumanPrimaryCellAtlasData” database 
to divide these subpopulations into 12 distinct cell types, namely, 
Endothelial cells:lymphatic: TNFa_48h, Epithelial cells:bronchial, 
Macrophage: Alveolar, Macrophage:monocyte−derived, 
Macrophage:monocyte−derived: M − CSF, Monocyte:leukotriene_
D4, MSC, NK cell, T cell: CD4 + _effector_memory, T cell: gamma−
delta, Tissue stem cells: BM MSC: BMP2, and Chondrocytes: 
MSC − derived. We  further segregated chondrocytes into high 
malignant and low malignant groups based on the expression of 9 
model genes, using the AddModuleScore function. Finally, 
we constructed a cell communication network between osteosarcoma 
cells and other cells using the R 4.1.0 package “CellChat.”

2.9 Other statistical methods

We employed rigorous statistical methods to analyze our data, 
including the wilcox test for two-group comparisons and the 
kruskal-wallis’s test for comparisons between three or more 
groups. Additionally, we utilized the log-rank test to assess the 
statistical differences in overall survival between groups, and the 
time-dependent ROC to validate the efficacy of our model. To 
determine whether stratification of ER stress was associated with 
other clinical factors, we utilized the chi-square test. Fisher’s exact 
probability test is used to examine whether there is a significant 
association between classifications in multiple groups. 
Furthermore, correlation analysis was conducted using the 
pearson correlation test. All p values were bilateral, with statistical 
significance defined as p < 0.05.

3 Results

3.1 Differential gene analysis of ER 
stress-related genes in osteosarcoma, 
osteoblasts, and mesenchymal stem cells

It has been unequivocally established that ER stress is a critical 
regulator of various precancerous characteristics and immune cell 
reprogramming, thereby playing a pivotal role in cancer 
progression. Delving deeper into this phenomenon, we conducted 
an analysis of 256 ER stress genes to determine their potential 
biological functions in osteosarcoma patients (17). Gene ontology 
enrichment analysis revealed that these genes primarily function in 
the ER stress pathway and other protein folding pathways, which 
are crucial for comprehending the impact of ER stress on cancer 
(Figure 1A). Principal component analysis of osteosarcoma data in 
GSE33383 indicated that ER stress-related genes could be segregated 
into three distinct subgroups in osteoblasts, mesenchymal stem 
cells, and osteosarcoma (Figure 1B), highlighting the heterogeneous 
nature of ER stress in osteosarcoma patients. This heterogeneity was 
further demonstrated through a heatmap depicting the differential 
expression of ER stress genes in osteosarcoma, osteoblasts, and 
mesenchymal stem cells (Figure 1C). Through the utilization of the 
TARGET database, we were able to partition the ER stress related 
genes in osteosarcoma patients into distinct clusters via the 
implementation of consistent clustering techniques. Based on our 
theoretical framework, it was deemed appropriate to separate the 
osteosarcoma patients into two distinct clusters, namely cluster 1 
and cluster 2, as delineated by the CDF and CDF curve 
(Figures  1D–F). Upon further examination of the heatmap in 
Figure 1G, it became apparent that the expression of ER stress genes 
in cluster 1 was significantly higher than in cluster 2. However, the 
survival analysis indicated no significant difference between cluster 
1 and cluster 2 (p = 0.22), signifying that mere classification of 
osteosarcoma patients through consistent clustering was insufficient 
to accurately predict prognosis (Figure 1H). Thus, further analysis 
of the patients’ endoplasmic reticulum stress genes was required. In 
summary, our findings underscore the pivotal role that endoplasmic 
reticulum stress plays in osteosarcoma, and highlight the need for 
a more comprehensive investigation into the prognosis of patients 
afflicted with this disease.
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FIGURE 1

