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Objectives: Computed tomography (CT) imaging of parotid pleomorphic

adenoma (PA) has been widely reported, nonetheless few reports have estimated

the capsule characteristics of PA at length. This study aimed to establish and

validate CT-based intratumoral and peritumoral radiomics models to clarify the

characteristics between parotid PA with and without complete capsule.

Methods: In total, data of 129 patients with PA were randomly assigned

to a training and test set at a ratio of 7:3. Quantitative radiomics features

of the intratumoral and peritumoral regions of 2 mm and 5 mm on CT

images were extracted, and radiomics models of Tumor, External2, External5,

Tumor+ External2, and Tumor+External5 were constructed and used to train six

different machine learning algorithms. Meanwhile, the prediction performances

of different radiomics models (Tumor, External2, External5, Tumor+External2,

Tumor+External5) based on single phase (plain, arterial, and venous phase) and

multiphase (three-phase combination) were compared. The receiver operating

characteristic (ROC) curve analysis and the area under the curve (AUC) were

used to evaluate the prediction performance of each model.

Results: Among all the established machine learning prediction radiomics

models, the model based on a three-phase combination had better prediction

performance, and the model using a combination of intratumoral and

peritumoral radiomics features achieved a higher AUC than the model with

only intratumoral or peritumoral radiomics features, and the Tumor+External2

model based on LR was the optimal model, the AUC of the test set was 0.817

(95% CI = 0.712, 0.847), and its prediction performance was significantly higher

(p < 0.05, DeLong’s test) than that with the Tumor model based on LDA (AUC of

0.772), the External2 model based on LR (AUC of 0.751), and the External5 model

based on SVM (AUC of 0.667). And the Tumor+External2 model based on LR had

a higher AUC than the Tumor+External5 model based on LDA (AUC = 0.817 vs.

0.796), but no statistically significant difference (P = 0.667).
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Conclusion: The intratumoral and peritumoral radiomics model based on

multiphasic CT images could accurately predict capsular characteristics of

parotid of PA preoperatively, which may help in making treatment strategies

before surgery, as well as avoid intraoperative tumor spillage and residuals.

KEYWORDS

pleomorphic adenomas, radiomics, machine learning, capsular, computed tomography

1 Introduction

Pleomorphic adenoma (PA) is the most prevalent benign tumor
of the parotid neoplasm, accounting for approximately 66.7% of
all parotid tumors (1, 2). Although these slow-growing tumors
are often considered low-risk, PAs still have a relatively high
risk of malignant transformation and recurrence (1). Previous
studies showed that capsular characteristics and surgical approach
are the most likely reasons for recurrence (3, 4). The capsule
characteristics refer to the appearance of the outer layer or
capsule surrounding pleomorphic adenoma of the parotid gland.
A well-defined capsule is necessary before surgery as it helps
complete tumor removal during surgery, decreasing the rate of
recurrence. Thus, accurate preoperative assessment of the capsular
characteristics of parotid pleomorphic adenoma is essential for
evaluating treatment decisions.

However, there is still no non-invasive, clinically applicable
approach for preoperative assessment of capsular characteristics.
Fine-needle aspiration cytology (FNAC) can not assess the capsular
characteristics. Moreover, preoperative imaging for pleomorphic
adenoma of the parotid glands includes ultrasound (US), computed
tomography (CT) and magnetic resonance imaging (MRI). Due
to US examination being easily affected by the adjacent bone and
tumor location, its diagnostic efficacy is limited, so CT and MRI
examinations are widely used in clinical practice (5, 6). Previous
research has shown computed tomography (CT) imaging features
and the histopathology of PAs were poor consistency, even by
experienced radiologists to assess the capsular characteristics of PAs
(7). And some studies have referred to the capsule of pleomorphic
adenomas on MR imaging (8, 9), and indicated that a capsule
completely surrounding the tumor has a high positive predictive
value for the diagnosis of pleomorphic adenoma (8). However,
in cases of pleomorphic adenomas with incomplete capsules, the
margin of the lesion is unclear, which may lead to misdiagnosis.
Therefore, there is an urgent need to develop more efficient and
non-invasive assessments to aid in the preoperative evaluation of
the capsular characteristics of parotid PAs.

