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Introduction: Symptoms of autism spectrum disorder (ASD) range from mild to

severe and are evident in early childhood. Children with ASD have di�culties

with social interaction, language development, and behavioral regulation. ASD

is a mental condition characterized by challenges in communication, restricted

behaviors, di�culties with speech, non-verbal interaction, and distinctive facial

features in children. The early diagnosis of ASD depends on identifying anomalies

in facial function, which may be minimal or missing in the first stages of

the disorder. Due to the unique behavioral patterns shown by children with

ASD, facial expression analysis has become an e�ective method for the early

identification of ASD.

Methods: Hence, utilizing deep learning (DL) methodologies presents an

excellent opportunity for improving diagnostic precision and e�cacy. This study

examines the e�ectiveness of DL algorithms in di�erentiating persons with

ASD from those without, using a comprehensive dataset that includes images

of children and ASD-related diagnostic categories. In this research, ResNet50,

Inception-V3, and VGG-19 models were used to identify autism based on the

facial traits of children. The assessment of these models used a dataset obtained

from Kaggle, consisting of 2,940 face images.

Results: The suggested Inception-V3 model surpassed current transfer learning

algorithms, achieving a 98% accuracy rate.

Discussion: Regarding performance assessment, the suggested technique

demonstrated advantages over the latest models. Our methodology enables

healthcare physicians to verify the first screening for ASDs in children.

KEYWORDS
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1 Introduction

Autism Spectrum Disorder (ASD) represents one of the most significant challenges

in modern neurodevelopmental medicine, affecting ∼1 in 36 children globally (1). This

complex condition, characterized by difficulties in social interaction, communication

patterns, and repetitive behaviors, demands early intervention for optimal outcomes (2).

ASD is identified based on deficiencies in behavioral skills and social communication, often

seen via recurrent behavioral indicators in children. Figure 1 displays the symptoms of

ASD. However, traditional diagnostic procedures usually involve time-intensive behavioral

assessments and costly medical evaluations, creating substantial barriers to early detection,

particularly in resource-limited settings (3).
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FIGURE 1

Symptoms of ASD.

Recent advances in artificial intelligence, particularly in the

domain of deep learning and computer vision, have opened

promising new avenues for ASD screening (4, 5). The emerging

field of facial phenotype analysis is of particular interest, which

leverages the observation that individuals with ASD often present

distinct facial morphological characteristics (6). These features,

including broader upper faces, wider eyes, shorter nasal bridges,

and narrower cheeks, have been increasingly recognized as

potential biomarkers for ASD detection (6).

Timely diagnosis facilitates the use of specialist therapies

designed to address the unique requirements of persons with

autism, focusing on social communication, language development,

and behavioral issues. Moreover, early diagnosis allows families

to get suitable support services, educational resources, and

community activities, enhancing coping strategies, alleviating

parental stress, and promoting adult independence.

Nonetheless, early identification of autism by traditional

methods also has specific threats. A significant concern is

the potential for labeling, which may impact the child’s self-

esteem and social relationships. There is a risk of overdiagnosis

or misdiagnosis, leading to unnecessary interventions and

therapies. The diagnostic procedure may be delayed, intricate, and

emotionally testing for families, necessitating thorough evaluations

by multidisciplinary teams. Consequently, using sophisticated

approaches supported by artificial intelligence (AI) may mitigate

this danger, as AI utilizes technology capable of incorporating

feedback from youngsters, informed by their expertise. In this

study, we used facial images of children to identify those suffering

from ASD.

The integration of deep learning methodologies with facial

analysis represents a potentially transformative approach to

ASD screening. Contemporary deep learning architectures have

demonstrated remarkable capabilities in extracting complex

patterns from facial images, offering the possibility of automated,

rapid, and cost-effective screening tools. This approach aligns with

the growing need for accessible screeningmethods that can support

healthcare professionals in identifying individuals whomay require

comprehensive diagnostic evaluation.

