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The early diagnosis and accurate classification of lung cancer have a critical 
impact on clinical treatment and patient survival. The rise of artificial intelligence 
technology has led to breakthroughs in medical image analysis. The Lung-PET-CT-
Dx public dataset was used for the model training and evaluation. The performance 
of the You Only Look Once (YOLO) series of models in the lung CT image object 
detection task is compared in terms of algorithms, and different versions of YOLOv5, 
YOLOv8, YOLOv9, YOLOv10, and YOLOv11 are examined for lung cancer detection 
and classification. The experimental results indicate that the prediction results of 
YOLOv8 are better than those of the other YOLO versions, with a precision rate of 
90.32% and a recall rate of 84.91%, which proves that the model can effectively 
assist physicians in lung cancer diagnosis and improve the accuracy of disease 
localization and identification.
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Introduction

Cancer is one of the deadliest diseases in the world, causing numerous deaths each year 
(1), and lung cancer is the primary cause of cancer deaths in Taiwan. From 2002 to 2008, there 
were 33,919 patients with lung cancer (2), and from 2010 to 2016, there were 71,334 patients 
with lung cancer (3), which increased annually, a phenomenon in which doctors need to pay 
special attention. In the U.S., there has been a downward trend over the past five years, but it 
remains the leading cause of cancer-related deaths (4). Lung cancer can be divided into two 
types: Small Cell Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC), which 
easily metastasizes and is more invasive; therefore, it accounts for 15% of all lung cancers (5). 
The types of NSCLC are Adenocarcinoma, Squamous Cell Carcinoma (SCC), and Large Cell 
Carcinoma (LCC). In order to enable physicians to detect lung cancer more quickly, computed 
tomography (CT) scans are currently employed, as they are more sensitive than chest X-rays 
and can detect symptoms of early lung cancer earlier (6). Positron Emission Tomography/
Computed Tomography (PET/CT) is a whole-body noninvasive imaging technique that allows 
for more precise evaluation of lymph nodes and metastatic sites (7).

Computer-aided detection (CAD) is a system that can extract features from potential 
lesions or areas of interest to physicians. However, the system faces the possibility of false 
positives and negatives (8). Mushtaq et al. (9) suggested that there are two main types of 
CAD: texture- and non-texture-based methods, while non-texture-based methods usually 
utilize deep learning for diagnosis. Qin et al. (10) suggested that CAD can help to identify 
patients with undetected TB, but in high-burden areas, the accuracy of CAD may be reduced 
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due to the presence of previous TB patients. With the emergence of 
smart healthcare, many scholars are conducting research in the field 
of healthcare with the addition of artificial intelligence to help 
healthcare professionals make faster diagnoses, and many scholars 
are using convolutional neural networks (CNNs) in medical imaging. 
Lakshmanaprabu et  al. (11) proposed the use of Optimal Deep 
Neural Network (ODNN) and Linear Discriminant Analysis (LDA) 
for the analysis of thoracic CT image scans. Pang et al. (12) used 
densely connected convolutional networks (DenseNet) to classify 
malignant tumor images and then used the adaptive boosting 
(adaboost) method to aggregate multiple classification results. Wang 
et al. (13) proposed a new residual neural network model for the 
classification of CT images and concluded that this method is 
superior to other algorithms. Gautam et al. (14) used three recent 
convolutional neural network models: ResNet-152, DenseNet-169, 
and EfficientNet-B7 to compare and accurately classify the severity 
of pulmonary nodules.

This study investigated an object detection technique for lung 
cancer using the YOLO object detection model to train and validate 
the model and evaluate whether it can effectively detect the types of 
lung cancer and their locations in CT images. Early diagnosis of lung 
cancer is crucial for improving patient survival. We developed an 
efficient Computer-Aided Diagnosis (CAD) system to assist physicians 
in classifying and localizing lung cancer more accurately. Five different 
versions of the YOLO model (YOLOv5, YOLOv8, YOLOv9, 
YOLOv10, and YOLOv11) were selected to evaluate their 
performances on a CT image dataset for lung cancer. The advantages 
and limitations of the different versions of the YOLO model were 
compared through model training and testing, and their accuracy, 
reasoning speed, and applicability were analyzed.

