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Introduction: Epilepsy is a neurological disorder in which patients experience

recurrent seizures, with the frequency of occurrence more than twice a day,

which highly a�ects a patient’s life. In recent years, multiple researchers have

proposed multiple machine learning and deep learning-based methods to

predict the onset of seizures using electroencephalogram (EEG) signals before

they occur; however, robust preprocessing to mitigate the e�ect of noise,

channel selection to reduce dimensionality, and feature extraction remain

challenges in accurate prediction.

Methods: This study proposes a novel method for accurately predicting epileptic

seizures. In the first step, a Butterworth filter is applied, followed by a wavelet

and a Fourier transform for the denoising of EEG signals. A non-overlapping

windowof 15 s is selected to segment the EEG signals, and an optimal spatial filter

is applied to reduce the dimensionality. Handcrafted features, including both

time and frequency domains, have been extracted and concatenated with the

customized one-dimensional convolutional neural network-based features to

form a comprehensive feature vector. It is then fed into three classifiers, including

support vector machines, random forest, and long short-term memory (LSTM)

units. The output of these classifiers is then fed into the model-agnostic meta

learner ensemble classifier with LSTM as the base classifier for the final prediction

of interictal and preictal states.

Results: The proposed methodology is trained and tested on the publicly

available CHB-MIT dataset while achieving 99.34% sensitivity, 98.67% specificity,

and a false positive alarm rate of 0.039.

Discussion: The proposed method not only outperforms the existing methods

in terms of sensitivity and specificity but is also computationally e�cient, making

it suitable for real-time epileptic seizure prediction systems.

KEYWORDS

AI in healthcare, epilepsy, electroencephalogram, epileptic seizure prediction, signal

quality index, optimal spatial filter, 1DCNN, ensemble classifier
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1 Introduction

Epilepsy is a neurological disorder in which patients suffer from

seizures, and it affects their quality of life as a sudden seizure

may cause an accident or injury while driving, climbing stairs, or

walking on the road, etc. Seizure disturbs the activity of the brain,

which can be observed by visualizing the electroencephalographic

(EEG) signals recorded by placing electrodes on the scalp of the

patient’s brain (1). Seizures are divided into four states: interictal,

the normal state; preictal, which starts a few minutes before the

onset of seizure and ends with the seizure onset; ictal, in which

the seizure occurs; and postictal, which starts after the seizure.

Seizures can be categorized into two types, i.e., focal and generalized

seizures. Focal seizures are normally treatable with surgical

procedures, whereas generalized seizures can only be treated with

the help of medicines; however, it has been observed that in 70%

of the cases these seizures cannot be completely controlled with the

help of medicines (2). Researchers (3–19) have proposed multiple

methods to predict the onset of seizures before they occur by

predicting the preictal state; however, accurate prediction remains

a challenge due to multiple factors. EEG signals are susceptible

to noise added during signal acquisition, high dimensionality

due to the number of channels, and computational complexity

of feature extraction and accurate classification. Figure 1 shows

a plot of three EEG signals from 1-h continuous recordings.

Accurate seizure prediction significantly impacts patient safety

and quality of life by reducing the risks of sudden accidents

or injuries during seizures. Despite advancements, clinicians and

FIGURE 1

One-hour span session of EEG recordings for three channels.

patients still face considerable challenges due to inaccurate seizure

forecasting, leading to compromised safety and anxiety among

epilepsy patients.

A typical method of epileptic seizure prediction involves

preprocessing of EEG signals for noise removal and channel

selection, followed by feature extraction and classification.

Numerous techniques to preprocess EEG signals have been

proposed in recent years for removing noise and artifacts such as

eye blinks, eye movements, and muscle activity before feeding the

data into the model. Fei et al. (6) and Usman et al. (14) proposed

bandpass filters to preprocess the EEG signals. Wang et al. (20)

has employed an infinite impulse response (IIR) bandpass filter

and filtered the segmented data to filter out artifacts. Cho et al. (8)

has used the fast Fourier transform (FFT). Common spatial pattern

(CSP) is applied to reduce the effect of artifacts from EEG signals

by Birjandtalab et al. (4). Researchers (14, 21, 22) have made use

of the short-time Fourier transform (STFT) for preprocessing. Jana

et al. (9) has utilized a pool-based technique with a 30-s window for

noise reduction.

Duun-Henriksen et al. (23) selected channels based on the

maximum variance, the difference in variance, and entropy.

Entropy indicates the extent of disorder, impurity, and uncertainty,

so the channels with the highest entropy were selected. To select

channels that carry the highest information and are optimal,

Daoud and Bayoumi (10) has selected channels with the maximum

variance entropy product. Birjandtalab et al. (4) has used a random

decision forest for channel selection. Cogan et al. (7) selected the

best channel by ranking all the features based on the information
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gain for each subject. Parvez and Paul (24) checked the significance

of each channel individually, then eliminated the channel of low

significance and selected the best channels by calculating the

average classification accuracy iteratively. Wang et al. (20) in

their research study calculated a signal quality index (SQI), based

on signal complexity. They brought three types of signals into

consideration, and the optimal channels were selected accordingly.

Commonly used feature extraction methods include

continuous wavelet transform (CWT), discrete cosine

transformation (DCT), and discrete wavelet transform (DWT).

Tsiouris et al. (25), Jana and Mukherjee (16), Alotaiby et al.