Radiomics is a relatively new concept that analyzes and extracts
quantitative data from medical images, which introduces a new
way to mine valuable information contained in the images (10–
12). And the feasibility of radiomics as a non-invasive approach has
been demonstrated by its wide application in the early differential
diagnosis and prognosis evaluation in multiple solid tumors (13,
14). Recently, due to its excellent performance in oncological
applications, radiomics has been applied in preoperative identifying
different pathological types of parotid tumors. However, those

previous radiomics studies mainly focused on the primary tumor
area alone (15–18), whereas little was known about the role
of peritumoral radiomics features, which were likely to provide
valuable but easily overlooked information about parotid tumors.

In this context, we hypothesized that peritumoral radiomics
features may offer useful information for the possible infiltration
of tumor toward normal tissue, which would be helpful for clinical
decision. Thus, we aimed to explore the potential of radiomic
features of the intratumoral and peritumoral radiomics features
on CT images to preoperative predict the capsular characteristics
of the parotid PA.

2 Materials and methods

2.1 Patients

This retrospective study was approved by the ethics committees
of our hospital (approval number: K2023-414). The requirement
for informed consent was waived owing to the retrospective nature
of the study. The data of 129 patients with PA who underwent
parotid surgery in our hospital from January 2014 to January
2023 were included in the Study. The inclusion criteria were
as follows: (1) they were diagnosed with PA through surgical
pathology; (2) they underwent plain CT and two-phase enhanced
scans before receiving any treatment; (3) patients with primary PA.
The exclusion criteria were as follows: (1) they were diagnosed with
carcinoma ex PA; (2) images with severe noise or evident artifacts
on CT images; (3) patients had previous parotid gland surgery.
Figure 1 illustrates the workflow of our study.

2.2 The reference standard for capsular
characteristics

The study divided patients into two groups: a complete capsule
group and a incomplete capsule group. The incomplete capsule
group included those patients with PAs who displayed any of the
following capsular characteristics (19):

¬ “incomplete capsule” indicates partial absence of the
encapsulation;

 “pseudopodia” indicates tumor nodules are separated by
fibrous tissue but remain in contact with the main tumor
capsule;
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FIGURE 1

Flowchart for selecting the study population.

® “capsule invasion” means that tumor tissue infiltration not
separated from the main tumor mass;

¯ “satellite nodules” indicates nodules separated from the
main tumor by fat tissue or salivary gland, and they located
adjacent to the main tumor mass but not connected to it.

All patients in this study underwent complete tumor resection.
For the PA patients in the complete capsule group, the diagnosis
was based on surgical and pathological reports. They were assigned
to this group when the surgeon verified that they had well-
defined borders, and the pathologist verified the integrity of
the capsule. For patients in the incomplete capsule group, the
diagnosis was made based on postoperative pathological results,
which included the evaluation of its completeness as well as other
capsular characteristics such as satellite nodules, pseudopodia, and
capsule invasion.

2.3 Image acquisition

Using multi-slice spiral CT equipment, each patient underwent
multi-phase scanning, including plain scanning phase, arterial
scanning phase, and venous scanning phase. The CT images were
stored in the Digital Imaging and Communications in Medicine
(DICOM) format. The acquisition parameters of the above different
devices are introduced in detail in Supplementary Table 1.

2.4 Image segmentation

The CT images of those patients were stored in DICOM
format using standard soft tissue settings: window width of 400

HU and window level of 40 HU. Blinded to the histopathological
results of the patients, two radiologists (with 3 and 5 years
of clinical diagnostic experience) used the ITK-SNAP software
(version 3.8.01) to segment the region of interest (ROI) manually.
The tumors were delineated along the margins layer-by-layer on
axial multi-phase CT images, eliminating the vessels, bone, and
normal adjacent tissue. When multiple lesions were found in the
parotid gland, the largest lesion with a confirmed pathology was
selected for analysis. The intra- and inter-observer reproducibility
were evaluated by the intraclass correlation coefficient (ICC). The
segmentation was executed independently by radiologist-A and
radiologist-B during the same period to evaluate inter-observer
agreement of extracted radiomics features. Radiologist-A then
repeated the same case procedure 1 month later, and an ICC greater
than 0.75 indicated good consistency.

