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Background: Since its first reported case in December 2019, COVID-19 disease,

caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), evolved into

a major pandemic throughout the world. Although COVID-19 is most often

characterized as a respiratory pathology, there are also extensive reports of

renal complications, such as glomerulonephritis (GN). However, the precise

nature of COVID-associated glomerulonephritis (COVID-GN) has yet to be fully

understood. This review seeks to elucidate COVID-GN pathophysiology by

conducting an exhaustive systematic review.

Methods: Herein, we compare the different GN subtypes associated with

COVID-19 in the literature. We also review the cytokines, antibodies, and genes

most implicated in COVID-GN.

Results: The GN subtype with the highest number of cases associated with

COVID-19 infection was focal segmental glomerulosclerosis, specifically the

collapsing morphology. Meanwhile, the highest number of cases associated with

COVID-19 vaccination was IgA nephropathy. The most prevalent mechanism

in the literature for COVID-GN involves a cytokine storm, which may be

accompanied by immune complex deposition.

Discussion: Both infection and vaccination from SARS-CoV-2 can induce robust

CD4+ T cell responses promoted by an IL-6 amplifier loop of inflammation. This

immune response is likely further enhanced by interactions with complement

systems and the renin-angiotensin-aldosterone system (RAAS). SARS-CoV-2-

mediated pathways of both direct cytotoxicity and stimulation of polyclonal

immunoglobulin may converge to cause glomerular inflammation and injury.

Further investigation of these inflammatory pathways may provide insight into

COVID-19 pathophysiology, treatment, and long-term outcomes.
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1 Introduction

Since its first reported cases of human infection in December
2019, the severe acute respiratory coronavirus 2 (SARS-CoV-2)
pathogen has spread throughout every major country in the world
(1). This caused a global health crisis and pandemic, with at least
81 million reported cases and over 1,777,000 deaths within the first
year alone (2).

Severe acute respiratory coronavirus 2, similar to other viruses
of the Coronaviridae family, enters host cells via binding to
angiotensin-converting enzyme (ACE)-2 receptors and subsequent
endocytosis and/or membrane fusion of the receptor-virus complex
(3, 4). Binding to ACE-2 is dependent on SARS-CoV-2’s surface
spike protein (S), which is proteolytically activated by host
transmembrane protease serine 2 (TMPRSS2) (5). SARS-CoV-
2’s ribonucleic acid (RNA) genome is replicated and translated
within the cytoplasm forming new SARS-COV-2 virions (6). Furin-
mediated processing of S on the virion’s surface is followed
by release of the newly-formed viruses into the extracellular
environment (6). This viral life cycle perpetuates throughout the
body, targeting vital organs (7).

Severe acute respiratory coronavirus 2 infection can cause
COVID-19, which is most often characterized as a respiratory
disease (8). However, renal involvement and substantial acute
kidney injury (AKI) may also occur (9). A high proportion of
hospitalized COVID-19 patients present with AKI, proteinuria,
and/or hematuria, suggesting glomerular or tubulointerstitial
involvement (10).

Coronavirus disease 2019’s connection to renal tubular damage
is well-established and comprises the majority of COVID-related
AKI (9). However, glomerulonephritis (GN) is also an important
complication, and its association with SARS-CoV-2 remains to be
fully understood. GN appears to be one of the most destructive
renal pathologies in COVID-19; COVID-19 vaccine-associated
GN had higher fatality than either vaccine-associated AKI or
tubulointerstitial nephritis (TIN) (11). However, there remains
much uncertainty regarding the precise nature of this relationship.
There is some doubt as to whether the perceived association
between SARS-CoV-2 and GN is causal versus coincidental. Thus,
ongoing surveillance of COVID-associated GN (COVID-GN)
would be prudent as SARS-CoV-2 and its variants continue to
circulate throughout the world.

2 Methods

A comprehensive review with a timeline from 1 January
2020 to 31 December 2023 was conducted in accordance with
Preferred Reported Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines (12).

2.1 Study selection

A digital research database search was performed with the
following key terms: COVID-19, SARS-CoV-2, glomerulonephritis,
nephropathy, and nephritis. Literature was searched within four
electronic databases (PubMed, MEDLINE, EBSCO, Scopus, and

Google Scholar) during the time frame of 1 January 2020 through
31 December 2023.

Authors BC and DI independently screened studies by title,
abstract, and full text. Relevant literature included case reports and
series, observational/cohort studies, and meta-analyses. Systematic
reviews, editorials, conference abstracts, experimental studies on
animal models, and articles without full-text or original data
available were excluded. Additional exclusion criteria included:
lack of evidence of glomerulonephritis on labs or biopsy, studies
describing an unspecified glomerulonephritis, and non-English
articles without official translations.

2.2 Data extraction

Investigators BC and DI independently compiled key data
from the included articles in a standardized Excel spreadsheet.
Extracted data was then validated by all authors. Information was
collected regarding author lists, publication year, country or region
where the study was conducted, disease course, clinical features
(e.g., serology, kidney pathology), and outcomes (i.e., morbidity,
mortality, complications).