(5), and Arif et al. (21) applied DWT to extract time-frequency

features and then support vector machines (SVM) for predictions.

Asharindavida et al. (11) utilized empirical mode decomposition

(EMD) for feature extraction. Birjandtalab et al. (4), Birjandtalab

et al. (3), and Borhade et al. (12) employed power spectral density

(PSD) for feature extraction. Fei et al. (6) has applied a FrFT-based

chaos method to obtain relevant features. Both time and frequency

domain features, along with total energy spectrum and energy

percentage-based features, were extracted to be used as input to

the classifier (15). Zhang et al. (13) has made use of CSP-based

feature extraction. Truong et al. (22) and Arif et al. (26) used STFT

to extract features. Deep learning (DL) can also be used for feature

extraction, as Daoud and Bayoumi (10) has extracted features

through DL techniques.

Once features are extracted, the next task is to distinguish

the signal between interictal and preictal states. Researchers have

made use of machine learning (ML) and DL classifiers for the

classification of EEG signals in seizure prediction methods. SVM

with cross-validation was used for classification by Tamanna et al.

(15), Alotaiby et al. (5), and Asharindavida et al. (11), a least square

SVM classifier was applied to classify the EEG signals. Back-forward

propagation neural networks (BPNN) and linear discriminant

analysis (LDA) were also used for classification (6, 11, 13). Fei

et al. (6), Usman et al. (14), Alotaiby et al., (5), Asharindavida

et al. (11), and Alickovic et al. (27) employed k-nearest neighbor

(kNN), and random forest (RF) for classification. In the study by

Truong et al. (22), a convolutional neural network (CNN) was

utilized for the classification of preictal and interictal states. Daoud

and Bayoumi (10) and Alotaiby et al. (5) have used DL models

[multilayer perceptron (MLP), deep CNN (DCNN), bidirectional

LSTM (Bi-LSTM)] for classification tasks.

DL and EEG-based seizure prediction has advanced

significantly in recent years. By successfully modeling EEG data

across several spatial and temporal scales, Dong et al. (28) proposed

a novel multi-scale spatio-temporal attention network (MSAN),

which increased the accuracy of seizure prediction. Alasiry et al.

(29) suggested a heterogeneous graph neural network (GNN) that

enhanced clinical interpretability and predictive performance by

capturing intricate EEG channel interactions. A CNN-Bi-LSTM

hybridmodel was presented by Cao et al. (30), who also developed a

feature-level fusion technique that showed improved performance

for epileptic seizure prediction across multiple datasets. Bi-LSTM

consistently outperformed other recurrent neural network (RNN)

structures like gated recurrent units (GRU), MLP, and DCNN for

seizure prediction tasks according to an ablation study conducted

by Bajaj and Sharma (31) on a variety of LSTM-based architectures.

A novel mobile network information gain (M-NIG) technique was

presented by Meng et al. (32) with a focus on individual-specific

multi-channel EEG networks to lower noise and greatly improve

prediction robustness. Notwithstanding these developments, there

are still issues that need to be addressed, mainly in the areas

of computational complexity, practicality for real-time clinical

applications, efficient dimensionality reduction, and reliable

handling of class-imbalanced data. These issues together highlight

the necessity for further research.

Current approaches for epileptic seizure prediction

predominantly utilize all available EEG channels. This practice

is computationally expensive, increases time complexity, and

raises hardware and financial costs, highlighting the need for

methods that can identify and utilize only the most informative

channels. The high dimensionality of EEG data often affects

the efficiency and accuracy of predictive models. Despite its

critical impact, this challenge has been largely overlooked in

existing studies, necessitating effective dimensionality reduction

techniques to enhance prediction performance. Many researchers

have not adequately addressed the issue of class imbalance, a

prevalent challenge in seizure prediction where certain classes

(e.g., seizure events) are underrepresented compared to others.

This imbalance can skew model performance and compromise

prediction reliability.

We propose a novel method for epileptic seizure prediction

to address these research gaps, which have been identified after a

comprehensive literature review. In the first step, the Butterworth

filter is applied, followed by wavelet and Fourier transforms for

denoising of EEG signals. A non-overlapping window of 15 s

is selected to segment the EEG signals, and an optimal spatial

filter is applied to reduce the dimensionality. Handcrafted features,

including both time and frequency domains, have been extracted

and concatenated with the customized one-dimensional CNN

(1DCNN)-based features to form a comprehensive feature vector.

It is then fed into three classifiers, including SVM, RF, and LSTM

units, and the output of these classifiers is then fed into a model-

agnostic meta learner (MAML) ensemble classifier with LSTM as

base classifier for the final prediction of interictal and preictal states.

The contributions of this research include:

• Introduced a novel technique to identify the most informative

EEG channels, improving prediction accuracy while

significantly reducing computational costs, a key challenge in

real-time applications.

• Developed an effective dimensionality reduction method to

deal with the high-dimensional nature of EEG data, which

affects the performance of prediction algorithms.

• Proposed a surrogate channel by combining optimal EEG

channels that contribute the most to seizure prediction.

• Demonstrated the effectiveness of the proposedmethod on the

publicly available CHB-MIT dataset, achieving a sensitivity of

99.34% and specificity of 98.67% with a false positive alarm

rate of 0.03. These results outperform various state-of-the-art

techniques, establishing a new benchmark in epileptic seizure

prediction.
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FIGURE 2

Flow diagram of the proposed methodology of epileptic seizure prediction.