(A) A bar plot depicting the results of GO enrichment analysis on a collection of 256 ER-associated genes revealed their active involvement in ER-
associated pathways. (B) The PCA plot of ER-associated genes revealed distinct variations in osteoblasts, mesenchymal stem cells, and high-grade 
osteosarcoma. (C) The heatmap demonstrated differential expression patterns of ER-associated genes in osteoblasts, mesenchymal stem cells, and 
high-grade osteosarcoma. (D) The delta area plot from consensus clustering analysis of ER-associated genes highlighted their significance in 
osteosarcoma. (E) The consensus consistent cumulative distribution function (CDF) plot from consensus clustering analysis of ER-associated genes 
provided further insight into their relevance in osteosarcoma. (F) The cluster heatmap resulting from consensus clustering analysis of ER-associated 
genes unveiled distinct patterns in osteosarcoma. (G) The heatmap displayed differential expression of ER-associated genes between cluster1 and 
cluster2 in osteosarcoma, with higher expression in cluster1. (H) The Kaplan–Meier curve illustrated the survival differences between cluster1 and 
cluster2 in osteosarcoma.

https://doi.org/10.3389/fmed.2025.1566387
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al.� 10.3389/fmed.2025.1566387

Frontiers in Medicine 06 frontiersin.org

3.2 Construction of ER stress prognostic 
model

In order to investigate the correlation between ER stress-related 
genes and the clinical outcome of osteosarcoma, a comprehensive 
analysis was conducted on 256 genes associated with endoplasmic 
reticulum stress, which were extracted and filtered from the 
osteosarcoma data in the TARGET public database. Subsequently, 50 
genes that were significantly associated with the prognosis of 
osteosarcoma in children were selected for further investigation using 
cox regression analysis. Among these genes, STC2 was identified as a 
critical risk factor with a risk value exceeding 1, whereas the remaining 
49 genes served as protective factors with risks below 1 (Figure 2A). 

To delve deeper into these genes, 10 ER stress-related molecules were 
identified using Lasso regression analysis, which included ADD1, 
CCL2, CCND1, STC2, FBXO6, TOR1A, PML, ATP6V0D1, MAP3K5, 
and MAGEA3. These molecules were used to construct a prognosis 
model (Figures 2B,C). The ER stress-osteosarcoma prognosis risk models 
were established as follows: ERS = ADD1*(−0.14) + CCL2*(−0.05)  
+ CCND1*(−0.03) + STC*(0.20) + FBXO6*(−0.03) + TOR1A*(−0.09) +  
PML*(−0.13) + ATP6V0D1*(−0.05) + MAP3K5*(−0.12) + MAGEA3* 
(−0.06). Based on the gene expression levels of each patient, the risk 
value of the patient was calculated to evaluate their prognosis, and the 
patients were classified into high-risk and low-risk groups accordingly. 
As the risk scores of in patients increased, their prognosis grew 
increasingly dire, with shorter survival time (Figures  2D,E). The 

FIGURE 2

(A) ER-associated genes with prognostic significance were identified based on univariate Cox proportional hazards regression with statistical 
significance (p < 0.05). (B,C) Minimum criteria were calculated using the LASSO regression method for feature selection. (D) The patients were stratified 
into high and low-risk groups based on the risk scores generated by the protective model. (E) The dot plot demonstrated a correlation between 
increasing risk scores and patient mortality, as well as shorter survival time. (F) The box plot shows the difference in survival duration between the high-
risk and low-risk groups. (G) The percentage chart shows the proportion of the number of survivors and deaths between the high-risk and low-risk 
groups. (H) The heatmap visualized the differential expression of protective model genes between the high and low-risk groups. (I) The Kaplan–Meier 
curve analysis of the training data from TARGET revealed significant differences in survival outcomes between the high and low-risk groups (p < 0.05). 
(J) The plot presented the 1-, 3-, and 5-year ROC curves of the risk model for the training data from TARGET, showing AUC values of 0.82, 0.89, and 
0.84, respectively. (K) The Kaplan–Meier curve analysis of the test data from GSE21257 confirmed the reliability of the risk model, demonstrating 
statistically significant differences in survival outcomes between the high and low-risk groups (p < 0.05). (L) The time-dependent ROC curve for the 
test data from GSE21257 further validated the predictive accuracy of the model, with AUC values of 0.62, 0.60, and 0.67 for 1, 3, and 5 years, 
respectively, indicating that the model performs well over time.
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results revealed that the low-risk group demonstrated markedly 
extended survival durations and a greater count of surviving 
individuals compared to the high-risk group (Figures 2F,G). This was 
demonstrated by a heatmap illustrating gene expression in the two 
patient groups (Figure  2H), as well as by a survival curve, which 
revealed that patients in the low-risk group had significantly 
(p < 0.001) better survival rates than those in the high-risk group 
(Figure 2I). To evaluate the model’s efficacy, we generated a time-
dependent ROC for osteosarcoma patients, which indicated good 
predictive value with areas under the ROC curve of 0.82, 0.89, and 
0.84  in 1, 3, and 5 years, respectively (Figure  2J). Subsequently, 
we assessed the model’s stability by analyzing another sequencing 
dataset of osteosarcoma patients (GSE21257), which confirmed that 
the model was reliable in both high and low-risk groups, as 
demonstrated by statistically significant survival curves in both groups 
(p < 0.05) (Figure 2K). The time-dependent ROC curve also revealed 
favorable results, with areas under the ROC curve reaching 0.62, 0.60, 
and 0.67 after 1, 3, and 5 years, respectively (Figure 2L). Altogether, 
this model effectively captures the prognostic characteristics of 
osteosarcoma patients, and may be used to guide clinical decision-
making and improve patient outcomes.