The number was tallied for cases of IgA nephropathy,
anti-glomerular basement membrane disease, membranous
nephropathy, C3 glomerulonephritis, ANCA-associated vasculitis
and glomerulonephritis, lupus nephritis, focal segmental
glomerulosclerosis, and minimal change diseases that had a
temporal association with SARS-CoV-2 infection or immunization
(Figure 1). Each case was further categorized by the presentation,
as either acute, de novo GN versus a flared relapse of underlying
GN.

3 Results

3.1 Antibody and immune complex
formation

It is well-established that SARS-CoV-2 and its vaccines can
elicit robust cell-mediated and antibody-mediated immune
responses (13). This can induce immune dysregulation,
manifesting as non-specific immune activation and/or incitation
or exacerbation of autoimmune state (14–17). This immune
dysregulation appears to be a core mechanism in COVID-GN
(Figure 2). The precise means by which this develops remains
unclear, although some potential avenues have been explored, such
as SARS-CoV-2-mediated cross-reactivity in antibodies and T cells
(18–21).

3.1.1 IgA nephropathy
One of the common types of GN investigated is IgA

nephropathy (IgAN). COVID-19 disease has shown to potentially
evoke and/or exacerbate IgA vasculitis and IgAN (22–44). COVID-
19 vaccines have also been associated with both acute IgAN (16, 36,
45–68) and flares of pre-existing IgAN (53, 57, 69–89).

IgA nephropathy represents an autoimmune state that
classically follows mucosal infections, in which IgA is upregulated
by the immune system and can subsequently deposit into tissues
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FIGURE 1

(A) Tallied cases of glomerulonephritis (GNs) associated with coronavirus disease 2019 (COVID-19) infection. The highest number of reports was de
novo FSGS with 196 cases. The lowest frequency was relapsed MCD with 0 reported cases. (B) Tallied cases of GNs associated with COVID-19
vaccination. The highest number of reports was relapsed IgAN with 141 cases. The lowest frequency was acute and relapsed C3GN and relapsed
anti- GBM with 0 reported cases. FSGS, focal segmental glomerulosclerosis; MCD, minimal change disease; IgAN, IgA nephropathy; MN,
membranous nephropathy; AAV-GN, ANCA, associated vasculitis and glomerulonephritis; LN, lupus nephritis; anti-GBM, anti-glomerular basement
membrane nephritis; C3GN, C3 glomerulonephritis.

such as the glomerular mesangium (90). Given that SARS-CoV-2
antigens act on receptors widely expressed throughout respiratory
and GI mucosa (3), it is quite conceivable how IgAN may follow
COVID-19 infection or immunization.

It is possible that COVID-19 exposure activates B cells to
produce especially high levels of IgA, which form acute immune
complexes that deposit in glomeruli (22, 91). Indeed, the first
immunoglobulin detected in COVID-19, anti-SARS-CoV-2 IgA,
precedes both IgM and IgG serology (92). This may implicate IgA
as one of the predominant agents mediating COVID-19 glomerular

damage. However, it is debated as to whether this is attributed to
acute IgA production or pre-existing IgA deposits in the glomerular
mesangium that are simply “unmasked” by SARS-CoV-2 (70, 74).

Of note, some COVID-associated IgAN cases present with
elevated galactose-deficient-IgA1 (Gd-IgA1) in the serum or Gd-
IgA1 mesangial deposits (65, 93). Mesangial deposition of Gd-IgA1,
an IgA variant caused by aberrant glycosylation, is believed to
play a role in IgAN (94). Recognition of SARS-CoV-2 antigens
by Gd-IgA1 may result in immune complex and complement
deposition in the glomerular mesangium (93). Future research on
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FIGURE 2

Pathophysiologic summary of coronavirus disease (COVID)-associated glomerulonephritis (GNs). Green boxes represent primarily adaptive immune
processes, yellow boxes represent primarily innate immune responses, blue boxes are neutral, red boxes indicate GN subtypes. Mechanisms that are
more well-established in the literature are represented by solid arrows, whereas mechanisms that are less well-understood are represented by
dashed arrows. IFN-y, interferon gamma; NF-kB, nuclear factor kappa B; TNF-a, tumor necrosis factor a; EGFR, epidermal-like growth factor
receptor; STAT3, signal transducer and activator of transcription 3; ORF7a, open reading frame 7a; IL-6, interleukin 6; IL-6Ra, interleukin 6 receptor
alpha; TLR, toll-like receptor; ACE-2, angiotensin-converting enzyme 2; ADAM 17, disintegrin and metalloproteinase 17; MHC, major
histocompatibility complex; HLA-DR, human leukocyte antigen-DR; THSD7A, thrombospondin type-1 domain- containing 7A; NELL1, nerve
epidermal growth factor- like antigen 1; Gd-lgA1, galactose-deficient lgA1; MPO, myeloperoxidase; PR3, proteinase 3.

the induction of Gd-IgA1 and anti-glycan immune complexes may
provide insight into these processes.

