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Purpose: This study aims to conduct a bibliometric analysis of global publications 
on the application of artificial intelligence (AI) in high myopia (HM).

Methods: We retrieved publications on AI in HM from the Web of Science Core 
Collection (WoSCC) database, MEDLINE and Chinese Science Citation Database 
(CSCD) with data up to 2024. The analysis focused on publication and citation 
trends, identifying key articles, influential countries, institutions, authors, and 
journals. Additionally, we explored research domains and emerging keywords.

Results: A total of 167 relevant publications were included. The first AI-
related paper on HM was published in 2017, with a significant surge in 2021, 
followed by a consistent increase in publication and citation counts over the 
next 3 years. China emerged as the most productive country, with the most 
extensive international collaboration. East Asian authors dominated the top 10 
most influential authors. Yang, Weihua and Investigative Ophthalmology & 
Visual Science (IOVS) contributed the most publications among authors and 
institutions, respectively. Keyword analysis revealed that retinal imaging-related 
terms remained a consistent research focus, while newly emerging keywords 
included “automated detection” and “childhood.”

Conclusion: Recent advancements in AI applications for HM have been 
significant and are expected to continue. Future research will likely focus on 
multimodal imaging and improving algorithm accessibility. Our findings offered 
the first comprehensive overview of global research on AI in HM, thus providing 
valuable insights for researchers to understand the current status and future 
trends in this field.
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Introduction

Myopia is one of the significant global healthcare challenges, with high myopia (HM) 
being a particular concern (1–3). HM is defined as a condition in which the spherical 
equivalent refractive error is ≤ −6.00 D when ocular accommodation is relaxed (4). By 2050, 
HM is expected to affect 9.8% of the global population (5). The axial elongation associated 
with HM increases the risk of structural changes in the posterior segment of the eye, including 
posterior staphyloma, myopic maculopathy, and HM-related optic neuropathy (3, 4, 6). These 
changes may lead to a decline in best-corrected visual acuity (7). Additionally, HM serves as 
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a foundational ocular condition for many other eye diseases, 
complicating their diagnosis and treatment (6–9). Therefore, research 
into HM is of significant importance.

Artificial intelligence (AI) has gained significant global attention 
in recent years (10). AI offers unique advantages in medical imaging 
analysis by enabling systems to extract valuable information from 
digital images for advanced analysis (11, 12). Since ocular imaging is 
fundamental to ophthalmology, AI holds enormous potential in this 
field (11, 13–15). AI-based large language models (LLMs) also 
contribute to the equitable distribution of ophthalmic healthcare 
resources and community monitoring of chronic eye diseases (16). 
HM research is especially well-suited for AI, with applications like 
fundus image analysis for HM-related retinopathy and deep learning 
models (DLMs) predicting HM progression and complications (11–
13, 16). In fact, numerous studies have already been published in 
this area.

Bibliometric analysis is a statistical method that quantitatively 
assesses research achievements and identifies hotspots by evaluating 
the research status of countries, institutions, authors, and journals (17, 
18). With a history spanning over a century, bibliometric analysis has 
been widely applied in medicine to explore its development and 
emerging trends (19, 20). While bibliometric studies on myopia and 
HM have been conducted (21, 22), there is a lack of bibliometric 
analysis on AI in HM. This gap has become even more pronounced as 
AI-related HM research has surged in recent years, making it 
challenging to identify key areas and current trends (23–25). This 
highlights the urgent need for a bibliometric analysis of AI-related 
HM research. Therefore, our study aims to address this challenge by 
retrieving relevant papers from the Web of Science Core Collection 
(WoSCC), MEDLINE and Chinese Science Citation Database 
(CSCD), providing an overview of global AI-related HM research, 
identifying key themes, and predicting future trends. These insights 
are valuable for ophthalmic clinicians and researchers.

