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Background: Alzheimer’s is a disease in the human brain characterized by 
gradual memory loss, confusion, and alterations in behavior. It is a complex 
and continuously degenerative disorder of the nervous system, which still 
has early detection and diagnosis as challenges to overcome. The disease 
causes significant damage in individuals suffering from the disorder as they 
progressively lose cognitive ability. Its diagnosis and management depend 
primarily on the ability to diagnose early to initiate proper intervention. 
Unfortunately, this remains a difficult feat, given the resemblance of early signs 
of the disease with symptoms associated with normal aging and other disorders 
involving cognition. While clinical tests have their limitations, brain imaging such 
as MRI can provide detailed insights into changes in the brain. Deep learning 
techniques, mainly when applied to MRI data, have proven helpful in the early 
detection of Alzheimer’s Disease.

Methods: In the proposed study, a lightweight, self-attention-based vision 
transformer (ViT) is employed to predict Alzheimer’s disease using MRI images 
from the OASIS-3 dataset. Data pre-processing and augmentation techniques 
have been added to strengthen the model’s generalization ability and enhance 
model performance, which is visualized using Grad-Cam.

Results: The proposed model achieves exceptional results with an accuracy of 
98.57%, approximate precision of 98.7%, Recall of about 98.47%, and specificity 
of 98.67%. It also achieves a Kappa Score of 97.2% and an AUC ROC Score of 
99%.

Conclusion: This paper, along with comprehensive data pre-processing and 
augmentation, represents one of the major steps toward achieving more robust 
and clinically applicable models for Alzheimer’s disease prediction. The proposed 
study indicates that deep learning models have the potential to enhance the 
diagnosis of Alzheimer’s disease. By integrating Deep learning techniques with 
careful data processing, more reliable early detection models can be developed, 
which in turn leads to better treatment outcomes.
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1 Introduction

Alzheimer’s disease (AD) is an irreversible and also progressive 
neurodegenerative disease that gradually deteriorates the memory, 
cognitive abilities, and activities of daily living. AD accounts for 
almost 60 to 80% of cases of dementia. While brain cells gradually 
degenerate and die, symptoms in an AD patient worsen and include 
confusion, disorientation, and forgetting. Daily activities are impacted 
when the person becomes unable to perform simple tasks. This disease 
has been widely thought to occur in old age; however, the exact 
etiology is still not clear, with a possible interaction of genetic 
predisposition, environment, and lifestyle factors thought to act 
causally on the disease. Dementia generally is considered to refer to a 
syndrome involving a group of progressive memory disorders and 
difficulties thinking and daily functioning. Older persons are said to 
have been the most populous part of individual cases of dementia. In 
contrast, it is noted that younger-onset dementia makes up an even 
smaller proportion of people with dementia. Injury or disease causes 
brain damage. Alzheimer’s disease is mainly the cause of more than 
half of dementia in 60–70 percent of cases (1). Alzheimer’s disease is 
the first category of dementia. It involves brain diseases that produce 
different effects, such as loss of memory affecting cognition, problems 
with behavior along with memory being affected, and so forth (2). The 
other degrees of dementia are vascular dementia, Lewy bodies 
dementia, and frontotemporal dementia. Symptoms of dementia, such 
as memory loss, confusion, problems with problem-solving, mood or 
behavioral changes, etc., become more severe with time (3). The main 
risk factors are the following: advanced age, hypertension, diabetes, 
obesity, smoking, heavy drinking, depression and social isolation, 
lousy nutrition, and low physical or cognitive activity (4).

Although there is still no cure, proactive measures can enhance 
the quality of life among dementia patients and, by extension, their 
family caregivers. Keeping cognitions intact requires physical and 
social activities, treatment of other health conditions, and mental 
activity. Caregiver emotional and physical exhaustion is most often 
viewed as the prime reason for people seeking to institutionalize 
people with dementia. It makes it very important for a caregiver to 
find support from family and professionals, as well as engage in stress 
management programs. Advocacy is itself necessary since most people 
here are suffering from stigma, poor care, and rights violations arising 
from physical and chemical restraints in care centers. A rights-based 
legislative framework is required to dignify high-quality care for the 
lives of the people who have dementia and their caregivers. There is 
awareness, early intervention, and community involvement. People 
with dementia can do things to be active and involved and keep their 
brains stimulated, which will help even maintain their daily 
functioning and improve their quality of life (5). Provide physical, 
participatory activity, social interaction, or environmental stimulation 
to maintain daily functioning. Caring for and supporting a person 
living with dementia has its challenges, which really affect the health 
and well-being of the carer. As a supporter of the person living with 
dementia, this means reaching out to family and friends as well as 
professionals for support and making time to take care of oneself on 
a regular basis. Try some stress management techniques like 
mindfulness-focused exercises and seek professional help and advice 
if necessary. Diagnosis of dementia and determination of the subtype 
is a long and complicated process involving many parts of information 
pooled together from different sources like clinical history. The 

2023–2024 World Health Organization data (6) highlights country-
specific mortality rates per 100,000 for Alzheimer’s disease, 
differentiated by gender. Supplmementary Figure S1 illustrates a 
comparative bar graph analysis, shedding light on the varying impacts 
of this widespread condition across populations.

This research has been motivated by the great need for better 
early detection and diagnosis of dementia, a progressive 
neurological illness that plagues millions worldwide. Alzheimer’s 
Disease (AD) and other types of dementia are particularly 
troublesome because the methods of diagnosis often depend on 
clinical behavior, which manifests only in the later stages of the 
disease. Effectively detecting the condition early is essential to its 
remedial interventions and to delaying its progression; established 
methods fail to identify subtle changes in the brain, which would 
precede these overt symptoms.

In populous countries like the United States (1), approximately 4.5 
million individuals are currently living with Alzheimer’s disease, with 
this figure projected to rise to 14 million by 2050. Various machine 
learning techniques and deep learning approaches have been employed 
for dementia classification and prediction using datasets like OASIS 
and ADNI. Deep learning models such as DenseNet201, MobileNet, 
VGG19, and ResNet152 achieved accuracies ranging from 90 to 93%, 
though limited by dataset diversity and overfitting concerns (7). 
Logistic regression with cognitive test predictors from ADNI data 
yielded an 85.8% positive predictive value but lacked long-term 
progression tracking (3). Gradient boosting models, such as Ensemble 
Gradient Boost, reached 91.2% accuracy but suffered from small 
sample sizes and limited clinical relevance (4). Basic Machine Learning 
models, including Gaussian Naïve Bayes and SVM, achieved high 
accuracy (95%) with Cuckoo optimization but were constrained by 
dataset diversity (5). Previous studies using models like Naive Bayes 
and MLP demonstrated promising F-measures but encountered 
challenges with generalization (6). Deep reinforcement learning 
balanced MRI classes with 90.23% accuracy, but small sample sizes 
restricted real-world applicability (8). Supervised learning with 
convolutional neural networks from ADNI achieved accuracies of up 
to 93% but lacked clinical validation (7). Questionnaire-based studies, 
while simpler, recorded moderate accuracy (0.81) but were biased due 
to self-reported data (9).