After manual tumor segmentation, 2 mm and 5 mm
peritumoral regions were automatically segmented using Python
(version 3.7.122) (Figure 2). Next, the bone and air were filtered
from the delineation by setting the maximum (400 HU) and
minimum (–200 HU) thresholds, and the final ROI border
(peritumoral regions) was manually adjusted (20, 21).

2.5 Radiomics feature extraction and
selection

PyRadiomics in Python was used for feature extraction. In
order to reduce the impact of different scanning devices, all CT

1 http://www.itksnap.org/

2 http://www.python.org
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FIGURE 2

Contrast-enhanced computed tomography (CT) image from a pleomorphic adenoma patient, highlighted regions represent the primary tumor (a)
and peritumoral region of 2 mm (b) and 5 mm (c).

images were resampled to a voxel spacing of 1 × 1 × 1 mm3,
and standardization and resampling techniques were applied
to preprocess the images and data to ensure the consistency
of the CT images between patients. Feature extraction was
conducted from five different ROIs—Tumor, External2, External5,
Tumor+External2, and Tumor+External5— for each patient using
the PyRadiomics Radiomics Feature Extractor toolbox. Each
segmented region obtained 1,288 radiomic features, including the
first-order (252), gray-level co-occurrence matrix (308), gray-level
run-length matrix (224), and gray-level size zone matrix (224),
gray-level dependence matrix (196) and neighboring gray-tone
difference matrix (70). These algorithms for obtaining radiomics
features were referenced from the image biomarker standardization
initiative (IBSI) (22).

The radiomics features dimensionality reduction and selection
in the training set were as follows: firstly, analysis of variance
(ANOVA) was performed on the extracted features to select
statistically significant features with ICC scores > 0.9. Secondly,
We decreased the dimensionality of the feature space by assessing
the similarity of each feature pair and removing one of the features
if the Pearson correlation coefficient (PCC) value was higher
than 0.95. Ultimately, features with non-zero coefficients were
selected using the least absolute shrinkage and selection operator
(LASSO) regression model with 10-fold cross-validation, which was
described in Supplementary Appendix 1.

2.6 Model construction and evaluation

Based on the radiomics features extracted from the plain
scan, arterial and venous phase CT images, our study built and
validated six machine learning algorithms, including support
vector machine (SVM), logistic regression (LR), extreme gradient
boosting (XGBoost), linear discriminant analysis (LDA), random
forest (RF) and decision tree (DT). For each region (Tumor,
External2, External5, Tumor+External2, and Tumor+External5),
by combining each machine learning algorithm with 15
different feature sets, 90 models were established. And 10-
fold cross-validation on the training set was used to identify the
hyperparameters of each model.

We evaluated the diagnostic performance of those models
by comparing the area under the curve (AUC) of the receiver
operating characteristic curve (ROC), accuracy, positive prediction
value (PPV), sensitivity, specificity, and negative prediction
value (NPV). Then, the best radiomics model and scanning
phase were obtained.

2.7 Statistical analysis

All statistical analyses were performed using PyRadiomics in
Python (version 3.7.12; see text footnote 2), and SPSS (version
26.0; IBM, Armonk, NY, United States) software. Comparisons
between sets were performed using the Student’s t-test or the
Mann–Whitney U test for continuous variables and the χ2 or Fisher
exact test for categorical variables. Besides, the “sklearn” packages
were used for plotting the curves of the ROC. Two-sided p < 0.05
was deemed statistically significant for all statistical tests.