2 Methodology

To overcome the identified limitations and enhance seizure

prediction accuracy, our methodology strategically targets the three

main challenges: noise reduction in EEG signals, dimensionality

reduction, and class imbalance mitigation. We propose a novel

method of epileptic seizure prediction using EEG signals. It consists

of three steps, including the preprocessing of EEG signals, feature

extraction, and classification between preictal and interictal states.

The preprocessing step involves segmentation of EEG signals into

equal-size segments using a non-overlapping window, followed

by multistage noise removal using Butterworth filter, wavelet,

and Fourier transforms, and conversion of multi-channel EEG

signals into a single surrogate channel. After preprocessing, both

handcrafted and automated features have been extracted and

concatenated to form a single feature vector. Time and frequency

domain features include statistical and spectral signatures, whereas

a customized architecture of 1DCNN has been proposed to

extract automated features. Figure 2 shows the flow diagram of the

proposed method. The following subsection presents all three steps

of the proposed methodology in detail.

2.1 Preprocessing of EEG signals

Due to the inherent susceptibility of EEG signals to noise from

artifacts and external sources, a robust preprocessing strategy is

critical to ensure data quality for reliable seizure prediction. In this

research, we used a publicly available CHB-MIT dataset (33) that

comprises EEG recordings of 24 pediatric individuals recorded in

the Children’s Hospital Boston. The dataset has been annotated

by the medical experts with the start and end time of the seizure

for each session of all individuals. EEG signals have been recorded

with 23 channels and follow the 10–20 electrode placementmethod.

The dataset has been sampled at 256 Hz and totals 644 h of

recordings. We have divided EEG signals into equal-sized segments

with the help of an equal-sized, non-overlapping window of 15 s.

Figure 3 shows the plot of segmented EEG signals proposed in this

research.

After segmenting the EEG signals, preictal and interictal signals

were separated. Preictal and interictal samples were carefully

selected, considering that preictal and postictal samples may

overlap. Therefore, we included only those sessions for interictal

state samples where no seizure onset occurred within two sessions

before or after. Preictal state has been considered as 30 min before

the onset of the seizure, provided that there was no seizure in the

last session to avoid the postictal state overlapping with the preictal

state. EEG signals are sensitive to noise, making it essential to apply

various techniques to remove noise and artifacts, ensuring that

the raw data is suitable for further processing. Methods include:

Butterworth bandpass filter, EMD, FFT, CWT, DWT, and CSP,

which help deal with noise and artifacts. Additionally, a window

duration, overlapping and non-overlapping, can also be used to

reduce the effect of noise to achieve better results.
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FIGURE 3

EEG data segmented into 15-s windows.

We preprocessed EEG signals to remove noise and artifacts to

enhance signal quality, as shown in Figure 4. The wavelet transform

and Butterworth filter, a high-pass filter with a cutoff frequency

of 0.5 Hz and a low-pass filter with a cutoff frequency of 40 Hz,

were applied. These filters were used to remove low-frequency,

high-frequency drifts and fluctuations caused by internal and

external sources during data recording. Figure 5 illustrates the

raw signal alongside the denoised signals after applying these

filters. The EEG signals are acquired through multi-channel

recordings. Using a large set of channels leads to computational

complexity. Additionally, not all channels provide valuable insights

for seizure prediction. The use of all channels can also result

in misclassifications of seizures. To address these issues, channel

selection is a critical step in reducing the number of channels while

preserving essential information.

The number of channels is not only reduced, but optimal

channels are also combined, which are highly contributing to

seizure prediction, to make a surrogate channel. The channels are

selected based on two criteria: high SQI and maximum variance.

A higher SQI indicates superior signal quality, while lower values

suggest poorer quality. Higher variance suggests increased brain

activity. By selecting channels that meet these criteria, we ensure

that the most informative and relevant channels are retained,

leading to more accurate and efficient seizure prediction. A

combined plot of all five selected channels is presented in Figure 6.

Vict(C) =
1

k

k
∑

i=1

(xc(i)− µc))
2 (1)

Selected Channel = max
1 :N

{

Vict(c)
}

(2)

2.1.1 Surrogate channel
Given the computational inefficiency caused by analyzing

high-dimensional EEG data from multiple channels, we introduce

a surrogate channel technique. Unlike previous methods that

typically analyze all channels equally, our approach identifies

and combines the most informative EEG channels into a

single surrogate channel, significantly reducing computational

complexity while maintaining prediction accuracy. High-

dimensional EEG signals pose significant problems in EEG

analysis, including increased computational cost and a higher risk

FIGURE 4

Raw vs. denoised EEG signals.

of overfitting to noise rather than extracting meaningful patterns.

Addressing this issue can not only increase the performance of the

classifier but also reduce the computational complexity. To convert

multiple EEG channels into a surrogate channel, an averaging filter,

CSP, and an optimal spatial filter were applied. These techniques

were applied to increase the signal-to-noise ratio (SNR) and

variance interval between two classes. The averaging filter is a

method used to increase the SNR by replacing each sample with

the average value of neighboring samples within a defined window.