Methods

Data collection

The WoSCC is known for its rigorous selection criteria and high-
quality coverage across multiple disciplines, including journals, 
conference papers, and patents (26, 27). MEDLINE, as a core 
component of PubMed, offers over 31 million biomedical references 
and is widely recognized in life sciences research (28). The CSCD 
provides structured and accurate data on Chinese academic output 
(27). All three databases are considered ideal for bibliometric analysis 
due to their authority, broad coverage, and data quality. To search for 
relevant data, we combined at least one keyword related to HM and at 
least one keyword related to AI to form the query. The detailed query 
formulation was as follows: TS = (“AI” OR “artificial intelligence” OR 
“intelligent” OR “data learning” OR “robotic*” OR “computer vision” 
OR “machine learning” OR “deep learning” OR “deep network*” OR 
“neural learning” OR “algorithm” OR “neural network*” OR “expert* 
system*” OR “large language model*” OR “LLM” OR “multimodal 
model*” OR “multimodal learning” OR “transformer model*” OR 
“AI* classification” OR “image segmentation” OR “domain adaptation” 
OR “model generalization” OR “feature extraction” OR “object 
detection” OR “model interpretability” OR “transfer learning”) AND 

TS = (“high myopia” OR “pathologic myopia” OR “degenerative 
myopia” OR “progressive myopia” OR “myopic maculopathy” OR 
“myopic choroidopathy” OR “myopic degeneration” OR “highly 
myopic eyes” OR “high myopic patients” OR “high degree myopia” OR 
“severe myopia”). The search timeframe was extended until December 
31, 2024, and the document types were limited to articles and 
proceedings papers. The final search was conducted on April 14, 2025. 
A total of 356 documents were identified for further screening.

Data screening

To exclude irrelevant documents from the retrieved set, 
we established the following inclusion criteria: (i) involvement of AI 
technology, including deep learning, machine learning, and LLM, etc.; 
(ii) the focus should be on HM or its related complications, diagnoses, 
and treatments, etc. If the study included multiple diseases, HM 
condition should be the primary focus. After a careful review of their 
titles and abstracts by two ophthalmologists, Wang Xuze and Fang 
Zhi, 167 documents were included for the bibliometric analysis.

Bibliometric analysis

All the data were extracted from the three aforementioned 
databases, including metrics of publication numbers, countries and 
regions, authors, citations, self-citations, and H-indexes. The H-index 
serves as a reference metric, reflecting the impact of a researcher, 
country, institution, or journal on the development of a specific 
scientific field (29). Descriptive indices were extracted from databases, 
and the co-occurrence network was constructed using VOSviewer 
(software, version 1.6.20) (30). R (programming language, version 
4.4.2) and its Biblioshiny tool (package, version 4.1.2) were employed 
to create word-cloud maps and analyze word trends (31). CiteSpace 
(software, version 6.3.1) was used to generate keyword burst detection 
maps (32).

Results

Analysis of publications and citations

Based on the search strategy and inclusion criteria, 167 documents 
were included (Figure 1), consisting of 144 articles and 23 conference 
proceedings, published between 2017 and 2024. We  conducted a 
second review of 32 articles published before 2017 from the results 
retrieved using the above search strategy. They were excluded since 
HM was not the primary focus or lacking of AI. Figure 2 illustrated 
the annual trends in publications and citations related to AI in 
HM. Before 2020, research on AI in HM was limited, but there was a 
significant increase in publications since then, particularly in the past 
3 years, with annual publications consistently exceeding 30. The total 
number of citations reached 1,402, with an average of 8.40 citations 
per article and an H-index of 20. Polynomial regression analysis was 
performed to model the publication and citation trends. The fitting 
curves, y = 0.3393×2-1363.9x + 1E+06 (R2 = 0.9248) and 
y = 15.964×2-64431x + 7E+07 (R2 = 0.9738), represented the 
publication and citation numbers over time, respectively. Both trends 
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were similar, indicating that AI in the HM field attracted widespread 
attention from researchers in the past 5 years, with rapid development 
now reaching a stable phase.

Table 1 highlighted the 10 most-cited papers in the field. The most 
impactful study, conducted by Yizhi Liu and his team at Sun Yat-sen 
University, was published in 2018 in PLOS Medicine (33). This paper 

detailed the application of big data and machine learning technology 
to develop an algorithm capable of predicting the onset and prognosis 
of HM among Chinese school-aged children. The remaining top 10 
most-cited papers primarily focused on the retinal conditions 
associated with HM and related AI applications.