The limitations of machine learning algorithms are particularly 
significant in healthcare, where reliability, transparency, and trust 
are critical. A major concern is the lack of explainability, as many 
ML models function as “black boxes,” offering little intuition into 
their decision-making processes, which makes it difficult for 
healthcare professionals to trust and apply them. Many studies (2, 
3) rely on small datasets, such as OASIS, ADNI, or limited MRI 
sessions, which restrict generalizability and increase the risk of 
overfitting, while a lack of clinical validation further limits their 
real-world applicability. Dataset biases and limited diversity, 
particularly in studies using questionnaire-based data, hinder 
broader applicability to diverse populations (8). Overfitting remains 
a challenge, especially in complex models like Ensemble Gradient 
Boosting or Gray Wolf Optimization-based EDCM (7), and reliance 
on self-reported data introduces biases that reduce reliability (8). 
Short-term data constraints further impede the ability to predict 
long-term dementia progression, while the complexity of these 
models often affects their interpretability and practical deployment. 
However, traditional machine learning methods have struggled 
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with the complexities of AD detection (10–12). Identifying specific 
features within relevant brain image patterns is essential but 
remains a difficult task.

Additionally, ML methods require large, high-quality labeled 
datasets, which are tough to obtain due to privacy concerns, 
annotation costs, and the need for domain-specific expertise. The 
computational resources needed to train and optimize complex 
models can be prohibitive in resource-constrained environments. In 
this paper, we  aim to address these issues by moving beyond 
traditional ML/DL methods for early AD detection based on 
handwriting, focusing on enhancing explainability to provide 
healthcare professionals with clear, interpretable insights, fostering 
trust, and improving clinical applicability.

The current study introduces AlzheimersViT, a hybrid 
architecture designed to detect subtle structural changes in the 
brain as early indicators of dementia by combining the strengths of 
Convolutional Neural Networks (CNNs) and Vision Transformers 
(ViTs). AlzheimersViT leverages MobileNet V2’s efficient inverted 
residual blocks and depth-wise separable convolutions, which 
optimize computational performance while retaining complex 
feature representations. These are complemented by Vision 
Transformers, which capture long-range dependencies and global 
context, enhancing the model’s ability to recognize fine-grained 
patterns in brain imaging data. The architecture incorporates linear 
bottleneck layers and reversible residual connections to mitigate the 
vanishing gradient problem and improve training stability in deep 
networks. Additionally, it offers adaptability through 
hyperparameters like width and resolution multipliers, enabling 
customization for resource-constrained environments. This 
combination of efficiency, flexibility, and accuracy makes 
AlzheimersViT a powerful tool for early-stage dementia detection, 
with significant potential for real-time applications on mobile and 
embedded platforms.

Major Contributions of the proposed AlzheimerViT are:

 i The proposed system employs dataset augmentation and 
feature engineering methods on the OASIS-3 dataset to support 
performance and generalization. Techniques used for data 
augmentation include rotation, flipping, shearing, and 
grayscale, hue, saturation, and brightness adjustments to 
bolster the model’s resilience to variability in images.

 ii The proposed system, AlzheimerViT, uses a lightweight Vision 
Transformer to predict Alzheimer’s disease from MRI images, 
demonstrating the feasibility and effectiveness of modern 
neural networks in medical diagnostics.

 iii AlzheimerViT was evaluated and compared with other models 
such as ICAE (Transfer Learning), ICAE, Ensemble with 
feature selection (AD-MCI), SVM with RBF, CAE, Ensemble 
with feature selection (MCI-CT), Ensemble with feature 
selection (AD-CT), Multilayer Perceptron, LIBS-ML, and 
qEEG Processing Technique. The results clearly show that the 
proposed model outperforms the existing models.

The remaining paper is structured as follows: Section 2 provides 
an overview of the related work, Section 3 details the materials and 
methods, Section 4 represents the results and analyzes them in 
comparison with existing approaches, and Section 5 concludes the 
study. References are included at the end.

2 Background

Significant advances on the Alzheimer’s disease (AD) front have 
recently been made in terms of early detection and treatment 
development. By the year 2024 alone, more than 170 clinical trials 
have emerged directing disease-modifying therapies aimed at treating 
the underlying mechanisms of AD; a significant number of these, that 
focus on amyloid-targeting treatments, have shown promise in the 
mitigation of cognitive decline, especially at early phases of the 
disease. The FDA is expected to decide on approval regarding 
donanemab, an amyloid-clearing drug that has been shown to slow 
AD progression. Deep learning technologies, such as DenseNet201, 
MobileViT, VGG19, and ResNet152, have been implemented to 
classify dementia in different stages using MRI data from the OASIS 
dataset. The outcomes of these studies indicate a good accuracy-93% 
of DenseNet201, MobileViT, and VGG19, and 90% of ResNet152; 
however, the generalizability of these results remains limited because 
they may be biased and do not cover diverse populations or settings 
(7). Other works that employed machine learning models like logistic 
regression and ensemble gradient boosting have also yielded very high 
accuracies but suffer from overfitting very small sample sizes and lack 
of clinical verification (9).

Several other research efforts have implemented various machine 
learning algorithms, like Light Gradient Boosting, XGBoost, and 
support vector machines (SVM), to predict the risk of dementia. One 
of the studies cites the use of some datasets from ADNI to arrive at 
an 85.8% sensitivity value for positive predictive value and 92.2% for 
negative predictive value. Still, this trend should have been more 
generalizable to a broader audience due to the restrictive diversity of 
populations in the sample (10, 11) adds that using the Gaussian 
Naïve Bayes and SVM methods, the achieved level of accuracy is 
95%, of precision 97%, and Recall is 95%. However, there is limited 
diversity in the OASIS dataset, and the models used are simple. In 
contrast, more novel yet still complex approaches, such as those 
using deep reinforcement learning-based models, also give 
promising results. Still, small sample sizes and the risk of overfitting 
continue to hamper progress in translating these models to real-
world healthcare applications. In a study that implemented CNNs 
for dementia classification, normal cognition versus early mild 
cognitive impairment (EMCI) was classified at 92.5%, and 
Alzheimer’s detection at 90.5% accuracy. Although these models 
were quite successful, they also demonstrated some shortcomings in 
clinical validation and real-world applicability (12).