This averaging filter calculates the mean of all the channels to

form a single channel (surrogate channel). The surrogate channel

obtained after applying an averaging filter contains more SNR

than multiple channels. The surrogate channel aims to capture the

collective signal from multiple electrodes, potentially improving

interpretability and simplifying analysis.

Despite its effectiveness in noise reduction, residual noise may

persist in the surrogate channel, necessitating further refinement

or the consideration of complementary filtering techniques to

optimize signal quality for further analysis. The CSP filter is a

technique that is frequently used in EEG signal processing to

enhance the discriminative features of EEG signals by spatially

filtering them. The CSP algorithm identifies spatial filters that

increase the variance of EEG signals for one class while minimizing
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FIGURE 5

Five EEG channel waveforms before and after noise removal.

FIGURE 6

Waveforms of selected optimal EEG channels.

it for another class. CSP not only increases the SNR but also

enhances the variance interval between two or more classes. This

suggests that relevant information becomes more distinct while

noise is effectively suppressed. In essence, CSP can convert a multi-

channel EEG signal into a surrogate channel that encapsulates the

most discriminative features for the task at hand.

2.1.2 Mitigating the class imbalance problem
Class imbalance is a critical challenge in EEG-based seizure

prediction because the number of preictal segments (indicating

impending seizures) is significantly fewer than interictal segments

(non-seizure states), potentially biasing prediction models.

To address this imbalance, we utilize advanced oversampling

techniques. Imbalanced data refers to too many instances in one

class and too few examples in another. Imbalanced data can

highly affect the model’s overall effectiveness and make it difficult

for the model to distinguish between the decision boundaries

of different classes. One of the solutions to deal with this is to

over-sample the instances in the minority class. Over-sampling

can be attained by simply duplicating instances from the minority

class in the training dataset before fitting a model. This does not

give any extra information to the model, but it can deal with the

data imbalance issue. An enhancement on duplicating instances
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FIGURE 7

Comparison of original and SMOTE-generated EEG signals for the minority class.

from the minority class is to synthesize new instances from

the minority class. In this study, data splitting was performed

after an initial oversampling process to address class imbalance

and improve model performance. Specifically, we utilized the

synthetic minority over-sampling technique (SMOTE) and the soft

prototype instance discrimination for enhancing representation

(SPIDER) techniques to generate additional synthetic samples and

improve the representation of minority classes. SMOTE selects

a minority class instance randomly and then finds its k nearest

minority class neighbors.

The synthetic instances are then generated as a convex

combination of the selected instances. SPIDER works by producing

synthetic samples for the minority class in accordance with

prototype instances. Prototype instances are representative samples

from the minority class that capture its characteristics. SPIDER

synthesizes new instances by perturbing these prototypes, creating

variations that are still representative of the minority class. After

applying these oversampling methods, the dataset was partitioned

into training and validation subsets. Figure 7 presents a visual

comparison between an original EEG segment and a synthetic

sample generated using the SMOTE. The synthetic EEG maintains

the temporal rhythm and amplitude range of the original signal,

with minor variations that reflect the data-driven interpolation

characteristics of SMOTE. To assess the fidelity of the generated

samples, we evaluated similarity using statistical metrics such as

Pearson correlation and dynamic time warping (DTW), both of

which confirmed a high degree of alignment between the original

and synthetic signals. This validates the suitability of SMOTE for

augmenting the minority class in EEG-based classification tasks

without introducing unrealistic distortions.

2.2 Feature extraction from EEG signals

Effective feature extraction is crucial to distinguish between

seizure states clearly. Thus, we combine handcrafted temporal

and spectral features with automated DL-based features to ensure

high inter-class separability, which is key for robust classification.

After preprocessing and channel selection, feature extraction is a

critical step in the prediction of epileptic seizures. To capture both

interpretable signal characteristics and complex spatial-temporal

dependencies, we adopted a hybrid feature extraction strategy.

Handcrafted features such as Hjorth parameters and entropy

measures are well-established in EEG analysis for their ability to

reflect signal complexity and variance.

2.2.1 Handcrafted features
Various techniques for feature extraction are presented in

the literature, including both handcrafted and automatic feature

extraction methods. ML techniques are commonly used for

handcrafted feature extraction, while DL is well-suited for

automatic feature extraction. After a comprehensive literature

review, we identified features that provide better inter-class

separability. Inter-class separability refers to the measure that

how two classes are distant, different, or separable from one

another. The higher the inter-class separability, the easier it

is for the classifier to distinguish and classify the classes.

Conversely, the lower the inter-class separability, the more

challenging for the classifier to distinguish between the classes,

because lower inter-class separability indicates that the classes

are overlapping significantly. Temporal and spectral features

can be identified and extracted, revealing significant patterns

within the EEG signal. Following preprocessing and channel

selection, the temporal features were extracted including min,

max, mean (Equation 3), variance (Equation 4), standard deviation

(Equation 5) and skewness (Equation 6). The mean represented as

µ, is calculated as follows:

µ =
1

K

K
∑

i=1

(xi) (3)

σ 2 =
1

K

K
∑

i=1

(xi − µ)2 (4)

σ =

√

√

√

√

1

K

K
∑

i=1

(xi − µ)2 (5)
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TABLE 1 Statistical and spectral features extracted from 10 EEG segments of preictal state.