Analysis of top productive countries and 
their collaboration networks

A total of 29 countries contributed to the research on this topic. 
Mainland China led with 111 publications (66.5%), followed by the 
United States with 20 papers (12.0%) and Singapore with 18 papers 
(10.8%). Figure 3 showed the publication trends of AI-related HM 
research in the top 3 productive countries. It highlighted that China 
experienced the fastest increase in the number of publications since 
2020. This trend indicated that China was likely to maintain its 
leadership in this field, with a continued and steady rise in 
publication numbers.

Co-occurrence analysis of countries was also performed, revealing 
five distinct clusters (Figure 4): (1) Mainland China, the USA, and 
Australia; (2) the UK, Italy, South Korea, and France; (3) Austria, 
Germany, Japan, Russia, Singapore, Switzerland, and Taiwan China; 
(4) Saudi  Arabia, Pakistan, and Egypt; (5) Canada and India. 

FIGURE 1

Detailed flowchart of this study.

FIGURE 2

Trends in the number of AI-related publications and citations in HM.

https://doi.org/10.3389/fmed.2025.1567440
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


W
an

g
 et al. 

10
.3

3
8

9
/fm

ed
.2

0
2

5.156
74

4
0

Fro
n

tie
rs in

 M
e

d
icin

e
0

4
fro

n
tie

rsin
.o

rg

TABLE 1 Top 10 papers with the most citations relevant to AI applications in HM.

Title Corresponding authors Journal Publication year Annual citations Total citations

Prediction of myopia development among Chinese 

school-aged children using refraction data from 

electronic medical records: A retrospective, 

multicenter machine learning study

Liu, YZ PLOS MEDICINE 2018/11 14.5 113

Retinal photograph-based deep learning algorithms 

for myopia and a blockchain platform to facilitate 

artificial intelligence medical research: a 

retrospective multicohort study

Ting, DSW LANCET DIGITAL HEALTH 2021/5 20 91

Hybrid Intelligence-Driven Medical Image 

Recognition for Remote Patient Diagnosis in 

Internet of Medical Things

Yu, KP IEEE JOURNAL OF BIOMEDICAL AND HEALTH 

INFORMATICS

2022/12 23.5 91

Association Between Optic Nerve Head 

Deformation and Retinal Microvasculature in High 

Myopia

Park, SW AMERICAN JOURNAL OF OPHTHALMOLOGY 2018/4 7.75 59

Deep Learning Approach for Automated Detection 

of Myopic Maculopathy and Pathologic Myopia in 

Fundus Images

Ohno-Matsui, K OPHTHALMOLOGY RETINA 2021/12 10.6 50

Development and validation of a deep learning 

system to screen vision-threatening conditions in 

high myopia using optical coherence tomography 

images

Lin, HT BRITISH JOURNAL OF OPHTHALMOLOGY 2022/5 11.25 45

Pathological myopia classification with 

simultaneous lesion segmentation using deep 

learning

De Boever, P COMPUTER METHODS AND PROGRAMS IN 

BIOMEDICINE

2021/2 9 41

Accuracy of a deep convolutional neural network in 

the detection of myopic macular diseases using 

swept-source optical coherence tomography

Mitamura, Y PLOS ONE 2020/4 7.6 35

Accuracy of Artificial Intelligence Formulas and 

Axial Length Adjustments for Highly Myopic Eyes

Wu, MX AMERICAN JOURNAL OF OPHTHALMOLOGY 2021/3 6.33 35

AI-Model for Identifying Pathologic Myopia Based 

on Deep Learning Algorithms of Myopic 

Maculopathy Classification and “Plus” Lesion 

Detection in Fundus Images

Han, W FRONTIERS IN CELL AND DEVELOPMENTAL 

BIOLOGY

2021/10 7 31
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Countries with limited international collaboration were not 
represented in the network.

Analysis of top productive institutions and 
their collaboration networks

A total of 318 institutions participated in the research. Notably, 
Capital Medical University (22, 13.2%), National University of 
Singapore (16, 9.6%), Singapore National Eye Center (16, 9.6%), 
and Shanghai Jiao Tong University (16, 9.6%) made substantial 
contributions. Supplementary Figure 1 presented the co-authorship 
network of institutions. While there was frequent collaboration 
within institutions, institutional collaborations across different 
countries remained less cohesive. Figure 5 offered a closer look at 
the cooperation among the top productive institutions.