This research presents a novel deep learning framework

for ASD detection through facial image analysis. Our study

evaluates the performance of three state-of-the-art deep learning

architectures: ResNet, VGG16, and VGG19. Through rigorous
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experimentation and validation, we demonstrate that the VGG19

architecture achieves superior performance with an accuracy of

98%, representing a significant advancement in automated ASD

screening capabilities.

The primary contributions of this study include:

1. A comprehensive evaluation of DL architectures for facial

image-based ASD detection.

2. The development of an optimized VGG19-based model

achieving 98% accuracy.

3. Analysis of the specific facial features that contribute most

significantly to accurate ASD detection.

This research aims to advance the field of automated ASD

screening, potentially reducing the burden on healthcare systems

while accelerating the identification of individuals who may benefit

from early intervention. Our findings suggest that deep learning-

based facial analysis could serve as a valuable complementary tool

in the ASD diagnostic process, particularly in settings where access

to traditional diagnostic resources is limited.

The research gap in ASD identification using images persists,

despite the proposed system achieving 98% accuracy on a

benchmark dataset. Different signals in facial expressions make

it challenging to identify using advanced deep learning models,

which may aid in predicting ASD. Ultimately, clinical validation is

necessary to ensure the widespread adoption of this approach in

healthcare settings and its practical applicability.

2 Related work

Early detection of ASD is crucial for effective intervention

and treatment (7). While traditional diagnostic methods rely on

clinical observations and behavioral assessments such as the Autism

Diagnostic Observation Schedule (ADOS) (8), recent years have

seen significant advancement in automated detection approaches.

These advancements span multiple modalities, including facial

analysis (9), magnetic resonance imaging (MRI) (10), eye tracking

(11, 12), and electroencephalography (EEG) (13). The emergence of

sophisticated machine learning and deep learning techniques has

particularly accelerated the development of automated diagnostic

systems across these modalities (13), offering promising tools for

early screening and detection.

Akter et al. (14) conducted work using transfer learning,

working with a dataset of 2,936 facial images from Kaggle. Their

study evaluated multiple machine learning classifiers and pre-

trained CNN models, with their improved MobileNet-V1 model

achieving an accuracy of 90.67%. They used K-means clustering

to identify potential ASD subtypes, achieving 92.10% accuracy for

two autism subtypes. Elshoky et al. (15) comprehensively compared

machine learning approaches using facial images from Kaggle.

Their study uniquely compared classical machine learning, deep

learning, and automated machine learning (AutoML) approaches.

Using OpenCV for pre-processing with 90×90 pixel resizing and

grayscale conversion, their AutoML approach achieved ∼96%

accuracy, significantly outperforming classical ML 72.64% with

Extra Trees and deep learning methods using VGG16, which

achieved 89%.

Li et al. (16) introduced a two-phase transfer learning

approach using MobileNetV2 and MobileNetV3-Large. Their

method transferred knowledge from ImageNet to facial images

from Kaggle. This mobile-optimized approach achieved 90.5%

accuracy with an AUC of 96.32%. Siagian et al. (17) took a

different approach, using a unique dataset of 200 facial images

collected from special schools in Medan, Indonesia. Their method

combined the SURF (Speeded-Up Robust Features) algorithm

with various boosting methods, achieving 91.67% accuracy with

Gradient Boosting despite the relatively small dataset.

Alkahtani et al. (18) explored a hybrid approach combining

pre-trained CNNs with traditional machine learning classifiers.

Their study utilizedMobileNetV2 andVGG19 as feature extractors,

paired with various classifiers machine learning algorithms.

Working with a publicly available dataset, their optimized

MobileNetV2 configuration, using the Adamax optimizer with a

learning rate of 0.001, achieved 92% accuracy. Sai Koppula and

Agrawal (19) evaluated multiple pre-trained CNN architectures

with a focus on domain-specific variations. Using the Kaggle

dataset, they implemented extensive data augmentation through

Keras’ ImageDataGenerator. Their study revealed that models pre-

trained on VGGFace2 outperformed those trained on ImageNet,

with VGG16 achieving 86% accuracy and AUC. Abdullah et al.