3.1.2 Anti-glomerular basement membrane
disease

Another autoimmune nephropathy associated with COVID-
19 is anti-GBM disease (also known as Goodpasture syndrome).
Certain cases of COVID-19 disease or COVID-19 vaccines may
be associated with anti-GBM nephritis, usually presenting with
crescentic, rapidly progressive glomerulonephritis (16, 41, 44, 52,
55, 74, 95–105). This is correlated by a significantly increased
incidence of anti-GBM disease since the start of the COVID-19
pandemic (106).

Goodpasture syndrome is classically described as an
autoimmune disorder driven by molecular mimicry and
autoantibodies (107). Similarly to Streptococcus- and influenza-
induced anti-GBM nephritis, the severe endothelial damage from
SARS-CoV-2 could conceivably expose basement membrane
antigens (e.g., Goodpasture antigen) in the respiratory tract and
renal tissue; epitope similarity would then cause autoantibodies
to attack glomeruli (96, 108). However, given that the literature
remains sparse, the causal relationship between COVID-19 and
anti-GBM disease remains speculative.

3.1.3 Membranous Nephropathy
Severe acute respiratory coronavirus 2 infection has been

implicated in potentially inducing or exacerbating primary and

secondary membranous nephropathy (MN) (35, 44, 96, 109–
111). Additionally, immunization with COVID-19 vaccines was
associated with both acute (36, 47, 48, 52, 53, 55, 112–117) and
relapsed MN (16, 78, 82, 83, 118, 119).

Primary MN often results from autoimmune activity, usually
caused by immune complex deposition and presenting with
autoantibodies against phospholipase A2 receptor (PLA2R),
although autoantibodies against thrombospondin type-1
domain-containing 7A (THSD7A) and nerve epidermal
growth factor-like antigen 1 (NELL1) have been implicated
as well (120, 121). These antibodies form immune complexes
which deposit in sub-epithelial tissue of glomeruli, causing
basement membrane thickening (122). Although classically
associated with primary MN, PLA2R serologies have also been
detected in secondary MN with viral etiology (e.g., hepatitis B,
hepatitis C) (120).

It is possible that both primary and secondary MN
associated with SARS-CoV-2 involve virus-evoked anti-
PLA2R complexes (123). Although some cases test positive
for THSD7A or NELL-1 (16, 113), the majority are PLA2R+
(16, 109, 118). Seeing as how PLA2R is expressed in
the respiratory tract, SARS-CoV-2-mediated damage may
release PLA2R from respiratory epithelial cells, triggering
the development of autoantibodies that attack glomerular
tissue (123).

However, COVID-19 vaccine-associated MN cases have also
tested positive for anti-PLA2R in the serum and/or renal tissue (16,
36, 47, 48, 52, 78, 112, 114, 118). This suggests that direct respiratory
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damage from SARS-CoV-2 virus is not necessarily required to
induce PLA2R+ MN. Rather, messenger RNA (mRNA) or surface
antigen may somehow diminish immune tolerance for PLA2R
antigen (118), but this hypothesis requires further evidence.

3.1.4 C3 Glomerulonephritis
There are some cases reporting a potential association between

SARS-CoV-2 infection and C3 glomerulonephritis (C3GN) (124–
126). C3GN is a pathology formerly categorized as a subtype
of membranoproliferative glomerulonephritis (MPGN), which is
now used primarily to describe glomerular injury patterns as
opposed to a specific disease diagnosis (127, 128). A process closely
related to C3GN, immune complex MPGN (IC-MPGN) has also
been reported to follow SARS-CoV-2 infection or vaccination
(35, 47, 78, 124, 125, 129, 130). One case exhibited lupus-
like features with a “full house” pattern on immunofluorescence
(129). Such findings are comparable to the lupus-like biopsies
in human immunodeficiency virus (HIV)-associated immune
complex kidney disease (HIVICK), which is similarly common
among White patients (131).

In HIVICK, it is proposed that systemic and intrarenal immune
activity triggers polyclonal B cells and hypergammaglobulinemia
with resultant glomerular hyperplasia (132, 133). This mechanism
may similarly underlie the strong IgG and IgM staining that was
observed in a patient with COVID-19 and C3GN (126). This
was correlated with the eventual development of tubuloreticular
inclusions (“interferon footprints”), possibly indicating a strong
contributory role of interferon (IFN) cytokines (126).

However, research in this area is limited, and there does
not seem to be substantial evidence that COVID-19 can trigger
C3GN. It is important to recognize that neither C3GN nor IC-
MPGN demonstrate consistent, strong associations with COVID-
19. However, identification of their pathophysiology may guide
researchers toward which mechanisms are more likely or less likely
underpinning COVID-GN.

3.1.5 Vasculitis-associated glomerulonephritis
Coronavirus disease 2019 has been previously associated with

autoimmune destruction of glomerular blood vessels, which can
cause crescentic, necrotizing GN with fibrinoid necrosis (134, 135).
Biopsies typically stain negative or very low for immune complexes;
hence the disease is often referred to as Pauci-immune GN (136).