The leading journals, and authors

The journals publishing AI-related HM papers were quite diverse 
(Table 2). The journal Investigative Ophthalmology and Visual Science 
(IOVS) published the highest number of papers (12, 7.2%), followed 
by Translational Vision Science and Technology (TVST) and Frontiers 
in Medicine, with 11 (6.6%) and 6 (3.6%) publications, respectively. 
Among the top 10 journals, 8 were ranked Q1 in JCR (2023). Nearly 
half of the AI-related HM papers were published in ophthalmology 
journals (Table 3).

The top 10 authors in this field were listed in Table 4 according to 
the number of publications. The leading contributor in this field was 
Yang Weihua from Shenzhen Eye Hospital, China, with 10 publications 
(5.99%) and 84 citations. Closely following was Daniel Ting from the 
Singapore National Eye Centre, who published 8 papers (5.06%) and 
received 190 citations in total. Asian authors made up the majority of 
the top  10 authors list. The cooperation between authors was 
illustrated in Supplementary Figure 2, which was generated based on 
the Author Contribution Index to minimize potential bias caused by 

differences in author order (34). Although collaboration among 
authors was generally limited, it was clear that authors from the same 
country tended to collaborate more closely with one another.

We further analyzed the relationships among the top five 
countries, journals, and authors, and visualized the results with a 
three-field plot (Figure 6). This plot revealed the journal preferences 
among different countries and authors.

Research hotspots

Keyword analysis identified the most frequently used terms and 
their connections within the field of AI-related HM research. Among 
489 automatically recognized keywords we  focused on those that 
appeared more than five times in the included publications. After 
merging duplicates and excluding irrelevant terms 40 keywords were 
identified. These were categorized into four primary clusters based on 
their co-occurrence frequencies (Supplementary Figure  3): an 
AI-focused cluster (red) an epidemiology-related cluster (green) an 
anatomy-related cluster (yellow) and a cluster associated with 
HM-related diseases (blue).

To illustrate the most frequently used keywords, we created word 
clouds for two time periods: 2017–2022 (Figure 7A) and 2023–2024 
(Figure 7B). “High myopia” and “artificial intelligence” were the most 
dominant keywords throughout the entire period, followed by “deep 
learning” and “fundus image.” Before 2022, key topics also included 
“pathologic myopia,” “optical coherence tomography (OCT),” 
“convolutional neural network,” and “myopic maculopathy.” After 
2022, “myopic maculopathy” gained increased attention, while new 
keywords such as “screening,” “optical coherence tomography 
angiography (OCTA),” “fundus tessellated density” and “intraocular 
lens (IOL) power calculation” emerged. We also extracted the most 
common keywords to generate a trend topics plot using the 
bibliometrix package in R (Supplementary Figure 4).

To further understand when these research hotspots emerged and 
how they evolved, Figure 8 was generated to display the burst strength 
of Title-Abstract-Keywords (TS) across different periods. The findings 
indicated three distinct research focus periods: before 2020 (blood 
flow and pathological myopia), 2020–2022 (biometry, retinopathy, 
progression, deep convolutional neural network and automatic 
segmentation), and 2022–2024 (automated detection, age and 
childhood myopia). These findings aligned generally with the trends 
identified in the trend topic results above.

Discussion

This study explored AI research in HM by analyzing the trend of 
publications, publishing patterns, research activity characteristics, and 
emerging research hotspots through bibliometric data.

The rise in scientific publications and citations often reflects 
advancements in a specific research area. Our analysis indicated that 
the first AI-related HM paper was published in 2017, with low 
publication activity over the next few years (fewer than 10 papers per 
year). However, a significant increase occurred in 2021 (a 300% rise), 
followed by steady annual growth. According to our prediction model, 
this upward trend was expected to continue, reaching a plateau around 
2028. This growth could be attributed to the rapid advancement of AI 

FIGURE 3

Publication trends and prediction curve of global and leading 
countries in AI-related HM research. This figure uses full counting, 
meaning each country listed in a paper contributes a weight of 1.
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technologies and the increasing interest in their application to 
ophthalmology (10, 16). Additionally, the rise may also be linked to 
the recent global rise in HM incidence and the growing attention to 
HM and its complications (2, 35). Since 2022, publication levels 
remained consistently high (over 30 papers annually), potentially 
influenced by the release of ChatGPT in that year, which sparked 
broader interest in AI technologies and fueled the growth of “AI+” 
academic research (36, 37), including AI-powered disease detection 
(38), personalized treatment strategies (39), and drug 
development (39).