3.3 Model stratification for the clinical 
patient characteristics

The survival analysis revealed that the endoplasmic reticulum 
stress model demonstrated a remarkable predictive capacity in 
patients afflicted with osteosarcoma. Evidently, the stratification of the 
model was significantly associated with the clinical characteristics of 
osteosarcoma patients as demonstrated by the chi-square test 
(Figure  3A). Ten genes were filtered out from the model, and 
intriguingly, STC2 was highly expressed in the high-risk group, while 
the other nine genes were highly expressed in the low-risk group. 
Moreover, the stratification of the model was remarkably linked with 
cancer recurrence, survival status, human race, and ER 
cluster grouping.

Notably, Hispanic or Latino patients exhibited a higher prognosis-
risk score, while white patients had higher risk scores (Figures 3B,C). 
Furthermore, in concurrence with our previous analyses, higher risk 
scores were observed in recurrent and deceased patients, thereby 
affirming the model’s prognostic value to a certain degree 
(Figures 3D,E). However, the location of osteosarcoma lesions did not 
significantly impact patients’ prognosis (Figure 3F). It is noteworthy 
that the expression levels of ADD1, CCL2, CCND1, FBXO6, TOR1A, 
PML, ATP6V0D1, MAP3K5, and MAGEA3 were found to 
be significantly lower in the high-risk group while STC2 exhibited a 
considerably higher expression level in the same group, as evidenced 
by statistical analysis (Figure  3G). Furthermore, the expression 
patterns of 10 model genes demonstrated significant differences in the 
prognosis of osteosarcoma. Notably, high-grade osteosarcoma, 
osteoblasts, and mesenchymal stem cells displayed distinct expression 
profiles of model genes, except for FBXO6 and MAGEA3, the 
expression of the remaining eight genes was found to be downregulated 
in high-grade osteosarcoma (Figure 3H). The single gene prognostic 
analysis revealed that patients with high expression levels of ADD1, 
CCL2, CCND1, FBXO6, TOR1A, PML, ATP6V0D1, MAP3K5, and 
MAGEA3 exhibited a better prognosis, while those with low 

expression levels of these genes had a poorer prognosis (all the 
survival curves, p < 0.05) (Figure  3I). In contrast, osteosarcoma 
patients with high expression levels of STC2 demonstrated a worse 
prognosis (p < 0.05), which was consistent with our previous findings 
(Figure 3I). In conclusion, both the ER stress model and the single 
gene analysis are crucial in identifying biomarkers for osteosarcoma 
and providing important guidance in clinical decision making.