Anti-neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis glomerulonephritis (AAV-GN) is a group of disorders
sharing similar features on biopsy (e.g., often crescentic, Pauci-
immune) and classically driven by autoantibodies against
neutrophil proteins. Variations of AAV-GN include granulomatosis
with polyangiitis (GPA), microscopic polyangiitis (MPA),
and eosinophilic granulomatosis with polyangiitis (formerly
Churg-Strauss syndrome).

Coronavirus disease 2019 disease has been associated with new-
onset GPA (137–139), relapsed GPA (140), and new-onset MPA
(141). COVID-19 vaccination has also been temporally linked to
new-onset GPA (142, 143), and both new-onset and relapsed MPA
(82, 144, 145). Other variations of AAV-GN have also developed
following SARS-CoV-2 infection and immunization (16, 17, 36, 38,
44, 47, 48, 55, 78, 99, 100, 146–180).

The hypothesized mechanism for COVID-associated
AAV-GN involves COVID-triggered immune dysregulation;

specifically, it is possible that SARS-CoV-2 proteins promote the
development of autoantibodies against neutrophil proteins
such as myeloperoxidase (MPO) and proteinase 3 (PR3),
which is characteristic of classic AAV-GN (178, 180–182). The
pathophysiology of AAV strongly implicates the role of neutrophil
extracellular traps (NETs) as sources of autoantigens, presenting
MPO and PR3 to adaptive immune cells (183). NETs normally
play a significant role in host defense, but NET dysregulation
can lead to angiopathy and ANCA development (184). NETs
have been implicated as a critical player in SARS-CoV-2 infection
and the cytokine storm that can follow (185, 186); they are also
present in kidney biopsies of some COVID-19 patients (187).
Autoantigen presentation by NETs is thus a possible mechanism
for COVID-associated AAV-GN (178, 188).

The reports of both c-ANCA (45, 189–194) and p-ANCA (16,
52, 53, 84, 101, 176, 195–208) GN following mRNA vaccination
potentially suggests that SARS-CoV-2-associated NETs and AAV-
GN are mediated by the virus’s S protein, or even the viral mRNA
itself. Indeed, mRNA detection by dendritic cells and macrophages
leads to increased activity of type 1 interferon (IFN-1) and other
cytokines, which prime neutrophils to release reactive oxygen
species and lytic enzymes, and facilitate the formation of NETs
(Figure 3) (209).

In addition to NET dysregulation, abnormal expression and
activity of major histocompatibility complex (MHC) class II
molecules is also implicated in AAV-GN pathogenesis, as outlined
in Figure 4 (146, 184, 210–214).

3.1.6 Lupus nephritis
Whether through clinical diagnosis or confirmed by biopsy,

there have been a number of reports correlating SARS-CoV-2
infection with new-onset lupus nephritis (LN) (44, 215–222) as well
as flares of chronic LN (96, 223–226) with or without systemic
lupus erythematosus (SLE). Additionally, adenoviral vector and
mRNA vaccines against SARS-CoV-2 have been associated with
de novo (47, 52, 55, 78, 227, 228) and relapsed (48, 82, 229–232)
LN and SLE. LN biopsies in COVID-19 are consistent with classic
LN, which generally stains positive for deposits with IgG, C3, and
C1q dominance (233). Such clinical and morphological findings
contribute to the growing evidence of COVID-19 exacerbating
underlying autoimmunity.

3.2 Cytokine-mediated glomerular
damage

While an effective immune response to SARS-CoV-2 involves
both B- and T cells, the rapid nature of GN onset post-COVID-19
vaccination implicates T cells as the more important mediators of
glomerular damage (234). T cells respond to viral mRNA with rapid
production of cytokines (e.g., IFN-gamma, tumor necrosis factor
(TNF)-alpha, interleukin (IL)-6), which can both directly damage
glomeruli as well as augment B cell activity and immune complex
deposition (Figure 3) (234).

3.2.1 Minimal change disease
Coronavirus disease 2019 has been correlated with

podocytopathies that traditionally were thought to be driven

Frontiers in Medicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2025.1568943
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1568943 June 4, 2025 Time: 18:31 # 6

Coyne et al. 10.3389/fmed.2025.1568943

FIGURE 3

Proposed mechanism of the IL-6 amplifier pathway in the setting of coronavirus disease 2019 (COVID-19). Ang II, angiotensin II; ACE-2,
angiotensin-converting enzyme 2; ATR1, angiotensin II type 1 receptor; ADAM17, disintegrin and metalloproteinase 17; TNF-a, tumor necrosis factor
alpha; EGFR, epidermal-like growth factor receptor; NF-kB, nuclear factor kappa B; STAT3, signal transducer and activator of transcription 3; IL-6,
interleukin 6; IL-6Ra, interleukin 6 receptor alpha; IFN-1, type 1 interferon; IFN-y, interferon gamma; TLR, toll-like receptor; NET, neutrophil
extracellular traps; MPO, myeloperoxidase; PR3, proteinase 3; Gd-IgA1, galactose-deficient IgA1.