Literature review

Object detection is a core technology used in computer vision. 
This method can be carried out in films or photos to identify and 
provide the object’s bounding box and category. Object detection is 
mainly divided into two modes: Two-Stage Detection and Single-
Stage Detection. Two-Stage Detection models include Faster R-CNN, 
R-FCN, and Cascade R-CNN (15). Faster R-CNN proposed by Ren 
et al. (16) can perform feature extraction, area proposal network, role 
pooling, classification, and bounding box regression. The R-FCN 
model proposed by Dai et al. (17) differs from Faster R-CNN by 
eliminating RoI Pooling and replacing it with Position-Sensitive 
Score Maps. The Cascade R-CNN model proposed by Cai and 
Vasconcelos (18) raises the IoU threshold through multi-stage 
detectors so that the model can adjust the bounding box more 
accurately. Single-stage object detection models such as YOLO and 
Single Shot MultiBox Detector (SSD) are commonly utilized (19). 
YOLO, proposed by Redmon (20), is a model for image segmentation 
that uses a mesh (the architecture is shown in Figure 1). SSD was 
proposed by Liu et  al. (21); it uses multi-scale features to detect 
objects of different sizes.

Figure 1 shows the backbone of YOLOv1, which is a VGG-16-
like Convolutional Neural Network (CNN) containing 20 layers of 
Convolutional Layer (Conv) for extracting image features and 2 
layers of Fully Connected Layer (FC) for outputting the prediction 
results so that the spatial features can be extracted from the image 
step by step. The image size was also reduced by max-pooling to 
minimize the computational effort. Finally, a fully connected layer 
was used to compress the features into a format that can 
be exported.

FIGURE 1

YOLOv1 structure.
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Research model

Object detection and classification

This study compared five different versions of YOLO to determine 
whether they could effectively predict the CT images of lung cancer. 
This study selected YOLOv5, YOLOv8, YOLOv9, YOLOv10, and 
YOLOv11, which represent different stages of the evolution of the 
YOLO family, each of which differs in terms of Accuracy, Inference 
Speed, Architecture Innovation, and Computational Efficiency. This 
study aims to identify the most suitable version of YOLO for CT image 
analysis of lung cancer in order to provide more accurate tumor 
detection and classification, thereby enhancing the reliability and 
clinical value of medical image diagnosis. The following section 
provides a detailed description of the five different versions of YOLO, 
including their core architecture, technical innovations, strengths, 
limitations, as well as their potential applications in medical 
image analysis.

YOLOv5
YOLOv5, proposed by Jocher et al. (22), uses an anchor-free split 

ultralytic head approach, bypassing the traditional need to define a 
bounding box to predict the position of an object. The proposed 
method can effectively calibrate the balance between the speed and 
accuracy. Begum and Devi (23) proposed a method for brain disease 
detection using the YOLO framework and concluded that this method 
can increase the precision of medical image analysis and improve 
patient care and outcomes. Chen et al. (24) proposed edge tracking of 
stroke lesions using TE-YOLOv5 and concluded that this method can 
automatically and effectively detect stroke lesions from DWI images.

YOLOv8
YOLOv8 was proposed by Jocher et  al. (25); this algorithm 

optimized the design of the CNN layer called Cross-Stage Partial 
DarkNet (CSPDarkNet) to be more collegiate than YOLOv5, while the 
neck side uses the Path Aggregation Feature Pyramid Network 
(PAFPN) to improve feature fusion; the head side finally uses the 
anchor-free method. Wehbe et al. (25) used an anchor-free method, 
that is, a Pyramid Network (PAFPN), to improve feature fusion, and 
for the head part, an anchor-free method (25). Wehbe et al. (26) used 
publicly available data to evaluate the performance of YOLOv8 and 
developed a TNM classification model for tumor, lymph node, and 
metastasis (TNM) stage classification, which was found to be 98% 
accurate. Yao et al. (27) developed a YOLO-based framework with an 
attention gather and distribute strategy (GDB) to combine high-level 
and low-level semantic features and spatial details, concluding that the 
model has good prediction results on different datasets.

YOLOv9
YOLOv9, proposed by Wang et  al. (28), is an algorithm that 

adopts the concept of programmable gradient information (PGI) to 
target the various variations required by multiple objectives and 
introduces the Generalized Efficient Layer Aggregation Network 
(GELAN) to improve the efficiency of parameter usage set 
computations, whereas Chien et al. utilized the YOLOv9 algorithm. 
The network (GELAN) was introduced to improve the efficiency of 
parameter use set computations (28). Chien et  al. (29) used the 
YOLOv9 algorithm for fracture detection and argued that it is effective 

in improving the performance of the current state-of-the-art model. 
Aziz and Saputri (30) proposed a method using the YOLOv9 model 
for the detection of skin lesions and concluded that the method can 
detect common skin diseases. Gui et al. (31) proposed a Feature-Based 
YOLOv9 (FS-YOLOv9) model for the customization of breast cancer 
detection and concluded that this model can achieve superior 
performance compared to the original YOLOv9 model.