3.4 Protein–protein interaction (PPI) and 
pathway analysis of model genes

To investigate the potential function of the model genes’ protein, 
we utilized the STRING database to construct a protein interaction 
network (Figure 4A). Only those model gene proteins with a high 
interaction relationship (above 0.7) were selected to construct the 
potential function map, which highlighted the model genes’ pivotal 
position in the network. Impressively, a total of 89 proteins were found 
to have a relatively high interaction relationship with the model genes, 
providing a more comprehensive view of the model gene proteins’ 
network. Moreover, by performing GO analysis, we discovered that 
the proteins related to the model genes were involved in various 
pathways, such as cellular response to biotic stimulus, cellular response 
to lipopolysaccharide, cellular response to molecule of bacterial 
origin, negative regulation of G1/S transition of mitotic cell cycle, pH 
reduction, response to endoplasmic reticulum stress, transferrin 
transport, and response to lipopolysaccharide (Figures  4B,C). 
Moreover, through the implementation of KEGG pathway enrichment 
analysis, we have discovered that the genes in question are intricately 
involved in numerous pathways that are closely linked to cancer, such 
as viral carcinogenesis, transcriptional misregulation in cancer, and 
microRNAs in cancer, to name a few. Additionally, these genes are also 
associated with a number of immune-related pathways, including 
cytokine-cytokine receptor interaction and TGF-beta signaling 
pathway, as well as the differentiation of osteoclasts. Notably, these 
findings suggest that the molecules in our model exert a multifaceted 
impact on osteosarcoma, influencing critical processes such as 
endoplasmic reticulum stress, immunity, cancer, and osteoclast 
differentiation, among others (Figure 4D).

3.5 Relationship between model 
stratification and immune infiltration

Previous analysis has revealed a possible correlation between ER 
stress and immune function. To further investigate this connection, 
the xCell algorithm was utilized to calculate the level of immune cell 
infiltration in osteosarcoma patients. The resulting Heatmap provided 
a comprehensive summary of 64 cell types and a detailed overview of 
immunity, matrix, and the immune microenvironment (Figure 5A). 
Interestingly, certain cells were significantly overexpressed in the 
low-risk group. Within the innate immune cells, classical dendritic 
cells (cDC), immature dendritic cells (iDC), plasmacytoid dendritic 
cell (pDC), DC, Basophils, Eosinophils, Mast cells, Neutrophils, and 
natural killer T (NKT) cells were all found to be higher in the low-risk 
group (p < 0.05) (Figure  5B). Furthermore, within the adaptive 
immune cells, CD8 + naive T cells, CD4 + effector memory T cells 
(Tem), pro B cells, B cells, memory B cells, plasma cells, and regulatory 
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cells (Tregs) were also more abundant in the low-risk group (p < 0.05), 
while the number of helper T cell (Th) 1 cells was higher in the high-
risk group (Figure 5C). Studies have shown that in various types of 
cancer, including non-small cell lung cancer, rectal cancer, gastric 
cancer, and osteosarcoma, the deviation ratio of Th1/Th2 cells is 
positively correlated with the degree of tumor malignancy (20). Thus, 
the high expression of Th1 cells could potentially serve as an indicator 
of poor prognosis in osteosarcoma patients. Additionally, endothelial 
cells were found to be  more infiltrated in the high-risk group 
(Figure 5D). The low-risk group of osteosarcoma patients exhibited a 
substantially elevated immune score and immune microenvironment 
score, in contrast to their high-risk counterparts, while no notable 
variance was detected in the matrix score (Figure 5E). To elaborate, 
the findings indicate that patients in the low-risk group demonstrated 
a more robust immune response, both innate and adaptive, which can 
serve as a valuable guide in the treatment of osteosarcoma patients. 
The study further conducted a correlation analysis between the model 
score and cells, specifically showcasing the heatmap of cell types 
exhibiting a correlation greater than 0.3. Interestingly, these cells 
demonstrated a negative correlation with other cells except for Th1 
cells (Figure 5F). The model score was negatively correlated with the 
immune score and immune microenvironment score, and the 
correlation coefficients were statistically significant (−0.44 and −0.34, 
respectively) (Figures  5G,H). However, the correlation analysis 
between model scores and matrix scores did not exhibit statistical 
significance (Figure 5I). To summarize, the study underscores the 
close relationship between immune cells and the prognosis of 
osteosarcoma patients, with various immune cells exhibiting a 
negative correlation. Th1 cells also emerge as a promising biomarker 
for predicting the risk and prognosis of osteosarcoma patients.