FIGURE 4

Proposed mechanism of MHC-II contribution to coronavirus disease (COVID)-associated AAV-GN. MON, monocyte; Mo, macrophage; CYT,
pro-inflammatory cytokines; CD4 T, CD4+ T cell; CD8 T, CD8+ T cell; MHC II, major histocompatibility complex class II; TCR, T cell receptor;
AAV-GN, ANCA- associated vasculitis and glomerulonephritis; HLA-DR, human leukocyte antigen receptor; MPO, myeloperoxidase; PR3, proteinase
3.

by non-immune complex deposition processes. For example,
COVID-19 infection has been associated with minimal change
disease (MCD), a nephrotic syndrome previously thought to
be cytokine-mediated (33, 35, 36, 43, 44, 96, 125, 235–237).
Vaccination against the virus also may develop new-onset or
relapsed MCD (16, 36, 47, 48, 52, 53, 55, 78, 82, 83, 237–258).

While recent emerging evidence suggests that a number of MCD
cases may in fact be driven by pathologic antibodies to nephrin
(259), in the majority of cases, there remains a complex picture
of interactions which likely reflect multiple parts of the immune
system, including cytokine activity, T cell dysregulation, and B cell
activation (260).
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3.2.2 Focal segmental glomerulosclerosis
Focal segmental glomerulosclerosis (FSGS) may similarly be

driven in large part by cytokine damage rather than immune
complex deposition. Additionally, recurrence or relapse of FSGS is
thought to be potentially mediated by an unidentified circulating
factor, whether it be an unidentified antibody, T cell cytokine,
or non-immunogenic permeability factor, which could potentially
be elicited by viruses such as SARS-CoV-2, leading to podocyte
toxicity (Figure 2) (261, 262). FSGS has developed following the
immune response elicited by SARS-CoV-2 infection (23, 44, 263–
270) and vaccination (36, 52, 55, 78, 82, 271–274).

Collapsing FSGS (cFSGS), also known as collapsing
glomerulopathy, is a morphological variant of FSGS. A plethora
of cases have identified a temporal link between COVID-19
and cFSGS, particularly in the African-American population,
with a higher incidence and poorer prognosis among high-risk
apolipoprotein L1 (APOL1) variants (36, 37, 55, 125, 222, 235, 237,
271, 275–303).

Coronavirus disease-associated cFSGS has incited many
comparisons to HIV-associated nephropathy (HIVAN). HIVAN
appears to have a similar genetic predisposition, with higher
incidence among African-Americans carrying APOL1 variants
(304). More recently, non-HIV viruses, including hepatitis C
virus (HCV) (305) and SARS-CoV-2 (304), have been implicated
in its pathogenesis. Given their notable similarities, it may be
fruitful to apply clinical knowledge of HIVAN pathogenesis
and management toward COVID-associated cFSGS. Based on
previous glucocorticoid use in HIVAN, one group of authors
included prednisone in their treatment regimen for COVID-
associated cFSGS, yielding successful outcomes (306). Such
approaches may be useful moving forward, given that treatment
for COVID-associated cFSGS is generally challenging with a poor
prognosis (302).

It is important to note that whereas HIVAN is primarily driven
by direct viral invasion and cytopathy of renal cells, this does
not seem to be the case for COVID-associated FSGS (307). Many
investigators propose that both collapsing and non-collapsing
glomerulopathy in the setting of COVID-19 result from cytokine-
mediated activation of innate and adaptive immune cells (263,
275, 282, 308). IFN pathways may be particularly important in
COVID-associated cFSGS, as demonstrated by the presence of “IFN
footprints” in some patients (96, 308). Previous research shows
that IFN therapy may even induce cFSGS and other nephropathies
(309, 310).

It is possible that there is a convergence in cytokine
pathways between COVID-19 and other inflammatory states,
such as in transplant immunity. Acute T cell-mediated allograft
rejection has developed subsequent to SARS-CoV-2 infection and
immunization, correlated with a CD3 + T cell predominance
(96, 226, 237, 263). Furthermore, both IFN and granulocyte
colony-stimulating factor–which are elevated in COVID-19 (311–
313)–are important cytokines for T cell-mediated exacerbation of
autoimmune GN (314) and acute transplant rejection (315).

Multiple allograft recipients have developed collapsing
glomerulopathy in the setting of COVID-19 infection and
immunization, with two patients expressing low-risk APOL1 alleles
(48, 226, 263, 264, 279, 295, 316–321). Similarly, non-transplant
patients have also presented with COVID-associated cFSGS

without high-risk APOL1 polymorphisms; these patients had
significant pre-existing conditions, including SLE and HIV (222,
291). It is possible that a pre-existing state of immune dysregulation
(e.g., SLE, HIV, transplant immunity) may predispose or “prime”
cytokine pathways to be triggered by COVID-19, resulting in
cFSGS even in the absence of high-risk APOL1 mutations. Still,
the presence of a high-risk APOL1 variant likely confers a worse
prognosis, as exemplified by a high-risk APOL1 patient developing
severe COVID-19 infection and cFSGS despite having prior
immunity to SARS-CoV-2 (316).