Feature Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7 Seg8 Seg9 Seg10

Min -0.00013 -0.00013 -0.00025 -0.00016 -9.75E-05 -0.00010 -8.15E-05 -7.33E-05 -0.00017 -0.00012

Max 0.00010 0.00013 0.00022 8.22E-05 9.20E-05 8.46E-05 6.58E-05 7.29E-05 9.24E-05 0.00014

Mean -7.13E-08 1.20E-06 -1.16E-06 5.84E-07 1.38E-07 4.44E-07 -4.14E-07 5.12E-07 -4.70E-08 9.59E-07

Variance 9.17E-10 1.09E-09 3.57E-09 6.31E-10 6.65E-10 5.29E-10 3.81E-10 4.52E-10 8.28E-10 1.26E-09

Standard deviation 3.03E-05 3.30E-05 5.98E-05 2.51E-05 2.58E-05 2.30E-05 1.95E-05 2.13E-05 2.88E-05 3.56E-05

Skewness -0.191 -0.166 -0.198 -1.230 -0.269 -0.271 -0.162 -0.182 -1.007 0.120

Spectral centroid 5.794 5.090 7.621 5.550 5.365 6.426 7.066 6.591 4.529 4.653

Spectral variance 36.896 45.557 293.917 55.709 47.305 58.932 67.889 59.246 38.331 32.890

Spectral skewness 4.079 6.505 4.177 5.755 5.441 4.426 4.580 3.972 5.160 4.747

TABLE 2 Statistical and spectral features extracted from 10 EEG segments of interictal state.

Feature Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7 Seg8 Seg9 Seg10

Min -0.00062 -0.00083 -0.00075 -0.00075 -0.00046 -0.00015 -0.000078 -0.00063 -0.00062 -0.00070

Max 0.00074 0.00084 0.00080 0.00064 0.00065 0.00011 0.000099 0.00058 0.00062 0.00069

Mean -1.98E-07 3.82E-07 2.00E-06 -1.94E-08 -1.29E-06 1.07E-06 1.19E-07 -8.82E-08 -3.99E-07 -5.19E-07

Variance 1.17E-08 2.06E-08 3.38E-08 2.30E-08 1.02E-08 6.95E-10 5.15E-10 7.89E-09 1.79E-08 1.56E-08

Standard deviation 1.08E-04 1.44E-04 1.84E-04 1.52E-04 1.01E-04 2.64E-05 2.27E-05 8.88E-05 1.34E-04 1.25E-04

Skewness 0.966 -0.168 0.359 -0.135 0.663 -0.599 0.283 -0.238 0.433 0.108

Spectral centroid 20.206 22.993 12.441 15.491 6.892 11.051 9.771 18.497 15.589 19.211

Spectral variance 478.771 509.770 358.245 442.970 248.950 393.654 265.381 458.774 447.203 477.597

Spectral skewness 1.527 1.447 2.345 2.012 4.128 2.770 2.881 1.663 2.019 1.718

S =
1

K

K
∑

i=1

(xi − µ)3 (6)

where, µ is EEG signal mean, xi is value of the EEG signal at

ith sample, K is number of samples in EEG signals. Variance is the

measurement value used to show how far a set of numbers is spread

with respect to the mean or average value. σ 2 is variance of EEG

signals. Standard deviation is a measure representing the amount

of howmuch dispersed or variation, such as spread, dispersion is in

the data from the mean. σ is the standard deviation of EEG signals.

Skewness is a measure of asymmetry of the distribution around the

mean. It shows in which direction the data is skewed.

The spectral analysis of EEG signals is commonly done

by obtaining the PSD. PSD is a Fourier transform of the

autocorrelation function (Equation 7). PSD and auto-correlation

are very closely related to each other in the analysis of signals and

time series. The auto-correlation function can be calculated as:

Rx(τ ) = E[x(t).x(t + τ )] (7)

where, x(t) is EEG signal sample, E is expected or mean value.

PSD describes the distribution of power over frequency and

may be computed with the Fourier transform or the distribution

of mean power of a signal in the frequency domain (26). The PSD

is calculated as:

Sx(t) =

∫ ∞

−∞

Rx(τ ).e
−2π if τdf (8)

Spectral features are frequency domain features, that include

spectral centroid, variational coefficient, and spectral skewness.

These features can be computed with the help of PSD, which is

computed by Equation 8. where, Rx(τ ) denotes autocorrelation

of the signal x(t). Spectral centroid, variational coefficient, and

spectral skewness can be computed by following equations.

Cs =

∑

t tSx(t)
∑

t Sx(t)
(9)

σ 2
s =

∑

t(t − Cs)
2Sx(t)

∑

t Sx(t)
(10)

βs =

∑

t((t − Cs)/σs)
3Sx(t)

∑

t Sx(t)
(11)

Tables 1, 2 present the statistical and spectral features extracted

from 10 EEG segments corresponding to the preictal and interictal

states, respectively. Each table lists features such as minimum,

maximum, mean, variance, standard deviation, skewness, spectral

centroid, spectral variance, and spectral skewness for each segment.
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FIGURE 8

Proposed customized architecture of 1DCNN.

This layout allows for segment-wise analysis of feature variation

within each class and supports comparative evaluation between

preictal and interictal brain states, offering valuable insights into

the distinguishing characteristics relevant for seizure prediction.