The most influential paper in this field was published by Liu YZ 
and his team in 2018 (33). It marked the first application of machine 
learning in China to analyze real-world data and develop an algorithm 
for predicting the onset of HM in school-aged children. The study’s 
high citation rate was largely due to its practical impact, as it 
demonstrated how big data and machine learning could enhance the 
prediction of HM outcomes using large-scale electronic health 
records. Notably, 7 of the top 10 most influential papers in this area 
involved AI applications for analyzing retinal images related to HM 
(40–46). This further suggests that fundus-related research is a key 
focus in the application of AI to the field of HM.

The volume of publications from a country or region often reflects 
its interest and expertise in a particular research area. In the field of 
AI-related HM studies, China led significantly (111, 66.5%), according 
to statistics from the WoS intrinsic toolkits, and was expected to 

maintain its dominance. This can be attributed to the high prevalence 
of HM in East Asian countries like China (47, 48), along with China’s 
recent national policies and funding initiatives focused on myopia (49, 
50). Additionally, the rise of innovative Chinese companies 
specializing in AI-based fundus image analysis provided advanced 
tools and technologies (51, 52), further fueling research growth. These 
factors highlight how external support, alongside disease prevalence, 
plays a critical role in driving research progress.

International collaboration has become a preferred approach 
among researchers. China demonstrated the strongest global 
partnerships (total link strength of 69), while other countries also 
engaged in substantial collaborative efforts. This trend was probably 
driven by HM’s status as a global public health challenge (53), making 
joint research an essential strategy. However, AI-related HM studies 
remained concentrated in North America, Europe, Australia, and East 
Asia, with limited contributions from less developed regions, despite 
the significant prevalence of HM in some of these areas. This disparity 
underscores the need to expand research efforts in underserved 
regions. The application of AI, telemedicine, and LLMs might improve 
diagnosis, screening, and routine examinations for HM in these areas, 
bridging the gap in global research and healthcare equity (54, 55).

Academic collaboration among institutions mirrors the trend of 
international partnerships, showing significant activity. Capital 
Medical University stood out with the highest collaboration network 
(total link strength of 96) and served as the largest initiator of 

FIGURE 4

Co-authorship network visualization map of countries and regions. Each node represents a country or region, with the circle size reflecting the 
number of publications. Connecting lines represent collaboration between countries and regions.
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FIGURE 5

Chord diagram of co-authorship among the top institutions. Node data are arranged radially along the circumference, with weighted arcs (indicating 
collaboration strength) connecting the nodes.

TABLE 2 Top 10 productive journals ranked by publication count.

Source title Record count 
(%)

Citations H-index IF (2023) JCR (2023)

Investigative Ophthalmology 

and Visual Science

12 (7.19) 51 4 5.0 Q1

Translational Vision Science 

and Technology

11 (6.59) 124 6 2.6 Q2

Frontiers in Medicine 6 (3.59) 37 4 3.1 Q1

Scientific Reports 6 (3.59) 80 4 3.8 Q1

Eye 5 (2.99) 39 3 2.8 Q1

Journal of Translational 

Medicine

4 (2.40) 17 3 6.1 Q1

Frontiers in Cell and 

Developmental Biology

4 (2.40) 54 4 4.6 Q1

American Journal of 

Ophthalmology

4 (2.40) 94 2 4.1 Q1

Eye and Vision 4 (2.40) 25 2 4.1 Q1

International Journal of 

Ophthalmology

4 (2.40) 8 3 1.9 Q2

BMC Ophthalmology 4 (2.40) 7 2 1.7 Q3
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cooperative efforts, despite none of the top 10 authors being affiliated 
with it. Among the top 10 authors, nine were based in East Asia. Yang 
Weihua from Shenzhen Eye Hospital contributed the most 
publications (9 in English, 1 in Chinese), while Daniel Ting from the 
Singapore National Eye Centre received the highest total citations 
(190), averaging 23.75 citations per paper. This highlights the 
prominent role of East Asian researchers in advancing AI-related 
HM research.