YOLOv10 and YOLOv11
YOLOv10, proposed by Wang et  al. (32), is involved in the 

training for removing NMS, and the approach is effective in terms of 
increasing the processing speed as well as improving the 
competitiveness of the model. Ahmed and Manaf (33) utilized a 
variety of YOLOv10 for evaluation and applied it in X-rays to detect 
wrist fractures in children, concluding that the model is superior to 
YOLOv9. Ali et al. (34) proposed the use of YOLOv10 for skin cancer 
detection and concluded that the accuracy of the model could 
be improved by using the model with preprocessing and enhancement 
methods. YOLOv11, proposed by Jocher and Qui (35), is an algorithm 
that has also been optimized in the architecture of the trunk and neck 
to enhance feature extraction, and YOLOv11 could be deployed in 
environments such as edge devices and cloud-based platforms.

Model evaluation
In this study, the performance and training progress of the model 

are measured by monitoring the loss functions, metrics, and learning 
rate. The bounding box loss (box_loss) was used to measure the error 
of the bounding box and the ground truth box. Different loss functions 
are often used to calculate similarity to improve the accuracy of object 
localization. The Classification Loss (CLS_Loss) evaluates the accuracy 
of the model in predicting the object classes. Typically, it is optimized 
using Cross-Entropy Loss to ensure the reliability of the object 
classification. The Distribution Focal Loss (DFL_Loss) further 
improves the accuracy of bounding box prediction; thus, the model 
can more accurately return the location of objects. When evaluating 
model performance, the Mean Average Precision (mAP) metric is 
often used to measure accuracy. mAP50 denotes the average precision 
(AP) of the IoU threshold of 0.50, particularly for large objects. 
mAP50-95 is the average mAP of all categories between IoU 
thresholds of 50 and 95% (in 5% intervals), and the IoU formula is 
shown in Equation (1). Precision measures the number of objects 
predicted by the model that are real objects, as shown in Equation (2), 
whereas Recall calculates the proportion of the actual number of 
objects successfully detected by the model, as shown in Equation (3). 
Therefore, YOLO’s evaluation method covers a wide range of factors, 
such as object localization, category classification, learning rate 
adjustment, and model accuracy, to ensure the stability and 
performance of the model in different scenarios by analyzing these key 
indicators. By analyzing these key indicators, we  can effectively 
compare the applicability of different YOLO versions in detecting 
objects in CT images of lung cancer, which further enhances the value 
of computer-assisted diagnosis (CAD) in the field of medical imaging.

 
=

  
  

Area of OverlapIoU
Area of Union  

(1)
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=

+
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TP FN  
(3)

where TP  is a correctly detected object, FP  is the background area 
that is incorrectly detected as an object, and FN  is an object that is 
not detected.

Experimental design and performance 
evaluation

Dataset collection and data processing

The lung-PET-CT-Dx dataset used in this study contained 
CT and PETCT DICOM files and XML-annotated files for 
Adenocarcinoma, Small Cell Carcinoma, Large Cell Carcinoma, 
and Squamous Cell Carcinoma (36). In the data preprocessing 
part of the data, the images downloaded from the public data 
were in the DICOM format; therefore, in this study, the DICOM 
suite was used to convert the DICOM format images into JPG 
format. During the conversion process, the images were adjusted 
to a lung window with a window center of −400 and a window 
width of 1,600, according to the common practice of clinicians 
in lung image analysis, followed by numerical conversion 
according to Equations (4–7). The pixel values of the original 
DICOM images were mapped to a range from 0 to 255, and the 
processed images were saved in JPG format. In terms of 
annotation, the XML annotation of the YOLO training dataset 
was not available. This study used Python programming 
language to convert the XML file to a TXT file so that YOLO 
annotations could be read. The total number of DICOM images 
in the dataset was 30,738, and PET-CT images were removed for 
this study. The final number of data strokes is 20,381. To ensure 
data feasibility, the dataset was split into 16,304 images for the 
training set and 4,075 images for the testing set. The Dataset 
Demographics are shown in Table 1. There were 9,570 males 
(58.70%) and 6,734 females (41.30%) in the training dataset. For 
the testing dataset, there were 9,570 male data points, accounting 
for 58.53% of the total, and 6,734 female datapoints, accounting 
for 41.47%, respectively. In terms of age distribution, the mean 
age of males in the training dataset was 62.2 years old with a 
standard deviation range of 53.1 to 71.4 years, while the mean 
age of females was 62.6 years old with a standard deviation 
range of 52.5 to 72.7 years old. In the empirical dataset, the 
mean age of males was 62.4 years with a standard deviation 