Although the nephrotoxic effect of high-risk APOL1 variants
is not fully understood, some proposed mechanisms include
impaired endolysosomal trafficking, inflammasome activation,
and APOL3 control of actomyosin in podocytes (322). The
inflammatory response to COVID-19 may act as a “second hit”
for APOL1 variants that at baseline are at high risk for developing
glomerulopathy (275). Previously established second-hit triggers
of glomerulopathies in high-risk APOL1 variants include HIV,
SLE, and IFN therapy (323). SARS-CoV-2 is being considered as
a second-hit trigger for cFSGS in a similar manner.

Innate immune pathways (e.g., IFN-1) can enhance APOL1
expression, and thus may facilitate COVID-associated cFSGS via
upregulation of high-risk APOL1 alleles (Figure 2) (324–326).
However, some cases of COVID-associated cFSGS in high-risk
APOL1 variants did not exhibit IFN footprints (282, 285) or
elevated IFN-1 expression (275). Additionally, Meliambro et al.
did not find significant differences in APOL1 expression between
controls and a high-risk APOL1 COVID-19 patient with c-FSGS
(327). However, this may have been confounded by the anti-
inflammatory action of hydroxychloroquine or the delayed kidney
biopsy (327).

Overall, the literature demonstrates that COVID-associated
cFSGS can develop in low, intermediate, or high-risk APOL1
individuals, with greater frequency and severity in the latter
group and especially affecting those of African ancestry. Although
IFN pathways are potentially implicated, knowledge gaps remain
regarding the specific cytokines most strongly contributory to the
glomerular injury of COVID-associated FSGS.

4 Hypothesized pathophysiology of
COVID-associated
glomerulonephritis

4.1 Controversies surrounding direct viral
damage versus immune-mediated
damage

Coronavirus disease-GN may arise via a variety of potential
mechanisms. These include, but are not limited to: direct viral
cytopathy, immune hyperactivation, hemodynamic instability, and
metabolic imbalances (9). Researchers have attempted to tease out
which underlying mechanisms contribute the most.

The first reported renal biopsy of a live COVID-19 patient
showed collapsing glomerulopathy without signs of viral presence
within renal cells (276). Many subsequent COVID-GN reports
since then have similarly demonstrated a low likelihood that direct

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2025.1568943
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1568943 June 4, 2025 Time: 18:31 # 8

Coyne et al. 10.3389/fmed.2025.1568943

viral cytotoxicity is responsible for COVID-GN (27, 96, 275, 277,
278, 280, 328).

This may be the result of renal ACE-2 and TMPRSS2
expression. ACE-2 seems to be predominant in proximal tubules,
whereas TMPRSS2 appears to be predominant in the distal tubules
(329, 330). Given that ACE-2 and TMPRSS2 work in tandem with
one another, their differential expression in separate regions of the
nephron may limit SARS-CoV-2’s ability to enter.

Still, some authors maintain that SARS-CoV-2 infiltration into
renal cells may cause COVID-GN via direct cytotoxicity and
vasculitis (331, 332). Several cases observed particles within tubular
epithelium and podocytes possibly suggestive of SARS-CoV-2;
however, these particles may instead be clathrin-coated vesicles that
are normally found within cells (22, 23, 235, 281, 318, 319, 333).

Some articles have also reported SARS-CoV-2 mRNA within
kidney tissue (20, 96, 334). However, other biopsies have failed
to demonstrate this (27, 110, 129, 277). Additionally, a number
of COVID-GN cases occur post-infection, after viral clearance
and negative PCR testing (17, 129, 138). COVID-GN has also
developed following mRNA, adenoviral-vector, and inactivated
vaccines, further demonstrating that direct viral infection is not
required for nephropathy (47).

A final piece of evidence dissuading against direct virus-
mediated COVID-GN is the presentation pattern. COVID-19
is associated with a wide spectrum of glomerular and tubular
disease states, a pattern more consistent with systemic immune
hyperactivation as opposed to direct viral cytotoxicity (96, 187).
Overall, it appears unlikely that direct virus-mediated damage is
predominant in COVID-GN.

4.2 Cytokine storm and IL-6 amplifier

Severe acute respiratory coronavirus infection is strongly
associated with upregulated activity of CD4+ and CD8+ T cells,
despite a decrease in the absolute number of CD8+ T cells (335,
336). COVID-19 vaccines can also stimulate robust CD4+/CD8+
responses with enhanced cytokine production (19, 337, 338).
Furthermore, it has been established that such T cell dysregulation
and hyperstimulation is linked to both immune complex-driven
GN and cytokine-driven GN, including IgAN, LN, MCD, and FSGS
(339–341).