3 Results

3.1 The population and radiological
features of patients

The details of the patient’s clinical and radiological
characteristics are shown in Table 1. No significant statistical
differences in characteristics were found between the training
and test sets in terms of sex, age, smoking, drinking, symptom,
shape, margin, density, cystic areas, enhanced uniformity, except
for the max diameter, whose p-value in the test set were < 0.05.
Furthermore, univariate and multivariate logistic regression were
used to select the independent clinical predictors of patients,
however, we found no significant clinical predictors in this study.

3.2 Radiomic signature models and
performances

A total of 1,288 radiomics features were extracted from
each region; therefore, 6,440 radiomics features were extracted
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TABLE 1 Clinical and computed tomography (CT) morphological characteristics of patients in the training and test sets.

Variables Training set (n = 90) Test set (n = 39)

PA with
complete
capsule
(n = 43)

PA without
complete
capsule
(n = 47)

P PA with
complete
capsule
(n = 43)

PA without
complete
capsule
(n = 47)

P

Ageb (years) 44.65 ± 16.32 45.96 ± 12.88 0.67 44.27 ± 18.76 48.25 ± 16.57 0.47

Max-diameterb (cm) 2.1 ± 60.68 2.21 ± 0.71 0.71 2.31 ± 0.57 1.67 ± 0.49 < 0.01*

Sexa (F/M) 25/18 30/17 0.58 9/9 7/14 0.29

Smokinga (yes/no) 14/29 9/38 0.15 5/13 8/13 0.50

Drinkinga (Yes/No) 7/36 13/43 0.20 4/14 9/12 0.18

Symptomsa (with/without) 5/38 7/40 0.65 1/17 1/20 0.91

Shapea (round/non-round) 9/34 15/32 0.24 3/15 6/15 0.38

Margina (clear/unclear) 40/3 46/1 0.29 17/1 20/1 0.91

Densitya

(homogeneous/heterogeneous)
20/23 29/18 0.15 11/7 12/9 0.80

Cystic areasa (with/without) 16/27 19/28 0.75 3/15 8/13 0.15

Enhancement degreea

(slight/moderate/obvious)
1/12/30 4/22/21 0.02* 1/10/7 4/10/7 0.37

Enhanced uniformitya (yes/no) 18/25 15/32 0.33 9/9 8/13 0.46

*Represents p < 0.05. aCategorical data are presented as numbers (n). bQuantitative data are presented as means (standard deviations) or medians (quartiles), p-value was calculated using the
independent samples t-test or Mann–Whitney U test. p-value was calculated with the χ2 or Fisher’s exact test. PA, pleomorphic adenoma; F, female; M, male.

from images of each scanning phase. Then, five radiomics
signatures were established based on Tumor, External2, External5,
Tumor+External2, and Tumor+External5. Then, six machine
learning methods were used to establish 120 radiomics models
in the arterial phase, venous phase, and plain phase, as well as a
three-phase combination. The results of different feature screening
methods in each phase are shown in Supplementary Tables 2–4.

Among all the established machine learning prediction
radiomics models, the model based on a three-phase combination
had better prediction performance, and the model using a
combination of intratumoral and peritumoral radiomics features
achieved a higher AUC than the model with only intratumoral or
peritumoral radiomic features, which was presented in Table 2. The
14 selected features in the Tumor+External2 model were shown in
Figure 3. And the Tumor+External2 model based on LR was the
optimal model, the AUC of the test set was 0.817 (95% CI = 0.712,
0.847), and its prediction performance was significantly higher than
that with the Tumor model based on LDA (AUC = 0.772, P = 0.004),
the External2 model based on LR (AUC = 0.751, P = 0.032), and
the External5 model based on SVM (AUC = 0.667, P = 0.018).
And the Tumor+External2 model based on LR had a higher AUC
than the Tumor+External5 model based on LDA (AUC = 0.817 vs.
0.796), but no statistically significant difference (P = 0.667). Figure 4
depicts the ROC curves of the top performing models based on
three-phase combination in the training set (a) and test sets (b). The
Calibration curves (a) and DCA curves (b) of the top performing
models based on three-phase combination in the test set are shown
in Figure 5.