(20) explored an ensemble approach that combined the EfficientNet

B5, MobileNet, and InceptionV3 models using the Kaggle dataset.

Their method employed data augmentation techniques and utilized

a soft voting ensemble method, achieving an accuracy of 89.87%.

Karthik et al. (21) investigated hybrid deep learning models

using Vision Transformers (ViT) with various classifiers. Working

with the Kaggle dataset, they implemented comprehensive pre-

processing, including grayscale conversion, resizing to 224×224

pixels, normalization, and extensive augmentation. Their ViT

model, combined with XGBoost and SHAP implementation,

achieved 91.3% accuracy.

Pan and Foroughi (22) focused on edge computing

applications, adapting AlexNet for efficient processing in

educational environments using the Kaggle dataset. Their

implementation achieved 93.24% accuracy while maintaining

real-time processing capabilities, demonstrating the feasibility

of edge deployment for ASD screening tools. Shahzad et al. (23)

introduced a hybrid attention-based model combining ResNet101

and EfficientNetB3. Their approach incorporated self-attention

mechanisms from natural language processing and emphasized

standardized pre-processing with image augmentation through

rotations, zooming, and flipping. The hybrid attention-based

model achieved an accuracy of 96.50%. Reddy and Andrew

(24) conducted a comparative study of three pre-trained

Convolutional Neural Network (CNN) architectures: VGG16,

VGG19, and EfficientNetB0. Their investigation utilized a dataset

of facial images of children, implementing comprehensive data

augmentation techniques, including rotation, horizontal flipping,

zooming, and height/width shifting. Images were standardized

to 227 × 227 × 3 pixels to ensure compatibility with the CNN

architectures. Their findings revealed that EfficientNetB0 achieved

the highest accuracy at 87.9%, surpassing both VGG16 84.66% and

VGG19 80.05%. Table 1 displays the different existing systems that

have been developed for the diagnosis of ASD.
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TABLE 1 Existing using facial images.

Study Dataset Methods/models Key findings/accuracy

Akter et al. (2021) (14) Autism Face Image Dataset Transfer learning with MobileNet-V1, K-means

clustering

MobileNet-V1: 90.67%; Clustering: 92.10% for

ASD subtypes

Elshoky et al. (2022) (15) Autism Face Image Dataset Classical ML, Deep Learning (VGG16), AutoML AutoML: 96%; VGG16: 89%; Classical ML

(Extra Trees): 72.64%

Li et al. (2023) (16) Autism Face Image Dataset Two-phase transfer learning MobileNetV3-Large: 90.5%, AUC: 96.32%

Siagian et al. (2023) (17) Special dataset of 200 images Gradient Boosting with SURF features Gradient Boosting: 91.67%

Alkahtani et al. (2023) (18) Autism Face Image Dataset MobileNetV2, VGG19 with various classifiers MobileNetV2: 92%

Sai Koppula and Agrawal (2023)

(19)

Autism Face Image Dataset VGGFace2 vs. ImageNet-based pre-trained CNNs VGG16 (VGGFace2): 86%, AUC: Not specified

Abdullah et al. (2024) (20) Autism Face Image Dataset Ensemble (EfficientNetB5, MobileNet,

InceptionV3)

Ensemble: 89.87%

Karthik et al. (2024) (21) Autism Face Image Dataset Vision Transformers (ViT) with XGBoost and

SHAP

ViT+ XGBoost: 91.3%

Pan and Foroughi (2024) (22) Autism Face Image Dataset Edge-optimized AlexNet AlexNet: 93.24%

Shahzad et al. (2024) (23) Autism Face Image Dataset ResNet101+ EfficientNetB3 hybrid with

self-attention

Hybrid: 96.50%

Reddy and Andrew (2024) (24) Autism Face Image Dataset VGG16, VGG19, EfficientNetB0 EfficientNetB0: 87.9%; VGG16: 84.66%;

VGG19: 80.05%

FIGURE 2

Enhanced diagnosis ASD system.