range of 53.0–71.9 years, while the mean age of females was 
62.7 years with a standard deviation range of 52.7–72.8 years.

 ( )= ∗ +p p s iR I R R  (4)
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where pR represents the original DICOM image, pI denotes the 
pixel value of the current DICOM image, sR  is the Rescale Slope value, 
iR  is the Rescale Intercept value, minW  is the minimum pixel value 

after conversion, maxW  is the maximum pixel value after conversion, 
cW  refers to the Window Center value for conversion, wW  represents 

the Window Width value for conversion, and pR is the intensity-
normalized value after standardization.

Experimental environment and parameter 
settings

All YOLO versions were based on an ultralytics package and 
trained on an NVIDIA RTX 4090 GPU. The programming language 
in this model is Python 3.10. All model parameter settings are shown 
in Table 2. The performance of the model versions is shown in Table 3.

Performance evaluation

The results exhibit the Box_Loss of each YOLO version for both 
the training and test datasets. It is observed that YOLOv10 performs 
poorly in lung cancer detection, as indicated by its higher loss value 
compared to the other models. The performances of the other models 
were comparable, demonstrating better learning rates and more 
accurate target localization. YOLOv8 results revealed that the best 
Box_Loss for the training dataset was 1.371, followed by YOLOv9 at 
1.372. For the test dataset, YOLOv9 performed the best, with a Box 
Loss of 1.45, followed by YOLOv8 at 1.47. Figure 2a illustrates Box_
Loss for the training dataset, and Figure 2b presents Box_Loss for the 
test dataset.

TABLE 1 Dataset demographics.

Demographic 
information

Training dataset Testing dataset

Male Female M F

Sex 9,570 (58.70%) 6,734 (41.30%) 2,385 (58.53%) 1,690 (41.47%)

Age 62.2 (53.1–71.4) 62.6 (52.5–72.7) 62.4 (53.0–71.9) 62.7 (52.7–72.8)
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The results show the CLS_Loss of each YOLO version for both the 
training and test datasets. It is observed that YOLOv10 performs 
poorly in lung cancer detection, as indicated by its higher loss value 
compared to the other models. The performance of the other models 
was comparable, demonstrating better learning rates and more 
accurate target localization. YOLOv8 results revealed that Box_Loss 
exhibited the best performance on the training dataset at 1.371, 
followed by YOLOv9 at 1.372. For the test dataset, YOLOv9 
demonstrated the best performance, with a box loss of 1.45, followed 
by YOLOv8 at 1.47. Figure 2a shows Box_Loss for the training dataset, 
and Figure 2b shows Box_Loss for the test dataset.

The results show the CLS_Loss values of each YOLO version for 
both training and test datasets. YOLOv10 performed poorly in lung 
cancer detection, as indicated by its higher loss value compared to the 
other models. The performances of the other models were comparable, 
demonstrating better learning capability and more accurate target 

localization. YOLOv8 achieved the best CLS_Loss during training at 
0.59, followed by YOLOv9 at 0.62. For the test dataset, YOLOv8 again 
performed the best, with CLS_Loss = 0.65, followed by YOLOv9 at 
0.69. Figure 3a shows CLS_Loss for the training dataset, and Figure 3b 
shows CLS_Loss for the test dataset.

The results show the DFL_Loss of each YOLO version for both the 
training and test datasets. It was observed that YOLOv10 performed 
poorly in lung cancer detection, as indicated by its higher loss value 
compared to the other models. The performances of the other models 
were comparable, demonstrating better learning capability and more 
accurate target localization. YOLOv8 achieved the best DFL_Loss in 
the training dataset at 1.42, followed by YOLOv9 at 1.43. For the test 
dataset, YOLOv9 performs best with a DFL_Loss of 1.47, followed by 
YOLOv8 at 1.48. Figure 4a illustrates the DFL_Loss for the training 
dataset, whereas Figure 4b presents the DFL_Loss for the test dataset.