2.2.2 Customized 1DCNN for automated feature
extraction

CNN is extensively utilized for EEG feature extraction and

classification tasks due to its ability to automatically learn spatial

patterns within the data. For automated features, we implemented

1DCNN following the preprocessing of EEG signals, which

includes channel selection and data segmentation. Our proposed

1DCNN is composed of several distinct layers, designed to apply

filters that identify essential patterns within the EEG signal. These

layers are followed by activation functions and pooling layers.

The activation function adds non-linearity to the network, which

allows the network to learn complex patterns and relationships

within the data and can highly reduce the dimensionality while

keeping the critical information. The output of the extracted

features was flattened and passed through fully connected layers

for classification of interictal and preictal states. The feature-level

fusion of handcrafted and automated features was also performed

before passing them to the dense layer.

Figure 8 presents the visual description of the proposed

architecture of customized 1DCNN, whereas, detailed list of

parameters is listed in Table 3. It begins with a Conv1D layer

featuring 32 filters of size 3, followed by batch normalization

and Leaky ReLu activation to stabilize the training and add non-

linearity. After that MaxPool1D layer is added for down-sampling.

The network succeeded with several additional convolutional

layers: 64 filters of size 3, 128 and 256 filters of size 3, each

followed by ReLu activation. Average pooling is applied after the

third and fourth convolutional layers to reduce dimensionality with

0.5 dropout layers to mitigate overfitting. The final convolutional

layer uses 512 filters, followed by a one-dimensional global

average pooling layer that aggregates the features. The architecture

concludes with a dense layer with an ensemble classifier for binary

classification. The total number of trainable parameters in this

TABLE 3 Proposed architecture of 1DCNN with list of parameters.

Layer type Output Shape Parameters

Conv1D (None, 5,118, 32) 608

Batch normalization (None, 5,118, 32) 128

Leaky ReLU (None, 5,118, 32) 0

Max pooling 1D (None, 2,559, 32) 0

Conv1D (None, 2,557, 64) 6,208

Leaky ReLU (None, 2,557, 64) 0

Max pooling 1D (None, 1,278, 64) 0

Dropout (None, 1,278, 64) 0

Conv1D (None, 1,276, 128) 24,704

Leaky ReLU (None, 1,276, 128) 0

Average pooling 1D (None, 638, 128) 0

Dropout (None, 638, 128) 0

Conv1D (None, 636, 256) 98,560

Leaky ReLU (None, 636, 256) 0

Average pooling 1D (None, 318, 256) 0

Conv1D (None, 316, 512) 393,728

Leaky ReLU (None, 316, 512) 0

Global average pooling 1D (None, 512) 0

Dense (None, 1) 513

CNN architecture is 524,449. Figure 9 illustrates the distribution of

interictal and preictal EEG segments based on 1DCNN-extracted

features.

2.3 Classification of EEG signals

Once a comprehensive feature vector is extracted, preictal and

interictal class samples are then classified. Given the complex
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FIGURE 9

Scatter plot of 1DCNN features showing the distribution of interictal and preictal EEG segments.

Require: Training dataset D = {(xi,yi)}
n
i=1, base

classifiers {C1,C2, . . .,Cm}, meta-learner M

Ensure: Final prediction ŷ

1: Split D into Dtrain and Dmeta for training base

classifiers and meta-learner respectively.

2: for each base classifier Ck in {C1,C2, . . .,Cm} do

3: Train Ck on Dtrain

4: end for

5: Initialize meta-training dataset Dmeta_train ← ∅

6: for each (xj,yj) in Dmeta do

7: Obtain predictions {p1,p2, . . .,pm} from

{C1,C2, . . .,Cm} on xj

8: Form meta-instance zj = [p1,p2, . . .,pm]

9: Add (zj,yj) to Dmeta_train

10: end for

11: Train meta-learner M on Dmeta_train

12: Prediction Phase:

13: Given a new instance x:

14: Obtain predictions {p1,p2, . . .,pm} from

{C1,C2, . . .,Cm} on x

15: Form meta-instance z = [p1,p2, . . .,pm]

16: Use M to predict ŷ from z

17: return ŷ

Algorithm 1. Meta-learner ensemble classifier.

nature of EEG signals and subtle differences between seizure states,

relying on a single classifier can limit predictive performance.

Hence, we propose an ensemble approach combining diverse

classifiers (SVM, RF, and LSTM) through a meta-learning strategy

to enhance prediction robustness and generalizability. We propose

a novel ensemble meta learner classifier with base classifiers

including SVM, RF, and LSTM to perform classification between

preictal and interictal classes. We used a radial basis function (RBF)

kernel in SVM due to the non-linear data, which was selected

empirically. Similarly, in the case of RF, we selected 150 trees after

experimentation. In case of LSTM, 32 repeating units were used,

followed by meta learning classifier described in Algorithm 1.

3 Results and discussion

We performed multiple experiments on the CHB-MIT dataset

and evaluated the methods based on accuracy, sensitivity, and

specificity. Python 3 and MATLAB were used on a Windows

11 system for the implementation. The experiments for epileptic

seizure prediction are performed on NVIDIA GeForce RTX

3,090 and 64 GB of RAM. All the implementations were done

using Tensorflow and Scikit-learn for seizure classification. Table 4

presents the results of the ablation study performed. Figure 10

presents the confusion matrices of all experiments. We performed

multiple experiments by varying approaches in preprocessing,

feature extraction, and classification. In the first experimental setup,

we selected a non-overlapping window and extracted temporal

and spectral features, and performed classification using a kNN

classifier. With this experimental setup, we achieved an accuracy

of 71.65%, sensitivity and specificity of 53.27% and 78.08%,

respectively. Preprocessing and feature extraction were kept the

same in experiments 2 and 3, whereas RF and SVM classifiers

were used for classification between preictal and interictal states.