3.6 Distinctive attributes of cohorts at high 
and low risk

Based on our previous analysis, discernable disparities were 
detected in the clinical prognoses and immune spectra of 
osteosarcoma patients categorized into the high-risk and low-risk 
groups. To elucidate the specific biological effects, differential analysis 
was employed to isolate the differential genes between the high-risk 
and low-risk groups, from which 291 genes were observed to be down-
regulated and 11 genes were up-regulated (Figure  6A). Further 
investigation via GO analysis revealed that the pathways implicated in 
the high-risk group encompassed the negative regulation of bone 
morphogenetic protein and estrogen response, large conductance 
calcium activates potassium channels and negatively regulates 
membrane receptors, thus influencing bone metabolism and the 
potential risk of osteoporosis (Figure 6B). In contrast, in the low-risk 
group, the pathways involved were complex activation, classical 
pathway, human immune response mediated, complex activation, 
immunoglobulin mediated immune response, B cell-mediated 
immunity, human immune response, lymphocyte-mediated 
immunity, and regulation of complex activation (Figure 6C). Hence, 
it can be deduced that patients categorized as low-risk exhibited a 
more robust immune response, which is in coherence with our 
previous analysis. Further, these differential genes were bifurcated into 
two clusters, i.e., cluster 1 and cluster 2, through cluster analysis 
(Figure 6D). Remarkably, the subtypes of these differential genes were 
found to be  intricately linked with the survival and prognosis of 

osteosarcoma patients, with a statistically significant survival curve 
(p < 0.05), where patients belonging to cluster 1 showed a better 
prognosis (Figures  6E,F). By conducting GSVA analysis of these 
differential genes, we observed that these genes were enriched into 25 
pathways. Additionally, the heatmap depicted the enrichment score of 
each patient (Figure 6G). Notably, we detected variations in estrogen 
response and ultraviolet response in the high-risk group, and the 
response in the high-risk group was more pronounced (Figure 6H).

3.7 The IL4 signaling pathway presents a 
promising protective mechanism for 
patients with osteosarcoma

We delved into the pathway characteristics of the high and low 
risk cohorts at a single-cell resolution. We have conducted an analysis 
of single-cell transcriptome samples obtained from 11 osteosarcoma 
patients, which were further annotated with a total of 12 distinct cell 
types through the use of a comprehensive database (Figure  7A). 
Chondrocytes exhibited high expression of genes including COL11A1, 
HAPLN1, FGFBP2, COL2A1, SFRP2, S100A1, SPP1, SOX9 and 
ACAN. Endothelial cells demonstrated elevated levels of PECAM1 
and VWF. Epithelial cells displayed marked expression of EPCAM and 
KRT19. Monocytes and macrophages were characterized by high 
levels of CD68, CD163 and CD14. T cells showed significant 
expression of CD3D and CD3E while NK cells exhibited heightened 
levels of NKG7, GNLY, CD247, CCL3, and GZMB (Figure 7B). The 
chosen model genes were found to be expressed across all 12 cell 
types, with a particularly high expression in macrophages (Figure 7C). 
We then categorized osteosarcoma cells into two groups based on the 
expression of these ten model genes: those with low malignancy 
showed significant expression of ADD1, CCL2, FBXO6, TOR1A, 
PML, ATP6V0D1, MAP3K5 and MAGEA3; while those with high 
malignancy exhibited elevated levels of STC2. This finding was 
consistent with our comprehensive analysis at the bulk transcriptome 
level (Figure 7D). Through ligand-receptor interaction analysis with 
T cells in both high and low malignant populations, it was observed 
that the receptor-ligand pairs of IL4 − IL4R, IL4 − (IL4R + IL13RA2), 
and IL4 − (IL4R + IL13RA1) were more highly expressed in the low 
malignant chondrocyte population (Figure  7E). Furthermore, the 
receptor ligand pairs of IL4 − IL4R, IL4 − (IL4R + IL13RA2), and 
IL4 − (IL4R + IL13RA1) were significantly elevated in macrophage 
interactions within the low-malignant chondrocyte population, while 
such properties were not observed in the high-malignant chondrocyte 
population (Figure 7F). The analysis of the IL4 signaling pathway 
revealed that the interaction within this pathway in low malignant 
subsets of macrophages significantly distinguished them from high 
malignant subsets, particularly Macrophages monocyte-derived: 
M-CSF (Figures 7G,H). The aforementioned findings suggest that IL4 
signaling may have a protective effect in osteosarcoma patients and 
could serve as a potential biomarker with favorable 
prognostic characteristics.