Clinical questionnaires and MRI session data have long served as key 
datasets for dementia detection by machine learning models. One such 
model, which relied on a 37-item questionnaire completed by a sample 
size of 5,272, achieved a diagnosis accuracy of 0.81. Note that the model 
lacks clinical validation and relies on self-reported data, which may 
introduce bias into any results derived from it (13). MRI-based 
approaches also included EDCM, the Enhanced Dementia Detection 
and Classification Model, which utilized Gray Wolf Optimization for the 
feature selection and later showed improved accuracy after optimization. 
However, the study sample is said to be so low that the results will suffer 
for this reason and to the risk of overfitting due to model complexity 
(14). Despite this, another study using machine learning based on 285 
subjects into two small subgroups achieved an admirable 96% success in 
dementia detection. Still, concerns over small sample size and model 
complexity created questions about overfitting (15). Furthermore, many 
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approaches, such as decision tree and random forest, have been applied 
to AD detection, but most of these approaches strongly depend on high-
quality training data. Privacy-related challenges have emerged, including 
fears of using patients’ medical records (16).

Numerous deep learning and machine learning studies show 
promise for application in AD detection but come with a handful 
of limitations. Studies have demonstrated that efficiency in results 
has been improved, especially with deep learning models. Still, 
such approaches are often hampered by many challenges, which 
include time-horizon data dependency and overfitting. The 
generalization of findings into global populations is blocked by 
the clinical dataset with no diversity, such as an ADNI. Methods, 
amyloid, and tau-tangle imaging have also been explored but with 
minimal applications, especially in resource-poor settings (17). 
Despite the clinical efficacy deep learning has shown, there are 
still problems, such as inconsistent image acquisition and biases 
in data sets. Examples of these include using MRI imaging for AD 
detection (18). Compared to previous experiments, the 2021 
longitudinal MRI dataset included 5-fold cross-validation on 
OASIS, which improved the model’s robustness. However, it faced 
complications due to missing SES and MMSE values, which may 
have introduced biases, limiting the model’s representativeness 
(19). Deep Neural Networks were some of the approaches applied 
for detecting AD through the OASIS dataset, which had no 
significant shortcomings. However, the study pointed out the need 
for comprehensive documentation to ensure replicate ability and 
scalability (20). A further research study about neural networks 
used the ADNI dataset, obtaining encouraging results but still 
contending with challenges like overfitting and high computation 
expenses (21). Moreover, a CNN-based method with MRI data 
from ADNI and SNBUH indicated inconsistencies because 
different MRI machines (Philips vs. Siemens/GE scanners) were 
adopted (22). Finally, various methods, such as the support vector 
classifiers (SVC), need to be investigated for AD detection using 
the ADNI dataset; however, they all have shortcomings like 
overfitting and the need for huge, diverse datasets to ensure 
broader applicability. While these studies provide a good start, the 
evidence suggests that better diversity needs to be achieved in 
datasets, that models need to be generalized, and that clinically 
validated approaches for Alzheimer’s detection should evolve (23). 
They focused their work mainly on sparse brain images and did 
not focus on the global brain patterns that are important for better 
predictions. Table 1 specifies a thorough analysis of the existing 
relevant work, along with the models, performance metrics, 
and demerits.

3 Materials and methods

3.1 AlzheimerViT architecture

Figure  1 depicts the proposed Model for Alzheimer’s disease 
prediction. It portrays the architecture of the AlzheimerViT model, 
which consists of the following main components: Data Collection, 
Training Data Pre-processing and Augmentation, and the 
AlzheimerViT model for Feature Extraction and Classification.

3.2 Data collection

The OASIS-3 dataset is a very large and multi-modal dataset, 
purposed to support research in aging, Alzheimer’s disease, and their 
comorbidities out of which Axial Brain view of the OASIS-3 dataset 
was utilized for experimentation. It contains information from more 
than 1,000 participants, with over 3,000 imaging sessions from 
structural MRI scans associated with clinical assessments, test scores 
for neuropsychology, and demographic information for control, as 
well as participants of mild cognitive impairment and Alzheimer’s 
disease. Figures 2a,b depicts 6 sample images of non demented and 
demented brain MRI’s taken from the Oasis-3 dataset. The MRI scans 
are T1-weighted, high-resolution images that can be analysed visually 
or quantitatively to investigate brain structure, while clinical data 
allow the study of cognitive decline and its relationship with 
neuroimaging features. OASIS-3 is designed to enable many research 
applications, such as machine learning and predictive modelling of 
early Alzheimer’s disease.

3.3 Training data pre-processing and 
augmentation

The feature engineering process for this study is to process and 
augment MRI image data so that relevant patterns associated with 
Alzheimer’s Disease can be  captured. All images are resized to 
256 × 256 pixels so that input size is standardized for neural networks, 
and the same is done to ensure all images have uniform dimensions 
in order to train the model. It reduces computational complexity, 
making the processing faster. The next step makes use of image 
augmentation techniques with the training set, thus artificially 
increasing the model’s capabilities to generalize new yet unseen data. 
These techniques include brightness alterations, horizontal and 
vertical flips, zoom, rotation, and shearing. Horizontal and vertical 
flipping was performed with 50% chance, and rotation was done 
clockwise, counter-clockwise, and upside down at random. Cropping 
was used with a zoom from 0% to a maximum of 4%. Rotation in the 
−1° to +1° range was used, and shearing transformations were used 
with ±2° shears in the horizontal and vertical directions. 10% of the 
images were processed by grayscale conversion and hue adjustment 
ranging from −15° to +15°, saturation from −25 to +25%, and 
brightness ranging from −10 to +10%. Those transformations are able 
to replicate somewhat real-world variations or imperfections that 
might take place in MRI scans, like different patient positions, 
variations in lighting, and some variations in the quality of the scan. 
These techniques help it learn to recognize the patterns related to 
disease under different conditions and be more robust to variations 
in the data. Figures  3–9 visually depict the feature engineering 
operations utilized in this study.

3.3.1 Image flip
Horizontal flip (h)- Pixels at a location (x,y) are transformed as in 

Equation 1

 ( ) ( ), ,h x y w x y= −
 

(1)
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Vertical Flip (v): Each pixel (x,y) is transformed as shown in 
Equation 2

 ( ) ( ), ,v x y x h y= −
 

(2)

3.3.2 Image rotation
Clockwise Rotation: Input images are rotated in a clockwise 

direction, and the resulting coordinates ( , )x y′ ′  for each of the pixels 
is given as shown in Equation 3

 
;x y y W x′ = = −′

 
(3)

Counter-Clockwise Rotation:Input images are rotated in a 
clockwise direction. The resulting coordinates ( , )x y′ ′  are explained 
in Equation 4

 
;x H y y x− ′= =′

 
(4)

3.3.3 Image shearing
A random factor in reference to the study is selected, i.e., Sx, Sy,to 

shear the input image horizontally and vertically. The transformed 
pixel coordinates are given by Equation 5

FIGURE 1

AlzheimerViT architecture.
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.y; y .xy xx x S y S′ = +′+ =

 
(5)

3.3.4 Image gray scaling
10% of the input images are converted to the Grayscale range, 

shown in Equation 6, utilizing the RGB values combined into a 
single luminance.