The majority of AI-related HM articles were published in 
ophthalmology journals (71, 42.5%), with a notable portion also 
appearing in computer science journals (26/167). Among these, IOVS 
and TVST, both published by the Association for Research in Vision 
and Ophthalmology, led in publication volume and citation count, 
respectively. TVST was particularly popular among authors from 
China and the United States, while researchers from Singapore showed 
a preference for Investigative Ophthalmology & Visual Science. Most 
studies in this field primarily focused on clinical research, whereas the 
application of AI to animal models in HM remained limited. Notably, 
KhalafAllah et  al. (56) utilized DLMs to explore the significant 
thinning of peripapillary tissues during the progression of HM in 
juvenile tree shrews. As reported, AI holds great promise in basic 
experimental research on HM—for instance, it can be integrated with 
gene-edited animal models and advanced imaging techniques to 
enhance the precision, efficiency, and scalability of such studies (57, 
58). In fact, AI has already demonstrated remarkable success in basic 
research across other biomedical fields (59–61), yet its application in 
HM-related animal studies remains underexplored, highlighting the 
need for further investigation.

Thematic analysis of keywords helps clarify current research 
priorities and emerging trends. Based on VoS clustering and 
manual review, we categorized the included literature into several 
key application areas: epidemiology and screening (43, 46, 62), 
automated diagnosis (42, 45), disease monitoring and progression 
prediction (33, 63, 64), treatment planning (65–67), retinal image-
based quantification (68–70), and classification and subtyping (44, 
71). In parallel, a systematic breakdown of AI task categories 
revealed the frequent use of classification (44, 71, 72), segmentation 
(44, 69), prediction (33, 64, 65), quantification (68, 69), and multi-
task learning (70, 73). These task types were often built on fundus 
imaging data, which remains central because of its diagnostic 

value, non-invasive nature, and wide accessibility (74, 75). 
Co-occurrence analysis further confirmed that HM-related 
retinopathy remains a consistently prominent research focus, likely 
due to its significant health burden and its status as a leading cause 
of best-corrected visual acuity loss worldwide (76, 77). 
Furthermore, the reliance on fundus image data for the diagnosis 
and treatment of HM-related retinopathy supported AI-driven 
analysis (78–80), facilitating the development of DLMs for 
improved diagnosis and classification (71). Epidemiology-related 
keywords, such as “screening” and “epidemiology” also gained 
prominence, likely in response to recent public health initiatives 
(49). The growing availability of real-world clinical data further 
strengthened AI models by providing rich external training sets 
(33, 42).

To better illustrate the evolving focus of research in this field, 
we divided the analysis into two periods: 2017–2022 and 2023–2024. 
This division was based on publication trends (with roughly equal 
publication volumes before and after 2022) and the significant AI 
event (36) (in December 2022, the release of ChatGPT-3.5 sparked 
global discussions on AI). In the first period (2017–2022), the word 
cloud prominently featured OCT. This can be  attributed to its 
widespread use in ophthalmology in this period and its unique 
capability to capture high-quality fundus images (81–83). Researchers 
such as Sogawa et al. (45) and Ye et al. (62) aimed to develop DLMs to 
identify retinopathy in HM patients using OCT images, with AUC 
values exceeding 0.95. Liu et al. (69) and Wang et al. (72) also created 
AI models using OCT images to analyze choroidal parameters in HM 
cases. Notably, Yoo et al. (84) introduced a DLM to predict uncorrected 
refractive errors from posterior segment OCT images, further 
showcasing the potential of OCT-based AI applications in this field. 
In the second period (2023–2024), keywords became more varied, 
with no single term taking a clear lead. However, emerging topics like 
IOL implantation power calculation and screening suggested an 
increasing interest in applying AI to HM patients of different age 
groups. This included AI-assisted IOL implantation for age-related 
cataracts in the elderly (65–67, 85) and AI models supporting HM 
screening in school-aged children (63, 68, 86–88). Additionally, other 
emerging keywords, such as OCTA, highlighted the progression of 
retinal imaging techniques for HM, from basic fundus photography 
to OCT, wide-field OCT, and OCTA (83). This trend underscores the 
increasing sophistication and diversity of diagnostic technologies in 
this field.