4 Discussion

The incidence rate of osteosarcoma is alarmingly noted at 3.4 per 
million individuals, with its high-grade malignancy resulting in a 
dismal prognosis (21, 22). The etiology of this aggressive cancer is 
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multifaceted, encompassing a variety of factors, including competitive 
endogenous RNA and endoplasmic reticulum (ER) stress, as well as 
associated cellular elements. Furthermore, osteosarcoma is 
characterized by striking genomic alterations and marked 

heterogeneity, which complicate treatment regimens (23, 24). 
Presently, standard therapeutic approaches—including surgical 
intervention and chemotherapy—fall short in improving patient 
outcomes (1, 25). This underscores an urgent need for the discovery 

FIGURE 3

(A) The heatmap illustrated the expression patterns of prognostic genes in both high and low-risk groups of osteosarcomas, while the abscissa was 
additionally annotated with metastatic state, status, relapse, ethnicity, race, gender, ER-clusters, and risk group. Statistical significance was determined 
using the chi-square test (*<0.05; ** < 0.01; *** < 0.001). (B–E) The violin plot exhibited the disparity in risk scores among osteosarcoma patients based 
on their ethnicity, race, relapse, and status. (F) The violin plot revealed no significant difference in risk scores for primary tumor sites, including arm/
hand, leg/foot, and pelvis. (G) The box plot showed the expressing differences in the 10 model genes between the high and low risk groups (ns, no 
significance; *<0.05; ** < 0.01; *** < 0.001;**** < 0.0001). (H) The box plot showed the differences in expression of 10 model genes in osteoblasts, 
mesenchymal stem cells, and high-grade osteosarcoma (ns, no significance; *<0.05; ** < 0.01; *** < 0.001;**** < 0.0001). (I) The Kaplan–Meier curve 
of the protective model’s prognostic genes, encompassing ADD1, CCL2, CCND1, STC2, FBXO6, TOR1A, PML, ATP6V0D1, MAP3K5, and MAGEA3, 
demonstrated significant difference between high and low-risk groups (p < 0.05).
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of novel and effective biomarkers, as well as innovative treatment 
strategies tailored to this challenging malignancy.

In light of the emergence of publicly available databases, 
we undertook this study employing bioinformatics methodologies. 

While previous bioinformatics research on osteosarcoma has 
predominantly concentrated on miRNA, lncRNA, and circRNA, the 
role of ER stress biomarkers has received comparatively limited 
investigation and thus warrants thorough exploration. The 

FIGURE 4

(A) The protein–protein network interactions of the 10 model genes were depicted in the visualization, with the 10 model genes highlighted in yellow. 
The size of the circles and thickness of the lines were indicative of the combined scores. (B,C) The plot illustrated that 89 proteins were linked to 
pathways via GO enrichment annotations. (D) The dot plot demonstrated the association between the 89 proteins and pathways through annotations 
of KEGG enrichment.
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endoplasmic reticulum plays a pivotal role in the critical processes of 
protein handling, modification, and folding, fundamentally 
influencing cellular function, survival, and apoptosis (26). Within the 
tumor microenvironment, ER homeostasis is frequently disrupted, 
with such ER stress emerging as a significant contributor to cancer 
progression (27). Several studies have elucidated the critical 

involvement of ER stress in osteosarcoma through diverse molecular 
pathways (28–30). Overactivation of ER stress in high-risk groups 
may inhibit the infiltration of disease-free cells through the PERK / 
eIF2a pathway (28), Moderate ER stress in the low-risk group 
promoted epidemic free response through activation of the NF-kB 
pathway (29). Recognizing the importance of ER stress in 

FIGURE 5

(A) The heatmap showcased the immune cell infiltration in osteosarcoma patients categorized into high and low-risk groups, displaying a higher 
infiltration of immune cells in the low-risk group. (B–D) The boxplot revealed distinct differences in innate, acquired immune cells, and other cells 
between the high and low-risk groups in osteosarcoma patients. (E) The boxplot exhibited contrasting immune, stromal, and microenvironment scores 
between the high and low-risk groups in osteosarcoma patients. (F) The correlation heatmap divulged a statistically significant association between the 
risk scores and other cells (|r| > 0.3). (G–I) The correlation plot demonstrated a significant association between the risk score and immune score and 
microenvironment score, while no correlation was observed with the stroma score.
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osteosarcoma progression, we delved into its functional implications 
and identified potential biomarkers.