For single phase, the performance of models based on the
arterial and venous scan phases were generally better than that in
the plain scan phase. Tumor+External2 model based on the venous
phase has the highest prediction performance: in the test set (when

using the LR classifier), the AUC was 0.785 (95% CI = 0.713, 0.857).
The AUC values of the five models using six different machine
learning algorithm-based models in the test sets are shown in
Figures 6a–d represent plain phase, arterial phase, venous phase
and three-phase combination phase, respectively.

4 Discussion

In this study, we established and evaluated the ability of
multiphasic enhanced CT imaging features from Tumor, External2,
External5, Tumor+External2, and Tumor+External5 radiomics
features to accurately predict capsular characteristics of PA. We
found that regardless of the size of the peritumoral region,
radiomics features including the peritumoral signatures were more
accurate indicators in the test sets. Specifically, the performance of
the Tumor+External2 radiomics model based on the three-phase
combination achieved the best performance among all radiomics
models in the test sets, with AUC of 0.817 (95% CI = 0.712, 0.847).
And the radiomics model based on the LR classifier was superior to
the model based on other machine learning algorithms.

Previous radiomics research on PAs has mostly concentrated
on the tumor parenchyma, ignoring the tumor-surrounding tissue,
while it can reflect the important biological information about
the tumor, including its potential for malignant behavior and
its interactions with surrounding tissues. Furthermore, the value
of tumor-adjacent tissues has been confirmed in recent studies,
demonstrating their potential capacity in predicting treatment
response, characterizing tumor behavior and evaluating the risk of
recurrence (13, 23, 24). However, the application of the peritumoral
region in pleomorphic adenoma of the parotid gland has not
yet been explored. Besides, the definitions of peritumoral regions
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TABLE 2 Diagnostic performance of different feature screening methods in venous phase.