The results show the detection performance of each YOLO version 
on the test set. Figure 5 illustrates the evaluation metrics, including 
mAP50, mAP50-95, Precision, and Recall. Among these, Figure 5a 
shows that YOLOv8 achieves the highest mAP50 score (94.01%), 
followed by YOLOv9, YOLOv11, and YOLOv5, while YOLOv10 
performs the worst. Similarly, in Figure  5b, YOLOv8 again 
demonstrates the best performance with an mAP50-95 score of 
55.70%, followed by YOLOv9, YOLOv5, YOLOv11, and YOLOv10, 
which are the weakest models. For the Precision metric shown in 
Figure 5c, YOLOv8 achieved the highest accuracy of 90.32%, followed 
by YOLOv9, YOLOv11, and YOLOv5, with YOLOv10 ranking the 
lowest. The Recall metric, as presented in Figure 5d, also indicates that 
YOLOv8 leads with 84.91%, followed by YOLOv9, YOLOv5, and 
YOLOv11, whereas YOLOv10 again performs the worst. Overall, 
YOLOv8 consistently outperformed the other models across all 
evaluation metrics, whereas YOLOv10 showed the weakest 
performance. Figure 6 presents the prediction results of the YOLOv8 
model on the test dataset, highlighting its efficacy in lung cancer 
detection. In the figure, A corresponds to Adenocarcinoma, B to Small 
Cell Carcinoma, E to Large Cell Carcinoma, and G to Squamous 
Cell Carcinoma.

TABLE 2 Model parameter settings.

Parameters Values

Epochs 100

Image_size 512

Batch_size 16

Optimizer Adam

Pretrained False

TABLE 3 Performance of the model versions.

Parameters Size mAPval50-95 Params FLOPs

YOLOv5 640 49.0 25.1 64.2

YOLOv8 640 50.2 25.9 78.9

YOLOv9 640 51.4 20.1 76.8

YOLOv10 640 51.1 15.4 59.1

YOLOv11 640 51.5 20.1 68.0

FIGURE 2

Box loss for each model in the training set test set. (a) For training dataset. (b) For testing dataset.
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Table 4 presents the mean and standard deviation of each 
model for the different indicators in this study. From the results, 
it can be seen that the box_loss, cls_loss, and dfl_loss indicators 
of YOLOv10  in the Training and Tesing phases show more 
significant differences in the values compared with the other 
models, which reveals greater fluctuations, probably reflecting 
the model’s loss function convergence or the higher error in the 
training process. YOLOv8 demonstrated better performance in 
terms of Precision, Recall, mAP50, and mAP50-95 compared to 
other models in terms of the key performance indicators, which 
indicates that the model has a stronger advantage in terms of the 
accuracy of object detection and the overall generalization 

ability. These results may be related to YOLOv8’s architecture 
optimization, feature extraction capability, and better anchor-
free design, which allows it to maintain stable detection 
accuracy under different IoU thresholds.

Table  5 shows a comparison of the performance of the 
models using the paired t-test and the statistical analysis results 
with the best-performing YOLOv8 model. Through this test, 
we  obtained p-values that showed statistically significant 
differences between the models and YOLOv8 for the mAP50, 
mAP50-95, Precision, and Recall metrics, with p-values less 
than 0.001 indicating that these differences were 
statistically significant.

FIGURE 4

DFL_Loss for each model in the training and test sets. (a) For training dataset. (b) For testing dataset.

FIGURE 3

CLS loss for each model in the training and test sets. (a) For training dataset. (b) For testing dataset.
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Discussion

In this study, YOLOv5, YOLOv8, YOLOv9, YOLOv10, and 
YOLOv11 were comprehensively compared and analyzed for object-
detection tasks in lung cancer CT images. The experimental results 
indicate that YOLOv8 outperforms the other versions in terms of 
mAP50, mAP50-95, Precision, and Recall metrics, demonstrating the 
highest detection performance. In conclusion, YOLOv8 is the most 
promising model for lung cancer object detection, tumor localization, 
and type classification, and it provides more accurate auxiliary 
diagnostics for medical image analysis.

In terms of computational resource requirements, YOLOv8 has a 
higher number of parameters (params) and floating-point operations 
(FLOPs) than the other YOLO versions. These results suggest the 
increased complexity and computational demands of feature 
extraction and deep learning processes while also reinforcing their 
advantages in high-accuracy application scenarios.