 
0.2989. 0.5780. 0.1140.grayscale R G BP P P P= + +

 
(6)

3.3.5 Image hue adjustment
The input image’s Hue is adjusted by a random value ranging 

between −15 to +15%.

3.3.6 Saturation adjustment
Input image pixels are readjusted by a random value in a range 

−25 to +25%, as shown in Equation 7

 ( )1 _newP p saturation factor= ∗ +
 

(7)

3.3.7 Image brightness
The brightness of the input images is readjusted in the range [0.90, 

1.10] as explained in Equation 8

 
_newp p brightness factor= ∗

 
(8)

FIGURE 2

(a) Sample images indicating a non demented Brain MRI scan. (b) Sample images indicating a demented brain-MRI scan.
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For the pre-processed input images shown in Figure  10, the 
Grad-CAM method is used to produce heatmaps of important regions 
for classification. Figures  11, 12 are the Grad-CAM heatmaps for 
Alzheimer’s and non-Alzheimer’s cases, which highlight different 
regions of the brain indicative of the presence and absence of 
the disease.

3.4 AlzheimerViT feature extraction and 
classification architecture

AlzheimerViT is a MobileViT architecture that merges the 
strengths of both CNNs and transformers to effectively capture both 
local and global dependencies of image data for predicting Alzheimer’s 
disease (24). Although CNNs (25) are efficient at capturing local 
features via convolutional operations, they suffer from limited abilities 
to work on the long-range dependencies in a local area. Transformers 
(26) are, instead, very effective in learning the global relationship 
between objects but require a large computational cost and often lack 
spatial inductive bias. MobileViT addresses this challenge by relying 
on CNNs for local feature extraction and using Transformers (27) in 
a lightweight fashion for global context modeling. With this 
combination, MobileViT can perform well on visual tasks in a 
computationally efficient manner that is suitable for mobile and edge 
devices with limited resources.

MobileViT architecture, shown in Figure 13, starts with a 3×3 
convolutional layer that down-samples the input image size from 
256 × 256 to 128 × 128. Several subsequent MV2 blocks progressively 
down the sample spatially and expand the number of output channels. 
Each level will extract local features in this manner, increasing its 
output channels as its input image size decreases. After each down-
sampling, the MobileViT blocks use transformers to model global 
dependencies across the patches, with the features processed in 
non-overlapping patches. This structure captures both local and global 
information efficiently, as the final feature map is passed through a 
global pooling layer and a fully connected layer to produce output for 
classification. Table 2 indicates a detailed breakdown of the layers, 
output sizes, strides, repeat counts, and output channels below:

3.4.1 Mathematical modelling
Initial convolution: The input MRI slice undergoes a 3×3 

convolution with stride 2 to reduce its spatial dimensions and begin 
feature extraction, as shown in Equation 9.

 ( ), ,Convolution ConvolutionX Convolution X W b=′
 

(9)

3.4.2 MobileViT blocks
 a Expansion (1 × 1 Convolution)

FIGURE 3

Feature engineering-image flip operation.

FIGURE 4

Feature engineering—image rotation operation.
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The input is passed through a 1×1 convolution that increases the 
number of channels for the expansion of the feature space to richer 
representation, thereby allowing the model to capture more complex 
features before spatially reducing them as in Equation 10.

 ( ), ,expanded Expand ExpandX Convolution X W b′=
 

(10)

 b Depth-wise Convolution (3 × 3):

Each of the channels is separately convoluted with a 3×3 filter in 
the depth-wise manner that was explained in Equation 11. These 
operations do not have a high computational cost while maintaining 
spatial relationship-preserving within the individual channel, but they 
do decrease the parameters that would be required.

 ( ), ,depthwise expanded depthwise depthwiseX Depthwise X W b=
 

(11)

 c Projection (1 × 1 Convolution):

FIGURE 5

Feature engineering—image shearing operation.

FIGURE 6

Feature engineering—grayscaling of image.
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The depth-wise convolution projects the set of channels from a 
large number to an even smaller set of channels by a 1×1 convolution 
as given by Equation 12. The result is a reduction in the size of the 
channel dimensions. It has three steps:

 
( , ,Projected depthwise Project ProjectX Convolution X W b=

 
(12)

Pointwise Convolution: It first increases the channel depth in a 
higher-dimensional space, as described by Equation 13, by a 
1×1 convolution:

 
( )1 1, 1 1,l L x xX Convolution X X b=

 
(13)

3.4.2.1 Global information encoding
The feature map unfolds into patches, which are then processed 

by transformer layers to capture long-range dependencies between 
patches. This is how the model is able to understand global structures 
in the MRI image, as Equation 14 shows.

 ( )U lX Unfold X=
 

(14)

FIGURE 7

Feature engineering—hue setting of image.

FIGURE 8

Feature engineering—saturation of image.

FIGURE 9

Feature engineering—image brightness setting.
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3.4.2.2 Concatenation and fusion
The local and global features (from depth-wise convolutions and 

transformers) are fused given in Equation 15, followed by the final 
convolution to integrate the same into a single tensor given by 
Equation 16. It’s then flattened for classification.

 ( )F GX Fold X=
 (15)

 ( ),Concatenate L FX Concatenate X X=
 

(16)

3.4.2.3 Final prediction
The flattened features are then used through a fully connected 

layer given by Equation 17 to predict whether the subject has 
Alzheimer’s, essentially a binary classification.

 ( ), ,Final Concatenate Final FinalX Convolution X W b=
 

(17)

3.4.3 Pseudocode

AlzheimerViT

1. Input: OASIS-3 Dataset

2. Initial Convolution(3×3):

Perform 3 × 3 stride convolution, extract features

( )′ = , ,X Convolution X W bConvolution Convolution

3. AlzheimerViT Block (Down Sampling and Feature Expansion)

 a. Expansion (1 × 1 convolution)

( )= ′, ,X Convolution X W bexpanded Expand Expand

 b. Depth-wise Convolution (3 × 3):

( )= , ,X Depthwise X W bdepthwise expanded depthwise depthwise
 c. Projection(1 × 1 convolution):

= ( , ,X Convolution X W bProjected depthwise Project Project )

4. Information Encoding (Local): Apply standard convolution and capture spatial 

information (Local)

( )= , ,X Convolution X W bLocal Projected Local Local

FIGURE 10

After pre-processing.

FIGURE 11

Heatmaps indicating Alzheimer’s disease.

FIGURE 12

Heatmaps indicating non-Alzheimer’s disease.
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5. Pointwise Convolution (Channel Projection)

Perform pointwise convolution and increase number of channels, also project the 

tensor to higher dimensional space.

( )= , 1 1, 1 1X Convolution X X bl L x x

6. Global Information Encoding (Transformer):

Unfold the higher dimension tensor from previous stage for global processing 

using transformer layers.