Model/classifiers Cohort AUC (95% CI) Accuracy Sensitivity Specificity NPV PPV

Three-phase combination

SVM

Tumor Training 0.975 (0.950–0.986) 0.944 0.884 1.000 1.000 0.904

Test 0.720 (0.643–0.779) 0.641 0.611 0.667 0.611 0.667

External2 Training 0.964 (0.949–0.986) 0.967 0.953 0.979 0.976 0.958

Test 0.614 (0.567–0.688) 0.513 0.500 0.524 0.474 0.550

External5 Training 0.982 (0.928–0.974) 0.911 0.907 0.915 0.907 0.915

Test 0.677 (0.571–0.700) 0.590 0.556 0.619 0.556 0.619

Tumor+External2 Training 0.940 (0.922–0.969) 0.944 0.977 0.915 0.913 0.977

Test 0.807 (0.722–0.841) 0.744 0.722 0.762 0.722 0.762

Tumor+External5 Training 0.979 (0.951–0.988) 0.978 0.977 0.979 0.977 0.979

Test 0.757 (0.662–0.828) 0.564 0.556 0.571 0.526 0.600

LR

Tumor Training 0.958 (0.890–0.945) 0.900 0.884 0.915 0.905 0.896

Test 0.749 (0.573–0.793) 0.539 0.444 0.619 0.500 0.565

External2 Training 0.937 (0.916–0.963) 0.900 0.907 0.894 0.886 0.913

Test 0.751 (0.602–0.780) 0.641 0.667 0.619 0.600 0.684

External5 Training 0.937 (0.867–0.926) 0.867 0.837 0.894 0.878 0.857

Test 0.606 (0.484–0.656) 0.436 0.556 0.333 0.417 0.467

Tumor+External2 Training 0.942 (0.876–0.935) 0.911 0.930 0.894 0.889 0.933

Test 0.817 (0.712–0.847) 0.722 0.760 0.762 0.643 0.640

Tumor+External5 Training 0.937 (0.911–0.957) 0.889 0.884 0.894 0.884 0.894

Test 0.762 (0.672–0.819) 0.667 0.611 0.714 0.647 0.682

LDA

Tumor Training 0.909 (0.845–0.939) 0.889 0.884 0.894 0.884 0.894

Test 0.772 (0.567–0.786) 0.692 0.556 0.810 0.714 0.680

External2 Training 0.916 (0.853–0.955) 0.878 0.873 0.915 0.900 0.860

Test 0.683 (0.534–0.751) 0.615 0.500 0.714 0.600 0.625

External5 Training 0.873 (0.836–0.912) 0.844 0.791 0.894 0.872 0.824

Test 0.616 (0.472–0.658) 0.513 0.389 0.619 0.467 0.542

Tumor+External2 Training 0.871 (0.858–0.919) 0.844 0.860 0.830 0.822 0.867

Test 0.815 (0.698–0.857) 0.641 0.756 0.714 0.625 0.652

Tumor+External5 Training 0.908 (0.840–0.930) 0.844 0.884 0.809 0.809 0.884

Test 0.796 (0.626–0.814) 0.692 0.611 0.762 0.688 0.696

XGBoost

Tumor Training 0.937 (0.884–0.959) 0.956 0.930 0.979 0.976 0.939

Test 0.743 (0.468–0.753) 0.590 0.556 0.619 0.556 0.619

External2 Training 0.927 (0.906–0.972) 0.956 0.953 0.957 0.953 0.957

Test 0.632 (0.505–0.657) 0.538 0.556 0.524 0.500 0.579

External5 Training 0.950 (0.891–0.971) 0.967 0.977 0.957 0.955 0.978

Test 0.646 (0.424–0.634) 0.487 0.278 0.667 0.417 0.519

Tumor+External2 Training 0.921 (0.873–0.956) 0.933 0.953 0.915 0.911 0.956

Test 0.712 (0.607–0.757) 0.667 0.611 0.714 0.647 0.682

Tumor+External5 Training 0.945 (0.908–0.982) 1.000 1.000 1.000 1.000 1.000

Test 0.725 (0.571–0.801) 0.462 0.389 0.524 0.412 0.500

(Continued)
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TABLE 2 (Continued)

Model/classifiers Cohort AUC (95% CI) Accuracy Sensitivity Specificity NPV PPV

RF

Tumor Training 0.806 (0.739–0.883) 0.844 0.814 0.872 0.854 0.837

Test 0.608 (0.436–0.705) 0.615 0.722 0.524 0.565 0.688

External2 Training 0.905 (0.779–0.888) 0.822 0.814 0.830 0.814 0.830

Test 0.548 (0.416–0.658) 0.436 0.778 0.143 0.438 0.429

External5 Training 0.834 (0.771–0.872) 0.800 0.860 0.745 0.755 0.854

Test 0.414 (0.320–0.624) 0.487 0.500 0.476 0.450 0.526

Tumor+External2 Training 0.820 (0.754–0.873) 0.822 0.814 0.830 0.814 0.830

Test 0.716 (0.481–0.756) 0.590 0.611 0.571 0.550 0.632

Tumor+External5 Training 0.925 (0.756–0.894) 0.889 0.884 0.894 0.884 0.894

Test 0.659 (0.479–0.741) 0.462 0.444 0.476 0.421 0.500

DT

Tumor Training 0.789 (0.694–0.811) 0.778 0.814 0.745 0.745 0.814

Test 0.507 (0.371–0.697) 0.539 0.389 0.667 0.500 0.560

External2 Training 0.832 (0.708–0.839) 0.822 0.744 0.894 0.865 0.792

Test 0.574 (0.372–0.692) 0.513 0.444 0.571 0.471 0.545

External5 Training 0.803 (0.730–0.845) 0.844 0.884 0.809 0.809 0.884

Test 0.474 (0.346–0.644) 0.462 0.500 0.429 0.429 0.500

Tumor+External2 Training 0.788 (0.697–0.831) 0.800 0.930 0.681 0.727 0.914

Test 0.509 (0.441–0.714) 0.692 0.722 0.667 0.650 0.737

Tumor+External5 Training 0.853 (0.712–0.849) 0.844 0.930 0.766 0.784 0.923

Test 0.566 (0.426–0.696) 0.564 0.556 0.571 0.526 0.800

AUC, area under curve; CI, confdence interval; NPV, negative predictive value; PPV, positive predictive value; SVM, support vector machine; LR, logistic regression; LDA, linear discriminant
analysis; XGBoost, extreme gradient boosting; RF, random forest; DT, decision tree.