We stress that a major pillar of COVID-GN is driven
by cytokines, specifically a T cell-mediated cytokine storm. As
summarized in Figure 3, current research implicates the IL-6
amplifier system in propagating the cytokine storm of COVID-
19 (13, 337, 342–346). The age-dependent strength of the IL-6
amplifier’s feedback loop may correspond with the age-dependent
increase in COVID-19 morbidity and mortality (347).

Interleukin-6-mediated lymphocyte recruitment may play a
role in the humoral and cell-mediated processes underlying
COVID-GN. Studies have found elevated IL-6 levels in the serum
of patients with COVID-related IgAN and vasculitis (25, 27).
Furthermore, IL-6 may strongly alter IgA glycosylation machinery
and significantly contribute to glomerular IgA deposition (348–
350). It is possible that the IL-6 amplifier provoked by SARS-
CoV-2 promotes the production of Gd-IgA1, resulting in complex
deposition within the glomeruli. IFN-1 cytokines, specifically IFNa,

may further contribute to COVID-associated flares of chronic
IgAN (351, 352). Increased phosphorylation and activation of
STAT3 has also been observed in COVID-GN (327). Targeting the
expression or activation of factors like STAT3, IFN-1, and IL-6 may
hold therapeutic potential for COVID-GN.

It is likely that the IL-6 feedback loop and cytokine storm in
COVID-19 are enhanced by complement pathways. Complement
activation has shown to contribute to SARS-CoV-2 pathogenesis
and severity (353). COVID-19 patients have elevated serum levels
of complement proteins like C5a, which can boost IL-6 and TNFa
expression (353–355). Similarly, COVID-GN can also present with
elevated C5a levels, increased C5aR activity, and decreased C3/C4
levels (356). It is thus possible that complement pathways propagate
COVID-GN via potentiation of cytokine activity.

Overall, although the exact relationship remains unclear, there
is mounting evidence that COVID-GN involves an IL-6 amplifier-
driven hyperinflammatory storm.

4.3 SARS-CoV-2 superantigen

Cheng et al. (357) found that SARS-CoV-2’s S protein
has superantigen characteristics, exhibiting high affinity for
complementarity determining regions of both α- and β-chain
variable domains of T cell receptors (TCRs), and that this
interaction is further strengthened by certain mutations in
the virus’s genome.

Researchers have also found that there is a skew in
expression of TCR repertoire among COVID-19 patients with
hyperinflammation (358). These effects seem to be due to a
sequence motif within S’s binding epitope that is unique to
SARS-CoV-2; this motif is absent in other coronaviruses and
instead resembles bacterial superantigens in both sequence and
structure (358). Enterotoxin B and C of staphylococci can act
as superantigens, inducing GN via mass stimulation of T cell
cytokines and polyclonal immunoglobulin (359, 360). SARS-CoV-
2’S protein may act as a superantigen in a similar manner, driving
the development of GN via a cytokine storm.

4.3 Interactions with the
renin-angiotensin-aldosterone system

Interactions with RAAS may contribute to the cytokine storm
in COVID-19. Binding of SARS-CoV-2 to ACE-2 results in
increased angiotensin II (Ang II) binding to angiotensin II type
1 receptor (ATR1), resulting in the induction of disintegrin and
metalloproteinase 17 (ADAM17), which not only generates the
mature forms of epidermal growth factor receptor (EGFR) and
TNF-a, but also processes the membrane form of IL-6 receptor
alpha (IL-6Ra) into its soluble form (3, 361–363). The net
downstream effect is IL-6 amplifier activation (Figure 3). COVID-
GN thus may involve dysregulation of the ACE-2 and Ang II
axis.

However, conflicting findings have been reported, summarized
in Table 1 (346, 364–375). Interestingly, in one COVID-19 patient
with cFSGS, there was no significant difference in ACE-2 transcript
expression compared to normal kidney samples (327). However,
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TABLE 1 Opposing views with seemingly conflicting evidence in the literature regarding the role of angiotensin-converting enzyme-2 (ACE-2)
expression and renin-angiotensin-aldosterone system (RAAS) in the development and severity of coronavirus disease-associated
glomerulonephritis (COVID-GN).

Hypothesis and rationale: decreased ACE-2 expression
correlates with worse outcomes in COVID-19 and
COVID-GN, due to greater Ang II activity and
inflammation

Hypothesis and rationale: increased ACE-2 expression
correlates with worse outcomes in COVID-19 and COVID-
GN, due to greater receptor availability for SARS-CoV-2 to
enter target cells

In normal state, ACE-2 is counter-regulatory to RAAS. ACE-2 opposes
ACE-mediated vasoconstriction and inflammation, particularly in the kidneys,
which have an even higher expression of ACE-2 than the lungs.

Binding of Ang II to ATR1 can markedly increase ACE-2 expression, which resulted
in enhanced SARS-CoV-2 cell entry. This was reversed by irbesartan, an ATR1
antagonist.

An increased ACE/ACE-2 ratio has been correlated with greater disease severity in
COVID-19 patients.

There was elevated ACE-2 expression in the lungs of patients with comorbidities that
confer high risk for severe COVID-19.