SVM achieved an accuracy of 78.15% which was more than 4%

increased compared to RF. Similarly, CNN and LSTMwere used for
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TABLE 4 Results obtained after performing an ablation study on the CHB-MIT dataset for epileptic seizure prediction.

Preprocessing Feature
extraction

Classification Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

MCC AUC-ROC

Non-overlapping window Handcrafted features KNN 71.65 53.27 78.08 0.2997 0.6568

Non-overlapping window Handcrafted features RF 73.26 59.50 78.08 0.3541 0.6879

Non-overlapping window Handcrafted features SVM 78.15 65.89 82.44 0.4618 0.7417

Non-overlapping window Handcrafted features CNN 77.02 63.71 81.68 0.4337 0.7269

Non-overlapping window Handcrafted features LSTM 80.01 67.91 84.24 0.5023 0.7608

Non-overlapping window,

Butter-worth filter

Handcrafted features SVM 82.47 70.56 86.64 0.5572 0.7860

Non-overlapping window,

Butter-worth filter, Wavelet

transform

Handcrafted features SVM 84.09 72.90 88.00 0.5958 0.8032

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform

Handcrafted features SVM 86.67 76.48 90.24 0.6581 0.8336

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

channel selection

Handcrafted features SVM 88.77 79.60 91.98 0.7101 0.8579

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

channel selection

1DCNN SVM 90.47 82.40 93.29 0.7532 0.8775

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

surrogate channel

Handcrafted features SVM 92.61 86.14 94.87 0.8081 0.9051

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

surrogate channel

1DCNN SVM 95.40 91.74 96.67 0.8806 0.9420

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

surrogate channel

Handcrafted and

1DCNN feature

fusion

SVM 97.01 94.86 97.76 0.9225 0.9621

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

surrogate channel

Handcrafted and

1DCNN feature

fusion

Ensemble classifier 99.52 99.22 99.62 0.97 0.9970

Bold entries represent the highest achieved results of each metric.

classification with the same preprocessing and feature extraction,

and LSTM outperformed CNN in terms of all three performance

measures.

Effective preprocessing plays an important role in the accurate

prediction of epileptic seizures using EEG signals. Therefore, a

Butterworth bandpass filter was applied to remove noise from EEG

signals, whereas feature extraction and classification were kept the

same, and an increased accuracy of 84.07% was observed. In the

next experiments, preprocessing was further enhanced by applying

the wavelet transform along with the Butterworth filter to increase

the SNR, and it resulted in increased accuracy, sensitivity, and

specificity. Similarly, the Fourier transform was also applied in

addition to the Butterworth filter and wavelet transform, and the

results were promising.

The choice of a fixed, non-overlapping 15-s window for

EEG segmentation in our study was guided by its demonstrated

effectiveness in prior seizure prediction research and its suitability

for real-time implementation. However, we acknowledge that

such static segmentation may result in the loss of critical

information, particularly near transitional states such as the

onset or termination of seizures. These transitions often contain

subtle but clinically significant changes that may not be fully

captured within rigid window boundaries. To enhance temporal

sensitivity, future extensions of this work could incorporate

overlapping windows or adaptive windowing strategies that

dynamically adjust based on signal characteristics such as variance,

entropy, or frequency shifts. Such approaches have the potential

to capture transitional dynamics more effectively, improving

both the responsiveness and predictive accuracy of seizure

detection systems.

To assess the computational efficiency of the proposed

framework, we evaluated the complete pipeline comprising
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FIGURE 10

Confusion matrices of all experiments performed.
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FIGURE 11

Training and validation performance curves of the proposed model over 50 epochs.

FIGURE 12

Receiver operating characteristic curve of the proposed method of epileptic seizure prediction.

preprocessing, feature extraction, and ensemble-based

classification on a high-performance system equipped with

an NVIDIA GeForce RTX 3090 and 64 GB of RAM. With GPU

acceleration, the average processing time per 15-s EEG segment

was approximately 0.12 s. This includes Butterworth filtering,

wavelet and Fourier-based feature extraction, spatial filtering, and

ensemble inference. The 1DCNN module benefited significantly

from GPU parallelism using PyTorch, while classical models such

as RF and SVM, as well as handcrafted feature operations, were

efficiently handled on the CPU. All modules were implemented

using optimized scientific computing libraries, including PyTorch,

SciPy, and PyWavelets. The peak memory usage remained

well within the hardware limits, ensuring that the proposed

approach is suitable for real-time or near real-time deployment in

high-throughput clinical environments.

An important aspect in real-time seizure prediction is the

time taken to classify the test sample. EEG signals have high

dimensionality due to the number of channels. It is extremely

important to either reduce the number of channels by performing

a channel selection method or by combining all channels to form

a single surrogate channel. It was observed that the surrogate

channel using an optimized spatial filter outperformed channel
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selection. It is extremely important to extract a feature vector with

high interclass variance and low intraclass variance. Therefore,

we propose a customized architecture of 1DCNN that consists

of five convolutional layers followed by batch normalization

TABLE 5 Comparison of results achieved by proposed method with

state-of-the-art existing methods.