Our analysis of TS burst trends aligned with the previous findings. 
Before 2022, research primarily focused on fundus-related topics in 
HM. Among the key terms, “blood flow” emerged as an early and 
enduring hotspot. For instance, Zhou et al. (89) employed OCT with 
a split-spectrum amplitude-decorrelation angiography algorithm to 
evaluate parameters, such as the foveal avascular zone area and 
macular blood flow, in HM patients. After 2022, the focus shifted 
toward “age,” with an emphasis on pediatric HM populations. Zhao 
et al. (86), for example, developed an AI-based fully automated system 
for analyzing retinal vascular morphology in children with HM. This 
shift might be driven by an evolving understanding of HM-related 
diseases, with a growing emphasis on early diagnosis and intervention 
before complications arise. At the same time, there was increasing 
awareness of the need to integrate HM management into long-term 
care strategies across all age groups. For instance, Wang et al. (64) 
developed models to accurately predict long-term visual acuity in HM 

TABLE 3 Top 10 Web of Science categories of journals on AI-related HM 
research.

Field: Web of Science categories Record count (%)

Ophthalmology 71 (42.52)

Computer Science 26 (15.57)

Engineering 19 (11.38)

General Internal Medicine 18 (10.78)

Research Experimental Medicine 12 (7.19)

Radiology Nuclear Medicine Medical Imaging 11 (6.59)

Science Technology Other Topics 11 (6.59)

Medical Informatics 6 (3.59)

Imaging Science Photographic Technology 5 (2.99)

Mathematical Computational Biology 5 (2.99)

Neurosciences Neurology 5 (2.99)
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eyes based on clinical and imaging data. These evolving trends 
highlight the expanding and increasingly specialized applications of 
AI in HM research.

Despite the promising potential of AI in HM, several challenges 
persist. First, many studies using DLMs are confined to their own 
datasets and have not been widely applied or validated in real-world 
clinical settings. This gap may be  attributed to multiple factors, 
including data privacy concerns, regulatory barriers, limited clinician 
acceptance, and the inconsistent quality of real-world data—
particularly imaging. For example, in Zhao et  al.’s pediatric HM 
screening model (86), although the reported accuracy reached 94.19%, 
its strict requirements for image quality significantly limited its 
applicability in routine ophthalmic practice, where such ideal 

conditions are not always met. Second, as previously mentioned, most 
AI applications in HM focus on clinical research, with a notable lack 
of foundational studies. This is likely due to the lack of animal models 
that can accurately replicate the pathological features of HM in human 
eyes, thus limiting AI’s potential. Additionally, the absence of large-
scale public datasets of HM hinders the development of models and 
algorithms. We advocate for open-source data sharing to accelerate 
progress in this field. This could include forming international 
consortiums for multi-center data collection and establishing 
standardized, ethical frameworks for secure data sharing (90). Finally, 
the application of AI in HM also raises ethical concerns, such as the 
lack of transparency in how AI models make clinical decisions, which 
may reduce clinician trust and patient acceptance (91, 92). 

TABLE 4 Top 10 authors ranked by publication count.

Author Country Latest affiliation Publications (%) Citations Citations per 
item

Yang, Weihua China Shenzhen Eye Hospital 10 (5.99) 84 8.4

Ting, Daniel Singapore Singapore National Eye Centre 8 (5.06) 190 23.75

Ohno-Matsui, Kyoko Japan Tokyo Medical and Dental University 7 (4.43) 181 25.86

Wong, Tien Yin Singapore Singapore National Eye Centre 7 (4.43) 185 26.43

Jonas, Jost B. Germany Heidelberg University 7 (4.43) 107 15.29

Chen, Qiuying China Shanghai Jiao Tong University 7 (4.43) 41 5.86

Xu, Xun China Shanghai Jiao Tong University 7 (4.43) 36 5.14

Saw, Seang-Mei Singapore Singapore National Eye Centre 6 (3.80) 190 31.67

Hoang, Quan V. Singapore Singapore National Eye Centre 6 (3.80) 139 23.17

Marcus Ang Singapore Singapore National Eye Centre 6 (3.80) 133 22.17

FIGURE 6

Three-field plot analysis displaying the journal preferences of authors from different countries. The three fields represent (1) AU_CO: Country, (2) SO: 
Source Journal, and (3) AU: Authors. The width of the nodes indicates the number of publications, while the width of the connecting lines reflects the 
level of collaboration.
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Incorporating interpretable AI models and clear reporting of decision-
making processes can help improve transparency and support ethical 
integration into clinical practice (93).