( )=X Unfold XU l

7. Folding -Concatenation:

Succeeding to Transformer processing is folding operation of global information 

back to spatial dimensions.

( )=X Fold XF G

( )= ,X Concatenate X XConcatenate L F

8. Final Pointwise Convolution:

Perform Final Pointwise Convolution, fuse the concatenated Features and decrease 

channel dimensionality.

( )= , ,X Convolution X W bFinal Concatenate Final Final

9. Output Layer:

Add a Fully connected layer with an Activation (SoftMax) function Classes of 

Outputs, Alzheimer’s or Non-Alzheimer’s.

10. Model Compilation

Specify Loss Function, an optimizer (possibly Adam, SGD) choose accuracy for 

the metric.

11. Model Training

a. Feed into network the training samples in batch fashion. Backpropagate errors 

to update weights.

b. Train and evaluate model on the validation data. If performance is not good 

enough, change the appropriate hyperparameters.

12. Model Evaluation:

AlzheimerViT Model is trained and tested on OASIS-3 Dataset and performance 

is evaluated using Standard metrics like Accuracy, Specificity, Kappa Score.

13. Model Usage:

Deploy the model for classification of unseen MRI brain scans into Alzheimer’s 

Disease categories with the predictions for clinical usage.

3.5 Hyperparameter tuning

Optimizing hyperparameters is a crucial step in enhancing deep 
learning models’ performance and generalization capability. For the 
AlzheimerViT model, we  employed a systematic manual tuning 
strategy, refining hyperparameters through an iterative and empirical 
approach rather than automated search methods like grid search or 
random search, which are computationally expensive. The manual 
tuning approach focuses on targeted refinements, reducing 
unnecessary computations, allowing immediate adjustments and 
evaluation, and avoiding wasted trials on ineffective settings. Our 
manual tuning approach followed a structured process. Thus, 
we selected initial hyperparameter values based on best practices and 
previous research on vision transformers and MobileNetV2 
architectures. Key metrics such as validation accuracy, loss behavior, 
and convergence stability were monitored at different training stages. 
Then, hyperparameters were gradually fine-tuned based on observed 
trends, including learning rate, batch size, label smoothing, and 
number of training epochs. Performance comparisons were made 
after each adjustment to assess improvements in classification 
accuracy and generalization. Therefore, the optimal set of 

FIGURE 13

AlzheimerViT feature extraction and classification architecture based on MobileViT blocks.
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TABLE 1 Summary of recent AD prediction.

Ref No. Model name Dataset Performance metrics Demerits

(7) Random Forest OASIS-2 Accuracy: 95.53%  • Less interpretable; sensitive to feature selection methods.

(9) Logistic regression model Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
BioFINDER
1 dataset

Accuracy: 89.0%
Specificity: 86.9%
Sensitivity: 91.5%
Positive predictive value: 85.8%;
Negative predictive value: 92.2%.

 • Limited diversity of samples will indeed greatly influence generalizability to a 
broader population.

 • The adequacy of the new unseen data decreases due to the possibility of 
overfitting.

(10) Light Gradient Boost. 373 individual imaging sessions from patients.
-Minimum of two visits with one-year gaps.

The model achieved 91.2% accuracy.  • 373 sessions may not be encompassing the entire dementia population.
 • It lacks clinical validation, rendering it less relevant in practice than 

in healthcare.
 • The level of complexity raises questions regarding overfitting and insufficient 

information on how it has been addressed.

(11) Support Vector Machine OASIS dataset used for dementia prediction.
Open access series of imaging studies dataset.

Accuracy: 95%  • Factors affecting model performance

(12) Naive Bayes Gangbuk-Gu Dementia Screening and CERAD-K Test 
Dataset (2008–2013, Korea)

Accuracy:71.44%
Precision: 0.713%
Recall: 0.712%
F-measure: 0.712%

 • Limited generalizability due to the small dataset size.

(13) DRL-XGBOOST
(Deep Reinforcement Learning)

Series of Imaging Studies (OASIS) dataset. Accuracy: 84.34%
Precision: 83.45%
Recall: 82.12%
F-score: 80.23%

 • Small sample size in the OASIS dataset may limit generalizability.

(16) Decision Tree with Ensemble Learning OASIS-3 Dataset Accuracy: 87.2%, Precision: 86.1%, Recall: 
84.9%

Model sensitivity to imbalanced datasets

(28) Naive Bayes classifier combined with feature 
selection techniques.
A 37-item questionnaire was filled out by 5,272 
individuals.

Show Chwan Health System Register-Based Dataset (IRB 
1041208)

Accuracy: 0.81%
Precision: 0.82%
Recall: 0.81%,
F-measure: 0.81%

 • Limited to questionnaire data,
 • no clinical validation, and
 • possible bias from the self-reported nature of the dataset.

(29) Extra Tree Classifier Younger Onset Dementia Dataset (Healthdirect Australia)
Dementia Classification Dataset (Kaggle)

Accuracy: 85%.  • Dataset Size and Diversity
 • Computational Complexity
 • Feature Dependence

(30) Edge-Preservation Coherence Improvement 
(EP-CI) algorithm for image enhancement.
The Efficient Fuzzy C Means Adaptive 
Thresholding (EFCMAT) algorithm
-2D-Adaptive Consensual Filter (2D-ACF)

BraTS 2018: Brain Tumor MRI Segmentation Dataset Accuracy:82%  • Focus Only on ROI Segmentation
 • No Validation on Real-World Datasets
 • Lack of Comparative Analysis

(31) LSTM with Attention Mechanism- Explainable 
Machine Learning Workflow (using SHAP for 
interpretability)

NACC and ADNI datasets Accuracy: 88.6%, Precision: 89.4%, Recall: 
87.2%

 • High computational cost, requires large-scale validation

(32) Gradient Boosted Machines (GBM) and 
ResNet-50

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset Accuracy: 91.5%, AUC: 0.94%  • Requires extensive computational resources; potential overfitting in ResNet-
50; limited interpretability of GBM

(33) XGBoost Model MRI Images dataset (specific dataset not mentioned) Accuracy: 92.3%, Sensitivity: 90.1%, 
Specificity: 93.8%

 • Limited dataset diversity; potential for overfitting; lacks interpretability in 
clinical settings

(34) Support Vector Machine (SVM), Relevance 
Vector Machine (RVM)

Structural MRI data from ADNI Accuracy: 80–85% (SVM), 82–88% (RVM)  • Limited sample size; potential overfitting; generalizability concerns

(35) SVM ADNI dataset Accuracy: 75%  • Low model performance
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hyperparameters was determined based on sustained improvements 
in validation accuracy and loss reduction over 400 + training epochs. 
Specifically, the final model was trained with a patch size of 4 (2 × 2), 
an image size of 256 × 256, an expansion factor of 4 for MobileNetV2 
blocks, and a batch size of 64. The Adam optimizer was used with a 
learning rate of 1e-5. Furthermore, the categorical cross-entropy loss 
function with label smoothing (0.1) was incorporated to enhance 
generalization and mitigate overfitting. The final layers include a 
global pooling layer, followed by a fully connected (linear) output 
layer with two nodes corresponding to the binary classification task 
(Demented vs. Non-Demented). The output layer utilizes a softmax 
activation function, enabling probability-based predictions for each 
class. Training was conducted for over 400 epochs, continuously 
monitoring performance using validation accuracy as the primary 
evaluation metric. The best-performing model was automatically 
saved via the ModelCheckpoint callback, ensuring the optimal 
configuration was preserved.