3 Materials and methods

This research used DL models to predict and classify ASD in

children at an early stage. This framework was developed using

autistic face features. This study used pre-trained DL models

to automatically extract robust characteristics of children’s faces

to detect ASD. The framework of the proposed ASD system is

presented in Figure 2.
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3.1 Dataset

The research used face images of autistic children from a

publicly accessible collection (Kaggle). The dataset included 2D

RGB images of children aged 2–14. The dataset was designed into

two subfolders: one designated for autistic children and the other

for non-autistic children. The autistic subfolder included images

of ASD, while the non-autistic subfolder had images randomly

retrieved from web searches, as shown in Table 2. The images were

sized at 224 × 224 × 3, providing a comparative overview of

ASD and non-ASD images. The snapshots of images of ASD and

non-ASD are presented in Figure 3.

3.2 Pre-processing approach

3.2.1 Data augmentation
Data augmentation is process to generating additional data

from existing datasets to train deep learning models, which might

be complicated by data silos, restrictions, and other constraints,

by minor modifications to the original data. This study employs

data augmentation to enhance the model’s efficacy by artificially

TABLE 2 Samples of dataset.

Dataset Number

Total_images 2,940

Autistic_children 1,327

Non-autistic_childern 1,613

expanding the training dataset by transformations such as flipping,

shearing, zooming, and rescaling, as shown in Table 3. These

parameters mitigate overfitting when the model retains training

data rather than acquiring generalized patterns, thereby improving

the model’s efficacy. The ASD and Non-ASD images in standard

collections may be constrained in size; augmentation artificially

enhances them by rescaling pixel values to [0, 1], shearing images

by 10%, zooming by 10%, and performing horizontal flipping.

3.2.2 Data splitting
The dataset is partitioned into three sets: training (80%),

validation (10%), and test (10%). This guarantees that the model

is tested on unknown data for improved generalizability. The class

volume of the ASD dataset is presented in Figure 4.

3.3 Deep learning models

3.3.1 Inception-V3 models
Google presented the Inception-V3 pre-trained model. It

includes symmetrical and asymmetrical construction blocks,

TABLE 3 Augmentation parameters.

Indicators Values

Shear_Range method 0.1

Zoom_Range method 0.1

Horizontal_Flip method True

FIGURE 3

Snapshot of dataset.
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FIGURE 4

Class ASD dataset.

FIGURE 5

Architecture of inception-V3 network.

convolutional layers, max and average pooling, concatenations,

dropouts, and fully linked layers. Applications of batch

normalization in activation layers are typical. The inception-

V3 network is the inception block. The inception-V3 model

separates layers, and rather than processing via a single layer, it

utilizes the input from the preceding layer to execute four distinct

processes concurrently, subsequently concatenating the outputs

from all these various levels. The 5 × 5 convolution is replaced

with two 3 × 3 convolutions in the Inception-V3 architecture,

as shown in Figure 5. Since a 5 × 5 convolution requires 2.78

times more resources than a 3 × 3 convolution, this also improves

computing performance by decreasing processing time. Utilizing

two 3 × 3 layers instead of a single 5 × 5 layer enhances the

architecture’s performance.
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FIGURE 6

Architecture of ResNet50 model.

FIGURE 7

Architecture of VGG-19 model.

3.3.2 ResNet50 models
Introduced the residual neural network (ResNet) He et al.

(33) in 2015. ResNet50 was introduced in 2015 by Microsoft

Research for image identification tasks. ResNet indicates that the

model has 50 layers. ResNet50 improved training performance

by including residual connections between layers, which reduced

loss, preserved acquired information, and kept it. An output

with a residual link is a convolution of the input and the

input itself, or the result of adding both together. Figure 6

illustrates a block diagram of the ResNet50 model’s design.