have been explored in many previous studies, including distances
ranging from 5 mm to 30 mm for lung nodules, 5 mm to 10 mm
for breast cancer and 10 mm to 30 mm for malignant brain
tumor (13, 25, 26). According to the findings of these studies,
the peritumoral area nearest the tumor issue usually provides the
highest predictive accuracy.

Unlike previous studies on patients with PAs, which mainly
concentrated on intratumoral features and estimated radiomics
signatures, we expanded the distance of 2 mm and 5 mm
around the tumor and established five radiomic models based on
multiphasic enhanced CT imaging to compare their predictive
performance. The results indicated that the features extracted
from the Tumor+External2 model exhibited the best performance
in accurately predicting capsular characteristics of PA, consistent
with the results of Li (2). The capsule features appear at the
edge of the tumor, and the satellite nodules are more common
within a range of 2 mm from the central mass (27), which may
contribute to this result. Furthermore, we found that the AUC of
the Tumor+External2 model to clarify the capsular characteristics
of the parotid PA was higher than that of the Tumor+External5
model. However, there was no statistical significance in this finding.
This may suggest that the peritumoral region tissues within 5 mm
of the tumor contain valuable information that could identify the
encapsulates of PAs.

In addition, our investigation found that the most
of the remaining discriminative radiomics features in the
Tumor+External2 model were texture features, and this result
was consistent with those of previous studies (2, 19), texture
features could quantify the inter-voxel relationships in an image
and describe microscopic characteristics in CT images of PA.
Texture features can reflect the capsular characteristics of the
variations in the micro-structures and contain part of pathological
characteristics related to the capsule of parotid gland tumor.
Furthermore, we applied univariate and multivariate logistic
regression to select the independent clinical predictors of patients;
however, we found no significant clinical predictors. These
results were further evidence that radiomics model was effective
and accurate tool for preoperative identification of capsular
characteristics of parotid PA.

However, our study faces some limitations. Firstly, the magnetic
resonance imaging (MRI) has excellent resolution of the soft
tissues, may provide more valuable information compared to CT
images. It may be beneficial to explore the potential of MRI-
based radiomics features in future studies. Secondly, although
the reliability and reproducibility of radiomics feature extraction
were satisfactory between the two observers, intratumoral regions
were drawn manually to execute image segmentation. Despite
using an automatic technique for peritumoral region segmentation,
we prefer a fully automatic method that may improve stability

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2025.1566555
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1566555 April 18, 2025 Time: 11:3 # 8

Shen et al. 10.3389/fmed.2025.1566555

FIGURE 3

Radiomics feature selection results.

FIGURE 4

The receiver operating characteristic (ROC) curves of the top performing models based on three-phase combination in the training set (a) and test
sets (b).

and could be applied in future studies. Finally, the sample size
in our study was small, and we did not use an independent
external validation cohort in this study, thus restricting the

generalization ability of our models; thus, larger cohorts,
multicentric and external validation are needed for further
research and validation.
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FIGURE 5

The calibration curves (a) and DCA curves (b) of the top performing models based on three-phase combination in the test set.

FIGURE 6

The area under the curve (AUC) values of the five models using six different machine learning algorithm-based models in the test sets, (a–d)
represent plain phase, arterial phase, venous phase and three-phase combination phase, respectively.

5 Conclusion

In conclusion, CT radiomics features integrating both
peritumoral and intratumoral regions could accurately predict
capsular morphological characteristics of parotid PA via machine
learning models, with obvious advantages compared with
conventional image diagnosis, which may provide a valuable
tool for preoperative clinical decision-making of patients
with parotid PA.
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