4 Results and discussion

For the Alzheimer’s Disease prevention project, the experimental 
setup uses advanced computational resources, which include a CPU 
and an NVIDIA A100 GPU. The CPU with 256 MB of memory 
handles general tasks, such as data pre-processing and algorithm 
management, while the GPU with 40 GB of memory and compute 
capability 8.0 accelerates intensive parallel processing for deep 
learning models. The hardware setup has been chosen to process large 
amounts of medical data for efficient prediction and prevention of 
Alzheimer’s Disease through machine learning techniques because 
there is only one GPU available.

Key performance metrics are utilized to evaluate the 
AlzheimerViT model’s performance in predicting a person suffering 
from Alzheimer’s disease or healthy control. The confusion matrix 
provides a breakdown of true positives, false positives, true negatives, 

and false negatives, providing a visual perspective of model 
performance across all categories. Another common metric is the 
AUC-ROC curve, which explains the model’s ability to differentiate 
between output classes. A higher AUC curve indicates good 
performance and vice versa. The confusion matrix includes four 
major components: True Positives (TP), False Positives (FP), True 
Negatives (TN), and False Negatives (FN). These values are very 
important for the calculation of different performance metrics. For 
the case of Alzheimer’s Disease prediction using AlzheimerViT, True 
Positives (TP) refer to the accurate identification of Alzheimer’s 
Disease cases. At the same time, False Positives (FP) are healthy 
persons misclassified as having Alzheimer’s Disease. True negatives 
are healthy individuals who have been correctly classified, and false 
negatives represent cases of Alzheimer’s Disease wrongly classified 
as healthy.

Supplementary Figures S2–S4 provide a visualization of confusion 
Matrix plots obtained for Training, Validation, and testing the Oasis-3 
dataset for predicting the Demented and Non-Demented classes, 
respectively.

The AUC-ROC score for the proposed model is 0.99, indicating 
that the AlzheimerViT model performed highly in predicting 
Alzheimer’s using MRI images. Its high AUC score makes it reliable 
and robust, potentially making it a very useful tool for early detection, 
which will hopefully allow for more timely and accurate diagnoses in 
clinical settings. Figure 14 visually reconfirms this result, as shown by 
the ROC curve, proving that the model is excellent in discriminating 
between the two classes.

The Proposed Model was initially exposed to over 400 epochs of 
training and validation, as depicted in Figure 15. Training accuracy 
improves rapidly in the initial phase, reaching almost 100% accuracy 
in its final epochs, indicating the model’s effective learning capabilities. 
The validation accuracy fluctuates slightly but stabilizes at a high 
value, which suggests that the model generalizes reasonably well to 
unseen data while avoiding strong overfitting. Training and validation 
accuracy remain similar, which means that the training process is 
well-regularized.

TABLE 2 Detailed breakdown of AlzheimerViT architecture.

MobileViT Layers Output Size Output Stride Repeat Output Channels (S)

Image 256 × 256 1 - 3 (RGB)

Convolution(3×3) ↓ 2 128 × 128 2 1 16

MV2 Block 1 128 × 128 2 1 32

MV2 Block 2, ↓ 2 64 × 64 4 1 64

MV2 Block 3, ↓ 2 64 × 64 4 2 64

MV2 Block 4, ↓ 2 32 × 32 8 1 96

MobileViT Block (L = 2) 32 × 32 8 1 96 (d = 144)

MV2 Block 5, ↓ 2 16 × 16 16 1 128

MobileViT Block (L = 4) 16 × 16 16 1 128 (d = 192)

MV2 Block 6, ↓ 2 8 × 8 32 1 160

MobileViT Block (L = 3) 8 × 8 32 1 160 (d = 240)

Convolution(1×1) 8 × 8 32 1 640

Global Pooling 1 × 1 256 1 640

Linear (Fully Connected) 1 × 1 256 1 2 (output classes)
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Figure  16 illustrates the training and validation loss of the 
AlzheimerViT model over 400 epochs. Both Training and Validation 
losses initially reduce very sharply, indicating that the model is 
learning to minimize errors well. Later, the training loss continues its 
reduction steadily and stabilizes at a low value, implying that the 

model fits the training data well. The validation loss also decreases but 
is less stable and has stabilized at a higher level than the training loss, 
indicative of some generalization variance. The small gap between the 
training and validation losses further indicates that the model will 
avoid strong overfitting and will perform well on data. A commonly 
used measure is overall accuracy, which is calculated as correctly 
classified instances over the total instances shown in Equation 18.

 

=
+

+ + +

Accuracy
True Positives True Negatives

True Positives True Negatives False Positives False negatives  
(18)

Table 3 presents the accuracy of different models for predicting 
Alzheimer’s disease, and the highest accuracy of 98.57% is obtained 
using the proposed AlzheimerViT model. Random Forest (95.53%), 
Support Vector Machine (95%), and XGBoost (92.30%) are other 
high-performing models. Gradient Boosted Machines (91.50%), Light 
Gradient Boosting (91.20%), and Logistic Regression (89%) also had 
strong performances. LSTM with Attention Mechanism (88.60%) and 
Relevance Vector Machine (88%) followed closely. Lower-performing 
models were Decision Tree with Ensemble Learning (87.2%), Extra 
Tree Classifier (85%), DRL-XGBoost (84.34%), Edge-Preservation 
Coherence Improvement algorithm (82%), Naive Bayes with feature 
selection (81%), and the default Naive Bayes (71.44%).

Error rate is an essential metric in evaluating a model’s 
performance. The error rate provides information on the number of 
incorrect predictions or decisions made by the model, as explained in 
Equation 19.

TABLE 3 Comparative analysis of accuracy of proposed AlzheimerViT and 
existing models for Alzheimer’s disease prediction.