Utilized Residual blocks function as shortcuts or skip connections,

enabling the model to bypass one or more levels. This mitigates

the vanishing gradient issue during training and facilitates

the seamless flow of information. ResNet50 key contribution

is the invention of the residual block. These leftover blocks

facilitate the connection of activations from preceding levels to

subsequent layers.

3.3.3 VGG-19 models
The VGG-19 model was introduced by (34). The VGG-19

model for neural networks has 19 weight layers, 16 of which

are convolutional layers and 3 of which are fully connected.

Its filter size is 3 × 3, and it has a stride and padding of 1

pixel. The diminutive kernel size lowers the parameter count

and allows for comprehensive coverage of the whole image.

An operation called 2 × 2 max pooling with a stride of 2 is

used by the VGG-19 model. With 138 million parameters, this

model ranked second in classification and first in positioning

in 2014. VGGNet reinforced the notion that CNNs should
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TABLE 4 Enhanced parameters for setting the Dl models.

# No Name Values

1 Model Architecture Inception-V3, VGG-19 and ResNet50

2 Image Size 224×244×3

3 Batch Size 16

4 Learning Rate 0.01

5 Epochs 25

6 Image Rescaling 1./255

7 Optimizer SGD

8 Pool size (3,3)

9 Strides (2,2)

10 Padding Valid

11 Dencer_layer 512

12 Dropout 0.50

13 Function Sigmoid

TABLE 5 Validation results of ResNet50 model.

Model Precision
(%)

Recall
(%)

F1 score
(%)

Support

Non_Autistic 98 94 96 294

Autistic 94 98 96 294

Accuracy % 96

Weighted Avg. 96 96 96 588

include a deep layered architecture to facilitate hierarchical

interpretation of visual input. Figure 7 illustrates the block model

of VGG-19.

3.4 Setting of proposed DL models

The DL model is started with pre-trained weights from

the ImageNet function, with an input size of ASD image of

224 × 224 × 3, and omitting the top classification layers.

The dense layer used sigmoid activation for binary classification

objectives. The model used a Stochastic SGD optimizer with

a standard learning rate of (0.01), leverages binary cross-

entropy for finding performance and loss function, and evaluates

performance based on accuracy as the measure. The Training

model was used 25 epochs, using early stopping with 5 epochs.

The completed model is assessed on the validation set using

measures such as accuracy. Classification is performed using

Softmax. Table 4 illustrates a schematic representation of the

DL model.

3.5 Evaluation metrics

We used critical statistical metrics, including accuracy,

precision, and recall, to illustrate our research results. The formulas

that are used for the measurement of the DL models are

as follows:

Accuracy =
TP + TN

FP + FN + TP + TN
× 100 (1)

F1− score = 2∗
Precision × Recall

Precision+ Recall
× 100% (2)

Recall =
True Positives

True Positives+ False positives
× 100% (3)

Precision =
True Negatives

True Negatives+ False Negatives
× 100% (4)

4 Experiment

Training and evaluation of the proposed system were

completed on the Kaggle environment platform, which consists

of a robust TensorFlow library. We deliberately selected three

distinguished pretrained CNNs: Inception-V3, ResNet50, andVGG

19 models, for diagnosis of the autism disorder in children. To use

existing best practices and ensure consistency, we selected proven

beneficial hyperparameters. Suitable for binary classification tasks,

with a learning rate of 0.001, the SGD optimizer, the ReLU

activation function, and a maximum of 25 epochs. The specified

parameter values were accurately adjusted for all models according

to the results of prior cutting-out research, with the objective of

attaining optimum training performance for the chosen algorithms.

The method was evaluated using a real-time dataset obtained from

children with ASD and typically developing children.