Osteosarcoma is marked by the presence of osteoblastic 
mesenchymal stem cells, which give rise to osteoblasts, chondrocytes, 
and adipocytes (31, 32). Extensive research suggests that the 
pathogenesis of osteosarcoma may result from significant genetic 
alterations that impair the differentiation of osteoblasts from 
mesenchymal stem cells (33). Thus, our study highlights the potential 
roles of osteoblasts and mesenchymal stem cells in this disease.

In this investigation, we selected a cohort of 256 ER stress-related 
genes based on prior studies in gliomas, given the parallel functions 
of ER stress across various cancer types. Although 256 ER stress genes 
originated from glioma studies, their core functions (such as unfolded 
protein response and calcium homeostasis regulation) are highly 
conserved in nucleocytes. This study confirmed through the GO 
enrichment pathway that these genes present significantly different 
expression patterns in osteosarcoma than osteocytes, and that 10 

genes (such as CCL2, STC2) after LASSO screening have been shown 
to be  directly related to osteosarcomas progression (30, 34), 
demonstrating their applicability. A comprehensive analysis of the 
biological functions and gene ontology enrichment of these genes 
revealed a consistent association between ER stress and osteosarcoma. 
Moreover, considering the intricate relationship between 
osteosarcoma, osteoblasts, and mesenchymal stem cells, principal 
component analysis demonstrated clear evidence of heterogeneity 
among these cell types, corroborating previous findings on the 
characteristics of osteosarcoma.

To elucidate the role of ER stress genes in the progression of 
osteosarcoma, we  stratified patients into two distinct groups, 
consistent with classical methodologies. However, our analysis 
returned no significant differences between the groups. 
Consequently, we developed a novel prognostic risk model for 
osteosarcoma using Cox and LASSO regression. This model 
effectively stratified patients into high-risk and low-risk 

FIGURE 6

(A) The volcano plot visually depicted the differential expression of genes between high-risk and low-risk osteosarcoma groups, with upregulation 
illustrated by red and downregulation by green. (B,C) The GO enrichment analysis of upregulated genes in high-risk and low-risk groups was presented 
in a bar plot. (D) The cluster heatmap showed that different genes of high and low-risk was divided into two clusters. (E) By means of a boxplot, it was 
revealed that cluster B exhibited higher risk scores in comparison to cluster A. (F) The prognostic value of cluster A and cluster B was demonstrated in 
osteosarcoma patients through a Kaplan–Meier curve (p < 0.05). (G) The GSVA enrichment was used to generate a heatmap depicting pathway 
enrichment scores in high-risk and low-risk groups. (H) A boxplot was employed to display the higher enrichment levels of estrogen response late and 
UV response up in the high-risk group.
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categories. The robustness of our prognostic model was further 
validated through time-dependent ROC analysis and confirmation 
using the GSE21257 dataset, demonstrating its utility in predicting 
patient outcomes and offering valuable clinical insights. The low 
AUC value in the GSE21257 validation set (0.62 at 1 year) may 
be related to sample heterogeneity, but the significant difference 
in the K-M curve (p = 0.023) still confirms the clinical value of the 
model. In the future, model performance can be optimized by 
integrating methylation data.

Furthermore, we identified ten model genes (STC2, ADD1, 
CCL2, CCND1, FBXO6, TOR1A, PML, ATP6V0D1, MAP3K5, 
and MAGEA3) associated with prognosis, thus providing a 
roadmap for filtering potential biomarkers in osteosarcoma. 
STC2 as a risk factor (coefficient 0.20) in this model is consistent 
with the reports of “high expression of STC2 for poor prognosis 
of osteosarcoma” reported by Stefanidou et  al. (35), further 
supporting its reliability as a core marker. At the same time, the 

differences between these studies (35, 36) and this model in 
analytical methods (such as multi-gene integration vs. single-
gene analysis) were supplemented, highlighting the innovation of 
this study. To further investigate the interactions of these genes, 
we constructed a protein–protein interaction network, revealing 
that these model genes occupy central positions within a network 
of 89 interacting proteins.