Ref no. Model name Accuracy

- AlzheimerViT (Proposed Model) 98.57%

(7) Random Forest 95.53%

(11) Support Vector Machine 95%

(33) XG-Boost Model 92.30%

(32) Gradient Boosted Machines (GBM) 91.50%

(10) Light Gradient Boost. 91.20%

(31) LSTM with Attention Mechanism 88.60%

(34) Relevance Vector Machine (RVM) 88%

(16) Decision Tree with Ensemble Learning 87.20%

(29) Extra Tree Classifier 85%

(13) DRL-XGBOOST 84.34%

(30) EP-CI algorithm 82%

(28) Naive Bayes 81%

(9) Logistic regression model 89.00%

(12) Naive Bayes 71.44%

FIGURE 14

AUC-ROC plot for Alzheimer’s disease prediction using AlzheimerViT.
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FIGURE 16

Loss per epoch plot for Alzheimer’s disease prediction using AlzheimerViT.

FIGURE 15

Accuracy per epoch plot for Alzheimer’s disease prediction using AlzheimerViT.
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 = −Error Rate 100 Accuracy%  
(19)

Table 4 gives the error rates of different machine learning models, 
ranging from extremely low to comparatively high. The AlzheimerViT 
(Proposed Model) has a minimum error rate of 1.43%, followed by 
Random Forest (4.47%) and Support Vector Machine (5%). Some 
other models, like XG-Boost, Gradient Boosted Machines, and Light 
Gradient Boost, have error rates of 7.7, 8.5, and 8.8%, respectively. 
Models based on LSTM with Attention Mechanism and Relevance 
Vector Machine have 11.4 and 12% error rates. In contrast, the 
Decision Tree with Ensemble Learning and Extra Tree Classifier have 
higher error rates of 12.8 and 15%. DRL-XGBOOST, EP-CI algorithm 
(Image enhancement), and Naive Bayes classifier with feature selection 
methods have error rates of 15.66, 18, and 19%, respectively. The 
logistic regression model has an 11% error rate, and Naive Bayes has 
a maximum error rate of 28.56%.

Accuracy may not always be enough, especially with imbalanced 
datasets, which necessitates the calculation of precision and Recall. 
Precision is the fraction of actual positive predictions out of all 
instances labeled positive, given in Equation 20, while Recall or 
sensitivity measures the fraction of correctly predicted true positives 

out of all actual cases that were indeed positive, as explained in 
Equation 21. Table 5 is a comparative analysis of the Precision % of the 
proposed AlzheimerViT Alzheimer’s disease prediction model and 
existing Methodologies.

 
=

+
True PositivesPrecision

True Positives False Positives  
(20)

 
=

+
True PositivesRecall

True Positives False Negatives  
(21)

The recall performance of various machine learning models for 
the prediction of Alzheimer’s disease is shown in Table 6. Comparative 
analysis of Recall of Proposed and Existing Models for Alzheimer’s 
Disease Prediction. Obviously, the proposed system is the 
AlzheimerViT, which had a remarkable recall of 98.47% due to its 
sensitivity for the detection of cases of Alzheimer’s disease. Decision 
Tree Classifier, XG-Boost, and Voting Classifier recall values were in 
the 79 to 83% range; the Ensemble methods with feature selection 
achieved a recall value of 80% each: AD-CT and AD-MCI. By contrast, 
the Ensemble with feature selection had the lowest Recall, 50%, which 
is MCI-CT. The other two models - Logistic Regression and Random 
Forest  - give recall values of 70%. It can be  considered a 
mediocre performance.

Sensitivity is important because it needs to identify most patients 
who have Alzheimer’s Disease in order not to miss most of those. 
Specificity measures how well the model is performing in getting the 
right positives, that is, not the people without Alzheimer’s Disease, 
true negatives explained in Equation 22. It shows that the model is not 
committing false positives. These metrics, all put together, provide a 
complete evaluation of reliability and robustness in its predictions for 
the AlzheimerViT model in terms of minimizing errors like false 
positives and negatives and ensuring good performance on its 
predictions of positive and negative cases.

 
=

+
 

  
True NegativesSpecificity

True Negatives False Positives  
(22)

The data in Table 7. Comparative Analysis of Specificity % of 
Proposed and Existing Models for Alzheimer’s Disease Prediction 
compares the specificity performance of different machine learning 
models in detecting Alzheimer’s disease. The proposed system, 
AlzheimerViT, has the highest specificity at 98.67%, meaning it is very 
effective at correctly identifying negative cases (non-Alzheimer’s). 
Other models are ICAE (Transfer Learning) and ICAE, with specificity 
values of 70.71 and 60.41%, respectively. Ensemble methods with 
feature selection are AD-MCI and AD-CT, which have the same 
specificity value of 67%. SVM with RBF is moderate, with a specificity 
equal to 87.17%, while CAE and CAE (Transfer Learning) specificity 
scores are 60.04 and 71.53%, respectively. The Feature Selection Model 
with the Ensemble is known as MCI-CT, which has the lowest 
specificity at 43%. Another noteworthy point was that the qEEG 
Processing Technique has a specificity value of 91.7.

Table 8 provides the Comparative analysis of the Kappa score of 
proposed and existing models for Alzheimer’s Disease Prediction. It 

TABLE 4 Comparative analysis of error-rate of proposed and existing 
models for Alzheimer’s disease prediction.

Ref No. Model Error rate (%)

- AlzheimerViT (Proposed Model) 1.43%

(7) Random Forest 4.47%

(11) Support Vector Machine 5%

(33) XG-Boost Model 7.7%

(32) Gradient Boosted Machines (GBM) 8.5%

(10) Light Gradient Boost. 8.8%

(31) LSTM with Attention Mechanism 11.4%

(34) Relevance Vector Machine (RVM) 12%

(16) Decision Tree with Ensemble Learning 12.8%

(29) Extra Tree Classifier 15%

(13) DRL-XGBOOST 15.66%

(30) EP-CI algorithm 18%

(28) Naive Bayes 19%

(9) Logistic regression model 11%

(12) Naive Bayes 28.56%

TABLE 5 Comparative analysis of precision of proposed and existing 
models for Alzheimer’s disease prediction.

Algorithm Precision (%)

AlzheimerViT (Proposed System) 98.7

SVM (29) 77

Voting Classifier (29) 83

Logistic Regression (29) 74.7

XGBoost (29) 85

Decision Tree Classifier (29) 80

RF Classifier (29) 85
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is evident that the proposed system, AlzheimerViT, has performed the 
best among all other machine learning algorithms to classify 
Alzheimer’s disease. It has a maximum Kappa score of 97.2%. In 
comparison with other models, it outperforms others like Naïve Bayes 
with 54% and SVM with 54%. In contrast, methods like Random 
Forest + PSO (88%) and C4.5 + PSO (82%) also show strong results, 
though they still lag behind the proposed system.