This study excluded PET/CT datasets and focused on CT image 
analyses. Specific assumptions regarding artifacts have not been made; 
therefore, the model may not be able to completely eliminate the influence 
of artifacts on diagnosis. In practice, the results of the model should 
be  used in conjunction with the clinician’s interpretation to ensure 
diagnostic accuracy. In addition, because the performance of the model 
may be affected by the type of equipment and data source, continuous 
data updates and fine-tuning are required in the future to enhance its 
adaptability and ensure its stability in different clinical settings.

The CT-based object detection model for lung cancer can help 
medical professionals accurately locate lung cancer lesions, thereby 
enhancing diagnostic precision. In predicting lung cancer types, the 
model achieves an accuracy of 90.32%, demonstrating its feasibility 
and practical application value. The integration of this technology can 
support clinicians in making early diagnoses and developing timely 
and appropriate treatment plans, ultimately contributing to improved 
patient survival rates and prognoses.

FIGURE 5

Model effectiveness evaluation. (a) mAP50, (b) mAP50-95, (c) Precision, and (d) Recall.
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FIGURE 6

YOLOv8 model prediction results.

TABLE 4 Statistical results of indicators of models.

Indicators YOLO5 YOLO8 YOLO9 YOLO10 YOLO11

Training_box_loss 1.6 (1.5–1.7) 1.6 (1.5–1.7) 1.6 (1.5–1.7) 3.3 (3.1–3.5) 1.6 (1.5–1.7)

Training_cls_loss 1.1 (0.8–1.4) 1 (0.7–1.4) 1.1 (0.8–1.4) 2.3 (1.7–3) 1.1 (0.8–1.4)

Training_dfl_loss 1.5 (1.4–1.5) 1.5 (1.4–1.5) 1.5 (1.4–1.5) 3 (2.8–3.1) 1.5 (1.4–1.5)

Testing_box_loss 1.6 (1.5–1.7) 1.6 (1.4–1.7) 1.5 (1.4–1.6) 3.2 (2.9–3.4) 1.6 (1.5–1.7)

Testing_cls_loss 1 (0.6–1.4) 0.9 (0.5–1.3) 0.9 (0.6–1.3) 2 (1.3–2.7) 1 (0.6–1.5)

Testing_dfl_loss 1.6 (1.5–1.6) 1.6 (1.5–1.6) 1.5 (1.5–1.6) 3.1 (3–3.3) 1.6 (1.5–1.6)

Precision 0.7 (0.5–0.9) 0.8 (0.6–0.9) 0.7 (0.6–0.9) 0.7 (0.5–0.8) 0.7 (0.5–0.9)

Recall 0.7 (0.5–0.8) 0.7 (0.5–0.9) 0.7 (0.5–0.9) 0.6 (0.5–0.8) 0.7 (0.5–0.8)

mAP50 0.7 (0.5–0.9) 0.8 (0.5–1) 0.7 (0.5–1) 0.7 (0.5–0.9) 0.7 (0.5–0.9)

mAP50-95 0.4 (0.3–0.5) 0.4 (0.3–0.6) 0.4 (0.3–0.6) 0.4 (0.3–0.5) 0.4 (0.3–0.5)
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This study was conducted using publicly available datasets. 
Future research should focus on validating the model using 
clinical data obtained from hospitals. The inclusion of data from 
diverse ethnic groups enhances the credibility and generalizability 
of the model. In future research, this study will incorporate 
additional deep-learning models to further evaluate and enhance 
the effectiveness of predictive modeling. Advanced image 
recognition techniques, such as U-Net- and Transformer-based 
models, will be integrated for model training and comparative 
analysis to determine their potential in improving prediction 
accuracy and reliability.

Conclusion

Early diagnosis of lung cancer and accurate identification of 
cancer types are crucial challenges in modern medicine. The 
application of artificial intelligence can significantly aid doctors 
in rapidly identifying both the type and location of lung cancer, 
representing an important breakthrough in medical diagnostics. 
This study compares different versions of YOLO to determine 
which model yields the best predictive performance. The results 
indicate that the YOLOv8 model outperforms the other four 
YOLO versions, achieving a precision of 90.32% and a recall of 
84.91%. These findings demonstrate that YOLOv8 can effectively 
assist physicians in diagnosing lung cancer with high accuracy.
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