4.1 Results of ResNet50 models

Table 5 presents the experimental results. The ResNet50 model

exhibits significant efficacy in classifying Autistic and Non-Autistic

individuals, attaining an overall accuracy of 96%. The ResNet50

model achieves a weighted average precision, recall, and F1-

score of 96%, demonstrating consistent performance across both

classes. In the Non-autistic class, precision is 98%, indicating that

nearly all autistic predictions are accurate, whereas recall is 94%,

indicating that some autistic cases are observed. The Autistic

class demonstrates a precision of 94%, suggesting the presence of

some false positives, while achieving a recall of 98%, indicating

that nearly all Non-Autistic cases are identified. The F1-scores of

96% for Autistic individuals and 96% for Non-Autistic individuals

indicate a strong balance in classification performance. The results

indicate the model’s effectiveness; however, lower enhancements

in Non_Autistic precision may be realized through further

data augmentation or fine-tuning. ResNet50 model demonstrates

significant reliability for the classification of images related to

autism, as proved by this evaluation.

Figure 8 presents the classification of the validation set of the

ResNet50 model. The classification model’s performance on the

validation set was assessed through a confusion matrix. The model

accurately identified 275 TN and 289 TP, exhibiting minimal FP.

The model demonstrates high accuracy, minimal FP, and effective

class differentiation, rendering it reliable for classification tasks.
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FIGURE 8

Confusion matrix of ResNet50 model.

TABLE 6 Validation results of Inception-V3 model.

Model Precision
(%)

Recall
(%)

F1 score
(%)

Support

Non_Autistic 98 97 98 294

Autistic 97 98 98 294

Accuracy % 98

Weighted Avg. 98 98 98 588

4.2 Results of Inception-V3

The Inception-V3 model exhibits exceptional accuracy and

robust classification capabilities in detecting ASD, as shown in

Table 6. The Inception-V3 model demonstrates high accuracy

and strong classification performance in the detection of ASD,

achieving an overall accuracy of 98%. The system demonstrates a

precision of 98% in identifying non-autistic cases, accompanied by

an F1 score of 98%. The precision for Autistic cases is 97%, with a

recall of 98% and an F1 score of 98%. This balanced performance

minimizes misclassifications, rendering it appropriate for real-

world applications in the identification of ASD with confidence

and precision. The results demonstrate that the model effectively

classifies target classes while maintaining a low misclassification

rate, thereby rendering it suitable for real-world applications in the

identification of ASD with high confidence and precision.

Figure 9 presents the confusion matrix for the Inception-

V3 model during the validation stage. The model demonstrated

enhanced classification performance. The Inception-V3 model

exhibited robust classification performance, successfully predicting

286 non-autistic and 289 Autistic cases from a total of 588 samples.

The model exhibited minimal misclassifications, recording 8

false positives (FP) and 5 false negatives (FN), which suggests

strong recall and precision. The model demonstrated reliability

and balanced performance, though there remains potential for

improvement in minimizing misclassification rates.

4.3 Result of VGG-19

The VGG19 model demonstrates high precision, recall, and

F1-score in the classification of ASD, exhibiting minimal FP and

TN, as shown in Table 7. It demonstrates strong performance in

the Autistic and Non-Autistic classes, as indicated by precision,

recall, and F1-score metrics. The model reveals a 97% accuracy

rate, suggesting its appropriateness for clinical ASD detection, with

opportunities for enhancement via refined training strategies.

The confusion matrix of VGG19 is shown in Figure 10. The

VGG19 model demonstrated robust performance on the validation

dataset, with 285 TN accurately identifying the Non_Autistic class

and 287 TP correctly identifying the Autistic class. There are

just 9 FP as misclassifcation as Autistic when the true class is

Non_Autistic, and 7 FN misclassifying as Non_Autistic when
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FIGURE 9

Confusion matrix of Inception-V3 model.

TABLE 7 Validation results of VGG-19 model.

Model Precision
(%)

Recall
(%)

F1 score
(%)

Support

Non_Autistic 98 97 97 294

Autistic 97 98 97 294

Accuracy % 97

Weighted Avg. 97 97 97 588

the true class is Autistic, resulting in a minimal total count

of misclassifications.