We conducted inference time and classification performance tests 
on the AlzheimerViT system. Our evaluation study aimed to evaluate 
the effectiveness of AlzheimerViT in classifying images and 
determining inference time results on resource-constrained devices. 
Our experimental setup measured AlzheimerViT’s inference time 
with CPU and GPU environments. A batch of 64 images was used for 
the GPU, while one image per batch was used for an 8-core CPU. The 
inference time test results are presented in Table 9. AlzheimerViT, 
with 7 M parameters and 81.3 MB size, can evaluate within 410 ms for 
the typical batch size of 64 images with GPU and within 11 ms for a 
single batch with CPU. The results have important implications for 
developing and deploying the AlzheimerViT system to predict 
Alzheimer’s disease in practical resource-constrained 
edge environments.

Grad-CAM is a visualization technique that enhances the 
interpretability of deep learning models by highlighting the regions of 

input images that significantly influence the model’s predictions. In 
the context of Alzheimer’s disease detection, Grad-CAM provides 
valuable insights into the specific areas of brain MRI scans that the 
model considers when classifying the disease. The Grad-CAM 
heatmaps for the Non-Demented class, as shown in 
Supplementary Figure S5, exhibit relatively lower activation intensities 
compared to the Demented class depicted in Supplementary Figure S6. 
The activations in the Non-Demented class are dispersed and do not 
concentrate on distinct regions of the brain. This pattern suggests that 
the model associates the overall structural integrity of the brain with 
the non-demented classification, reflecting the absence of significant 
pathological changes. In contrast, the heatmaps for the Demented 
class in Supplementary Figure S6 display strong and focused 
activations in specific brain regions such as the hippocampal region, 
entorhinal cortex, and parietal and temporal lobes. The vibrant 
colours and concentrated patterns indicate the high importance of 
these regions in the model’s decision-making process. 
Supplementary Figures S5, S6 illustrate the interpretability of the 
AlzheimerViT system, offering a clear and intuitive understanding of 
its decision-making process. It enhances the model’s transparency and 
reliability, making it a valuable tool for clinicians and researchers 
seeking to understand and validate AI-driven diagnostic decisions.

5 Conclusion

The proposed system utilizes AlzheimerViT, a light and efficient 
vision transformer, to make early detection and classification using 
MRI images from the OASIS-3 dataset on Alzheimer’s disease. A good 
performance of 98.57% in terms of accuracy, precision at 98.7%, and 
recall at 98.47% with a specificity of 98.67% and a Kappa score of 
97.2%, AUC-ROC Score of 0.99 further points toward its suitability 
for application within the clinical setting in deriving reliable and 
accurate predictions. Despite its excellent performance, the model 
does have limitations and includes reliance on high-quality data, 
possible overfitting, and sufficient samples for generalizing, the “black 
box” characteristic of deep-learning models making it difficult to 
interpret their decision-making mechanism.

Future work may be the improvement of the model’s robustness 
and handling of possible overfitting by using more diverse and even 

TABLE 7 Comparative analysis of specificity % of proposed and existing 
models for Alzheimer’s disease prediction.

Algorithm Specificity (%)

AlzheimerViT (Proposed System) 98.67

ICAE (Transfer Learning) (36) 70.71

ICAE (36) 60.41

Ensemble with feature selection (AD-MCI) (16) 67

SVM with RBF (17) 87.17

CAE (36) 60.04

Ensemble with feature selection (MCI-CT) (16) 43

Ensemble with feature selection (AD-CT) (16) 67

Multilayer Perceptron (18) 79.4

LIBS-ML (19) 75

CAE (Transfer Learning) (36) 71.53

qEEG Processing Technique (20) 91.7

TABLE 6 Comparative analysis of recall of proposed and existing models 
for Alzheimer’s disease prediction.

Algorithm Recall (%)

AlzheimerViT (Proposed System) 98.47

Decision Tree Classifier (29) 79

XGBoost (29) 80

Voting Classifier (29) 83

Logistic Regression (15) 70

Random Forest (15) 70

Ensemble with feature selection (AD-CT) (16) 80

Ensemble with feature selection (AD-MCI) (16) 80

Ensemble with feature selection (MCI-CT) (16) 50

TABLE 8 Comparative analysis of Kappa score of proposed and existing 
models for Alzheimer’s disease prediction.

Algorithm Kappa score (%)

AlzheimerViT (Proposed System) 97.2

Naïve Bayes 54

Logistic regression 78

SVM 54

Random forest 84

C4.5 79

CHAID 80

ID3 80

C4.5 + PSO 82

Random forest + PSO 88

ID3 + PSO 80.8
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more extensive datasets and applying transfer learning to fine-tune the 
model. Even though Grad-CAM was employed to improve 
interpretability, future work can be based on other methods to explain 
the model predictions and avoid misrepresenting visual information 
and over-reliance on AI. In addition, integrating other complementary 
sources of data, such as genetic information or longitudinal MRI 
scans, may improve the model’s predictive capabilities, providing an 
all-inclusive tool for the early diagnosis of Alzheimer’s and 
personalized treatment planning.
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Glossary

OASIS - Open Access series of Imaging Studies

MRI - Magnetic Resonance Imaging

ADNI - Alzheimer’s Disease Neuroimaging Initiative

AUC-ROC - Area under the Receiver operating characteristics curve

AD - Alzheimer’s Disease

DenseNet201 - Densely connected convolutional network

RESNET - Residual Network

Grad-Cam - Gradient weighted class activation mapping

MCI - Mild Cognitive Impairment

EMCI - early mild cognitive impairment

MLP - Multilayer Perceptron

MobileViT - Mobile Vision Transformer

CAE - Convolutional Auto Encoder

CHAID - Chi-Squared Automatic Interaction Detection

SVM - Support Vector Machine

RF - Random Forest Classifier

PSO - Particle Swarm Optimization

ICAE - Improved convolutional Auto-encoder

AD-CT - Alzheimer’s Disease cognitive testing

AD-MCI - Alzheimer’s Disease Mild Cognitive impairment

MCI-CT - Mild cognitive impairment cognitive testing

M-CapNets - Modified Capsule Networks

VGG - Visual Geometry

EDCM - Ensemble decision curve modeling

https://doi.org/10.3389/fmed.2025.1568312
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	AlzheimerViT: harnessing lightweight vision transformer architecture for proactive Alzheimer’s screening
	1 Introduction
	2 Background
	3 Materials and methods
	3.1 AlzheimerViT architecture
	3.2 Data collection
	3.3 Training data pre-processing and augmentation
	3.3.1 Image flip
	3.3.2 Image rotation
	3.3.3 Image shearing
	3.3.4 Image gray scaling
	3.3.5 Image hue adjustment
	3.3.6 Saturation adjustment
	3.3.7 Image brightness
	3.4 AlzheimerViT feature extraction and classification architecture
	3.4.1 Mathematical modelling
	3.4.2 MobileViT blocks
	3.4.2.1 Global information encoding
	3.4.2.2 Concatenation and fusion
	3.4.2.3 Final prediction
	3.4.3 Pseudocode
	3.5 Hyperparameter tuning

	4 Results and discussion
	5 Conclusion

	References