ACE-2 knockout in animals worsens both hypertensive nephropathy and
inflammatory lung lesions. These lesions were attenuated by recombinant ACE-2
and angiotensin II receptor blocker (ARB).

–

translational and post-translational modifications of ACE-2 can
cause discrepancies between transcript and protein expression (371,
376).

There is a shortage of conclusive literature, but the current
evidence seems to suggest that decreased ACE-2 expression
predisposes patients to severe COVID-19 and COVID-GN.
Regardless, ACE-2 receptors should be further investigated as a
potentially crucial component of COVID-GN pathogenesis.

5 Discussion and conclusion

The overall literature seems to suggest that there may be an
association between COVID-19 and both de novo and relapsed
GN. The most common overall type of COVID-GN was FSGS,
particularly cFSGS. In infection, the most common cases were
de novo FSGS followed by de novo AAV-GN. In vaccination, the
most common cases were relapsed IgAN followed by de novo
AAV-GN. IgAN had the most relapse cases in both infection
and vaccination, potentially suggesting a greater prominence of
“unmasking” mechanisms for COVID-associated IgAN.

Prognosis seems to differ between different GN pathologies–
patients who developed COVID-associated IgAN or MCD were
generally more likely to recover kidney function with appropriate
management (55).

The numerous instances of mixed glomerular histologies
(e.g., MN and cFSGS, IgAN, and AAV-GN) potentially suggests
a multifactorial pathophysiology for COVID-GN (37, 49, 55,
60). Cytokine storms, which may or may not be accompanied
by immune complexes, is the most consistently prevalent
mechanism described within the literature. SARS-CoV-2 infection
and immunization likely induce robust CD4+ upregulation,
ensuing the IL-6 amplifier, which is enhanced by RAAS and
complement pathways. Cytokines of interest include IL-6, IFN-
1, and TNFa, which may mediate polyclonal immunoglobulin
stimulation and/or direct cytotoxicity of glomeruli. Targeting these
pathways may prove fruitful in our understanding of COVID-19
disease and treatment.

Genetic interactions with SARS-CoV-2’s inflammatory cascade
can predispose certain individuals to developing severe COVID-
19 and GN. Mutations and polymorphisms in ATR1, ACE-2, and

APOL1 should be further investigated as potential predisposing
factors for COVID patients.

There was a higher number of GN cases associated with
COVID-19 vaccines than infections in the literature (Figure 1).
However, it is unlikely that vaccination confers a greater risk of
GN. Vaccine cases are generally more controlled environments
than active COVID-19, making them easier to study and
report. Furthermore, multiple large population-wide studies across
different countries have found that the COVID-19 vaccine rollout
did not significantly increase overall incidence of glomerular
disease (377, 378). Among the different types of COVID-19
vaccines, mRNA vaccines were the most commonly reported in
association to GN. This does not necessarily indicate that mRNA
vaccines inherently carry a higher propensity for GN, but rather,
likely reflects the widespread availability of mRNA vaccines for
COVID-19 across the global population.

Although this review has aimed to be fully comprehensive,
there are limitations. Due to the retrospective nature intrinsic to
systematic reviews, we are unable to definitively claim a causative
effect between COVID-19 and GN. There is a possibility that some
COVID-GN cases were due to concurrent disease or incidental
timing. For example, one case of AAV, not included in this review,
was initially believed to be secondary to COVID-19 vaccination,
until underlying Dengue infection was identified (379, 380). This
review also includes both case reports and national or international
registries, resulting in a slight theoretical possibility of “double-
counted” cases.

Given the novel nature and ever-developing literature
surrounding SARS-CoV-2 pathophysiology, it is not surprising
that COVID-GN presents with unsettled results. For example,
precise etiology is difficult to ascertain in dual diagnosis cases (e.g.,
AAV-GN and anti-GBM) (99). It can also be difficult to distinguish
new-onset AAV in COVID-19 patients, due to pulmonary and
vasculitis-like symptomatology sometimes resembling one another
(381–384).

It was unclear if certain COVID-GN cases were acute or
chronic processes. Some patients had a prior history of microscopic
hematuria, yet due to their subclinical nature, they were never
biopsied to confirm a GN diagnosis (60, 80). Upon exposure to
SARS-CoV-2 infection or immunization, they developed new-onset
gross hematuria and/or AKI, prompting a renal biopsy, leading to
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a GN diagnosis (60). This review tallied such cases as relapses–
although the GN diagnosis was new, the patient history suggested
an “unmasking” of underlying pathology.

This review specifies particular T cell types, antibodies,
cytokines, and genes as requiring further investigation. However,
other avenues (e.g., regulatory T cell inhibition) are also
underexplored mechanisms for COVID-GN. The pathogenesis
of COVID-GN is most likely multifactorial, involving multiple
pathways of the immune system, possibly with secondary systemic
effects (e.g., hypoxia).

This review is restricted by the retrospective evaluation of
the limited number of cases published between 2020 and 2023.
Continued attention toward COVID-GN may elucidate greater
facets of its pathophysiology and treatments.
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