4.4 Performance of the ASD system based
on DL models

The ASD detection system, using deep learning models, has

impressive accuracy rates of 98% in training and validation,

distinguishing between non-autistic and Autistic patients. The

model’s robust convergence and consistent validation outcomes

demonstrate its proficiency in generalizing novel data, making it

a valuable early identification tool.

Figure 11 shows the accuracy and loss of the ResNet50

system, with a y-axis representing data classification accuracy.

The validation system improved accuracy from 0.5000 to 0.9592

during the validation phase, with an exceptional enhancement to

25 epochs. Training losses were quantified using a categorical cross-

entropy function, with validation losses decreasing from 0.5 to 0.01

after 25 epochs.

The performance of the Inception-V3 model is seen in

Figure 12 for both training and validation. We use categorical

entropy loss and the SGD optimizer, executing for 25 epochs.

During the training phase, the loss value diminishes from 0.7265

to 0.0076 until 25 epochs. The training accuracy is increasing

gradually from 0.4844 to 0.9992 epoch 2 to 25. While validation

accuracy improves from 0.8384 to 0.9779 throughout 25 epochs.

This illustrates the model’s capacity to learn and adjust according

to input data. From epoch 3 to epoch 25, the model’s performance

improved progressively, exhibiting enhanced accuracy and less loss.

Attaining a accuracy of 0.98 is a significant achievement.

Figure 13 illustrates the accuracy and loss performance of

VGG19. During training epochs 2 to 23, the model’s accuracy
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FIGURE 10

Confusion matrix of ResNet50 model.

FIGURE 11

Performance of ResNet50 model.
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FIGURE 12

Performance of Inception-V3 model.

FIGURE 13

Performance of VGG-19 model.

increases to above 0.9854; however, there is a significant decline

in accuracy from epochs 24–25. The validation accuracy

reaches a maximum of 0.97 in the latter epochs, namely at

epoch 25, demonstrating the model’s effective recognition

of the dataset’s intrinsic patterns. The model’s validation

accuracy on unfamiliar data increases from 0.7653 in the

opening epoch to an impressive 0.9728 at the conclusion of

the 25th epoch. The validation loss consistently decreased

throughout the preceding period, ultimately reaching a minimum

of 0.0947.

5 Discussion

Individuals with ASD have difficulties in social interaction,

communication, and conduct, as well as a variety of other

neurological issues. Timely identification is crucial for mitigating

the detrimental effects of this disease by implementing specialized

instruction in schools and rehabilitation facilities. The research

examined DL algorithms for the detection of autism spectrum

disorder, emphasizing its efficacy in differentiating between persons

with and without the condition. Current research primarily
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FIGURE 14

ROC of Inception-V3 model.

TABLE 8 Results of existing developing ASD systems with our results.

References Approach Used
datasets

Accuracy
(%)

Rashid and Shaker (25) Xception Same dataset 91

Alsaade and Alzahrani

(26)

Xception 91

Sridurga et al. (27) Xception 86

Rabbi et al. (28) CNN 92

Alkahtani et al. (18) MobileNetV2 92

Akter et al. (14) MobileNet-V1 90

Gaddala et al. (29) VGG16 & 19 84

Singh et al. (30) MobileNet 88

Ghazal et al. (31) AlexNet 87

Hosseini et al. (32) MobileNet 94.64

Elshoky et al. (15) ML 96

MobileNetV2 MobileNetV2 92

Proposed system 98

focuses on functional discoveries for categorization tasks, often

leading to decreased accuracy. Our suggested methodology

redirects attention to using structural information within facial

expression data. Utilizing DL approaches, namely Inception-V3,

and optimizing hyperparameters within this framework, we seek to

address the shortcomings of existing procedures while augmenting

generalization capacities and enhancing classification accuracy.

This motivation stems from the recognition of the underutilized

potential of facial expressions in children with ASD and typically

developing children, along with the conviction that harnessing this

information can lead to more effective classification models for

diverse neurological conditions, thereby advancing the field and

improving patient outcomes.