It is widely recognized that the immune system plays a critical 
role in the progression of osteosarcoma (37, 38). Notably, our 
findings indicated elevated levels of various innate and adaptive 
immune cell types, including cDCs, iDCs, pDCs, DCs, basophils, 
eosinophils, mast cells, neutrophils, NKT cells, CD8 + naïve T 
cells, CD4 + Tem cells, pro-B cells, B cells, memory B cells, 
plasma cells, and Tregs. A prior study suggested that modulation 
of immune checkpoint pathways could represent a viable 
therapeutic strategy for osteosarcoma (34). Among the innate 
immune cells, NKT cells demonstrated cytotoxic effects against 

FIGURE 7

(A) Annotated TSNE plots depicting 12 distinct cell types. (B) Dot plots illustrate the average expression levels of marker genes across various cell types. 
(C) Dot plots display the average expression levels of 10 model genes across distinct cell types. (D) Dot plots demonstrate the average expression levels 
of 10 model genes in low and high malignant chondrocytes. (E) Dot plots depict the interaction of receptor and ligand pairs between low-malignant 
and high-malignant chondrocytes with T cells. (F) Dot plots showcase the interaction of receptor and ligand pairs between low-malignant and high-
malignant chondrocytes with macrophages, monocytes, NK, and T cells. (G) Circular diagrams visually represent the interactions between low and 
high-malignant chondrocyte populations and other cell types. (H) Heatmaps effectively demonstrate the interactions between low and high-malignant 
chondrocyte populations and other cell types.
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tumor cells, enhancing therapeutic efficacy and influencing the 
prognosis of osteosarcoma patients (39). Conversely, Th1 
responses displayed a differential effect in our study, aligning 
with existing literature (40, 41). Collectively, Th1 cells may serve 
as potential biomarkers for osteosarcoma and the association of 
high Th1 cell infiltration with poor prognosis may be related to 
the expression of PD-L1 induced by the secretion of IFN-γ by 
Th1 cells in the osteosarcoma microenvironment. In this study, 
we  explored the complex interplay between ER stress and 
osteosarcoma through the construction of an ER stress risk 
prognostic model, uncovering viable biomarkers that could 
improve prognostication in osteosarcoma patients.

We undertook a comprehensive annotation of single-cell types 
within the osteosarcoma database, revealing widespread expression 
of our ten model genes across all cell types. Additionally, our 
examination of chondrocytes at the single-cell level, categorized by 
varying malignant degrees, supported our bulk-level findings and 
highlighted the integral role of the IL4 signaling pathway in the 
immune response to osteosarcoma. Specifically, we identified key 
receptor-ligand interactions among IL4-IL4R, IL4-(IL4R + IL13RA2), 
and IL4-(IL4R + IL13RA1), mediating interactions between lower-
malignancy chondrocyte subsets and T cells/macrophages. Notably, 
IL4 has been implicated in promoting the proliferation and migration 
of cancer cells across various malignancies (42–45). Conversely, the 
JAK2/STAT6 signaling pathway has been associated with inhibiting 
cancer cell proliferation, invasion, and metastasis (46). Consequently, 
the IL4 signaling pathway emerges as a promising biomarker for 
forecasting patient outcomes and guiding clinical management and 
early intervention in osteosarcoma. Future validation of the precise 
roles of the IL4 signaling pathway in osteosarcoma patients will 
necessitate extensive prospective clinical studies and fundamental 
experimental investigations.

This study has the following limitations: (1) small sample size 
(TARGET cohort n = 88) may affect the stability of the model, which 
requires large sample validation at multiple centers; (2) Depends on 
transcriptome data and does not involve protein level validation; (3) 
Public databases lack detailed clinical treatment information and 
cannot exclude interference of treatment regimens with prognosis; (4) 
The specific mechanism of IL4 pathway needs to be further elucidated 
in vitro functional experiments.

In conclusion, this study revealed the crucial role of endoplasmic 
reticulum stress in the progression of osteosarcoma, and established a 
prognostic risk model based on this mechanism, providing an 
innovative perspective for the discovery of new biomarkers and 
personalized treatment.
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SUPPLEMENTARY FIGURE S1

(A, B) The tsne plots illustrate the distribution of 11 osteosarcoma samples 
before and after the removal of batch effects. (B) At a resolution of 0.8, the tsne 
plots depict the partitioning of osteosarcoma patients’ cells into 45 subgroups. 
(D) The scale plots provide a graphical representation of the relative distribution 
of cell cycles among the 11 osteosarcoma patients.
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