Authors Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Birjandtalab et al. (3) 95 96.27 Not reported

Birjandtalab et al. (4) Not reported 89.80 Not reported

Alotaiby et al. (5) Not reported 89 37

Fei et al. (6) 89.67 89.50 89.75

Cogan et al. (7) 86 100 73

Cho et al. (8) 80.74 80.54 80.50

Jana et al. (9) 90.66 97 95.87

Daoud and Bayoumi (10) 99.60 99.72 99.6

Asharindavida et al. (11) 82.7 Not reported Not reported

Borhade et al. (12) 96.54 96.52 97.53

Zhang et al. (13) 89.98 92.9 87.04

Usman et al. (14) Not reported 92.7 90.8

Tamanna et al. (15) 96.38 76.73 83.16

Jana and Mukherjee (16) 99.47 97.83 92.35

Jemal et al. (17) 90.9 96.1 84.6

Koutsouvelis et al. (19) 97.32 99.31 95.34

Quadri et al. (34) 98.3 97.63 Not reported

Proposed method 99.47 97.83 92.35

and max pooling. A Leaky ReLU with the value of 0.01 has

been used to avoid the problem of vanishing gradients. In

this research, a comprehensive feature vector is formed by

concatenating the handcrafted, and features extracted using a

customized 1DCNN. We also propose an ensemble classifier that

uses MAML with three base classifiers, including SVM, RF, and

LSTM. We used k-fold cross validation and were able to achieve

an accuracy of 99.52% along with sensitivity of 99.22% and

specificity of 99.62%, with standard deviation of 0.53, 0.61, and 0.59,

respectively.

To further validate the robustness of the proposed model,

we computed the Matthews correlation coefficient (MCC) and

the area under the receiver operating characteristic curve (AUC-

ROC). The ensemble classifier achieved an MCC score of 0.99,

reflecting a strong correlation between predicted and actual class

labels even in the presence of class imbalance. Furthermore,

the AUC-ROC score of 0.997 confirms the high discriminative

power of the proposed model in distinguishing between preictal

and interictal states. Figure 11 shows the ROC curve of the

proposed method. To evaluate the learning behavior and check

for overfitting, we plotted the training and validation accuracy

and loss curves, as shown in Figure 12. Table 5 compares the

performance of our proposed method with recent state-of-the-

art methods proposed by researchers on the same dataset, and

it shows that the proposed method outperforms not only in

terms of accuracy, sensitivity, and specificity but also uses less

computational power due to reduced dimensionality. Although

the proposed model achieves a low false positive rate during

evaluation, its practical implications must be considered in

continuous monitoring scenarios. Even a few false alarms per

day can lead to alarm fatigue, reduced trust in the system, and

clinical inefficiencies. In real-world deployment, such issues could

be mitigated by incorporating post-processing techniques such

as temporal smoothing, majority voting across time windows, or

FIGURE 13

SHAP summary plot showing the impact of top handcrafted EEG features on the output of the proposed ensemble model.
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hybrid decision systems that validate alerts through additional

signals. These enhancements would further improve the practical

viability of the proposed method in continuous, long-term

monitoring contexts.

To ensure transparency in model decision-making, we applied

Shapley additive explanations (SHAP) to interpret the influence of

individual handcrafted features on the predicted seizure class. As

shown in Figure 13, features like min, max, and mean had the most

significant positive impact on themodel’s output. The direction and

magnitude of each feature’s contribution can be observed from the

horizontal spread of SHAP values. For instance, high values of max

and mean features (indicated in red) consistently push the model

toward predicting the preictal state. This interpretability analysis

enhances trust in the model’s outputs and provides useful insights

for potential clinical validation.

4 Conclusion and future directions

In this research, we propose a novel method for the prediction

of epileptic seizures using scalp electroencephalographic (EEG)

signals. The proposed method consists of three steps, including

preprocessing, feature extraction, and classification. We propose

a robust preprocessing method that involves conversion of 23

channels into a single surrogate channel using an optimized

spatial pattern filter to reduce the dimensionality, followed

by denoising using a Butterworth filter, wavelet, and Fourier

transform. We also propose a customized architecture of a one-

dimensional convolutional neural network (1DCNN), which is

not only lightweight but also provides a feature vector with

high interclass variance. Both handcrafted and 1DCNN features

are concatenated to form a feature vector, which is then fed

into three classifiers, including support vector machines, random

forest, long short-term memory, and a model-agnostic meta

learner ensemble classifier. The proposed method performs better

compared to existing state-of-the-art methods in terms of accuracy,

sensitivity, and specificity, and is also computationally less complex

due to reduced dimensionality and a customized light-weight

architecture. In the future, integrating other physiological signals,

such as heart rate and blood oxygen levels, with EEG data

could provide a more comprehensive understanding of seizures

before onset. The proposed method can also be applied in

real-time analysis of epileptic seizures. As part of future work,

we plan to develop a lightweight graphical user interface to

facilitate user interaction with the proposed model. This interface

will enable real-time EEG data input, feature visualization, and

display of model predictions and performance metrics, thereby

enhancing the practical applicability of the system in clinical or

research environments.
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