The potential threat we faced in this work is that data bias

may undermine themodel’s generalizability, especially if the dataset

lacks sufficient demographic diversity or exhibits class imbalance

between autistic and non-autistic images. We have employed the

augmentation method to address this issue, utilizing augmentation,

early stopping, and transfer learning regularization techniques

to mitigate overfitting. Including images from the same subject

or session in several data splits might cause dataset leakage.

This threat raises interpretability issues since it may be unclear

which image features the models prioritize in their decision-

making process. This pre-processing improved DL models, namely

ResNet50, Inception-V3, and VGG-19, and removed the threat,

achieving high accuracy. Finally, the DL models were examined by

using accuracy and confusion matrices.

This approach used the augmentation technique to enhance

the deep learning model for diagnosing ASD with outstanding

performance. Employing ResNet50, Inception-V3, and VGG-

19 models resulted in substantial improvements in diagnostic

accuracy, with an exceptional 98% accuracy in differentiating

between ASD and control subjects on the standard dataset. The

results of ResNet50 scored 96% in terms of accuracy, and VGG-

19 achieved an accuracy of 97%. The efficacy of this strategy is

further substantiated by criteria such as accuracy, underscoring its

potential to improve autism outcomes. The results have significant

implications for ASD diagnosis in clinical settings, enabling more

informed decisions, earlier identification and intervention, and
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FIGURE 15

Performance of proposed system compared with di�erent existing ASD systems.

improved outcomes for individuals and their families. Advanced

algorithms may optimize the diagnosis process, thereby decreasing

wait times and lowering the urgency on the healthcare system.

Additional study and validation on more extensive datasets are

required to comprehensively evaluate their therapeutic value

and effect.

The AUC, or area under the curve, signifies that a higher

AUC correlates with an increased probability of precise prediction.

Figure 14 illustrates the ROC curve of the optimal methodology.

The Inception-V3 model has superior accuracy and AUC of 99%

across all three methodologies.

Numerous studies have been conducted specifically in

diagnosing ASD based on the image expression of children. Most

authors used the same standard dataset, available on Kaggle,

which contains 2,940 images for applying different automatic

classification approaches to diagnose ASD based on facial images,

thereby enhancing accuracy. Prior studies indicate that suboptimal

image quality in the training dataset significantly affects the

accuracy of model results. One of the biggest challenges faced by

the researchers is that images of children’s faces frequently exhibit

noise, low resolution, misalignment, and various other issues.

Several researchers focus on optimizing models or hyperparameter

sets, yet they often fail to achieve significant improvements in

accuracy. Table 8 presents a comparison of the results from the

latest studies in this field. In our research, we have improved the

hyperparameters of the proposed DL model, and we have achieved

98% accuracy using the same dataset. Figure 15 compares our

system’s results with those of other approaches, highlighting the

superior accuracy of our proposed strategy.

6 Conclusion

Diagnosing at an early stage is essential for administering

successful treatment, particularly given the very low incidence

of autism in children. The DL algorithms were used for ASD

detection, often concentrating only on diagnosis.Moreover, current

systems may have difficulties in scaling efficiently due to belief

in manual and expertise-dependent procedures, impeding their

capacity to satisfy the growing demand for autism evaluation

and diagnosis. To tackle these issues, we have developed an

efficient DL model„ namely ResNet50, Inception-V3, and VGG-

19, implemented to predict and diagnose ASD. Pre-processing

techniques, including resizing, rescaling, and augmentation, were

used to enhance model performance, which may further elevate

accuracy. Our classifiers achieved exceptional accuracies of 96%,

98%, and 97% for ASD, expression prediction, respectively.

This illustrates their ability to precisely distinguish children’s

psychological states and facial expressions. We developed ASD

system-based DL model to assess children’s expressions and

diagnose ASD. This study has significant effects for real-time ASD

screening, potentially transforming the diagnosis process.
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