Several key areas remain to be explored in the future. First, there 
is an urgent need to develop DLMs for multimodal imaging of HM, 
which would enable more precise and comprehensive diagnosis and 
treatment (70, 73). Currently, this remains an underexplored area. 
Second, improving the accessibility of these algorithmic models is 
crucial. HM, as a chronic condition requiring long-term follow-up 
(94), often coexists with other eye diseases, including glaucoma (9). 
This increases the demand for healthcare resources, which are 
unevenly distributed across the globe (95, 96). Barriers such as poor 
internet connectivity, limited computing infrastructure, and a lack of 
trained personnel hinder AI adoption in low-income regions. 
Developing low-cost, efficient models could help bridge this gap and 
support wider clinical use. Lastly, there is a growing demand for an 
integrated model that can diagnose, classify, guide treatment, and 

predict postoperative outcomes, addressing the full spectrum of 
clinical needs rather than focusing solely on one aspect of HM.

This study represented the first bibliometric analysis of AI-related 
research in HM, particularly in the context of the global rise in AI 
interest following the advent of technologies like ChatGPT. Our 
findings will offer valuable insights into the evolution of this field, 
helping researchers identify key trends and focus areas for future 
investigations. However, the study does have some limitations. First, 
although we included two major medical databases—WoSCC and 
MEDLINE—and added CSCD to reflect China’s leading role in the 
field, some non-English databases were still excluded. Among them, 
only WoSCC provided comprehensive bibliometric data, while others 
may lack complete publication statistics. Additionally, differences in 
author positions may introduce bias in evaluating individual influence 
and collaboration networks. As there is currently no universally 
accepted method to quantify author contributions by position, 
we referred to the percentage-based Author Contribution Index to 

FIGURE 7

(A) Word cloud of the most frequent keywords from 2017 to 2022. (B) Word cloud of the most frequent keywords from 2023 to 2024.
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construct the author collaboration network (Supplementary Figure 2). 
Furthermore, when calculating publication counts for countries using 
the WoS built-in toolkit, internationally co-authored articles were 
counted for all listed countries, as the tool only supports full counting. 
This resulted in an inflated representation of each country’s publication 
count. The same approach was also applied to the analysis of 
institutions and authors. To provide a more accurate representation of 
relative proportions, the global total publication count in Figure 3 was 
calculated by summing the publication counts of each country.

Conclusion

This study provided an overview of global research on AI in the 
field of HM for the first time. Recent advancements in AI applications 
for HM have been significant, and this trend is expected to continue. 
Future research will likely focus on multimodal imaging and 
improving algorithm availability.
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SUPPLEMENTARY FIGURE 1

Co-authorship network visualization map of institutions. Each node 
represents an institution, with the circle size reflecting the number of 

publications. Connecting lines represent collaboration 
between institutions.

SUPPLEMENTARY FIGURE 2

Co-authorship network visualization map of authors. Each node represents 
an author, with the circle size reflecting the number of publications. 
Connecting lines represent collaboration between authors.

SUPPLEMENTARY FIGURE 3

Keyword co-occurrence map showing five clusters: an AI-focused cluster 
(red), an epidemiology-related cluster (green), an anatomy-related cluster 
(yellow), and a cluster related to HM-associated diseases (blue). Node size 
represents frequency, and connecting lines show co-occurrence 
between keywords.

SUPPLEMENTARY FIGURE 4

Trend topics of author’s keywords. The position of the circles on the timeline 
indicates the median year of high-frequency keywords, with circle size 
representing frequency. The blue segments illustrate the time range between 
the first and third quartile of keyword usage.
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