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Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most 
lethal malignancies, with limited treatment options and poor prognosis. Recent 
advances in cancer genomic analysis enable the identification of actionable 
gene alterations, opening new opportunities for personalized therapy. Among 
these, homologous recombination DNA repair (HRR) gene alterations are 
associated with distinct biological behavior, favorable prognosis, and increased 
sensitivity to platinum-based chemotherapy. However, the prognostic impact of 
coexisting mutations in key driver genes—KRAS, TP53, CDKN2A, and SMAD4—
within HRR-altered PDAC remains poorly understood.

Methods: We retrospectively analyzed PDAC patients who underwent genomic 
profiling testing with FoundationOne® CDx between June 2019 and December 
2021 through the Center for Cancer Genomics and Advanced Therapeutics 
(C-CAT) database. We  compared the prevalence and prognostic significance 
of key gene alterations between HRR-altered and HRR–wild-type (WT) tumors.

Results: Of 2,381 PDAC patients, 274 (11.5%) harbored HRR alterations. These 
patients showed significantly longer overall survival (OS) than those with 
HRR-WT tumors (HR = 0.66, p  = 0.002). The frequencies of KRAS, TP53, and 
CDKN2A mutations were less frequent in HRR-altered tumors. TP53 mutation 
was independently associated with poorer OS across both HRR subgroups, 
while CDKN2A alteration was a poor prognostic factor in HRR-WT tumors. 
Interestingly, SMAD4 alteration was linked to improved survival in the HRR-
altered group.

Conclusion: HRR-altered PDAC has a distinct genomic profile and is associated 
with a favorable prognosis. Our findings demonstrate that coexisting alterations 
are significant prognostic factors in both HRR-altered and HRR–wild-
type tumors. These results highlight the clinical relevance of incorporating 
comprehensive genomic profiling into routine care to stratify patient prognosis 
better and inform individualized treatment strategies in PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the sixth leading 
cause of cancer-related deaths worldwide (1). The prognosis of 
metastatic and advanced PDAC remains poor, with a 5-year survival 
rate of less than 10% (2). The integration of molecular profiling, 
including next-generation sequencing (NGS), into routine clinical 
practice has significantly advanced our understanding of genetic 
alterations associated with PDAC. KRAS, TP53, CDKN2A, and 
SMAD4 are the most frequently altered genes in PDAC. Although 
these gene alterations contribute to aggressive tumor characteristics 
and lead to treatment resistance and poor prognosis (3–6), they have 
remained undruggable for decades. However, recent scientific 
advances have enabled the targeting of these gene alterations. For 
example, structural and biochemical analyses can now be used to 
design drugs targeting KRAS mutations and p53 (7, 8). Moreover, 
rapid progress in proteolysis-targeting chimera (PROTAC) technology 
has provided a new strategy for targeting activated KRAS proteins (9), 
providing hope for improving the prognosis of PDAC.

Homologous recombination DNA repair (HRR) gene alterations 
have been identified in 14–16.5% of PDAC patients (10, 11), and 
these patients have a more favorable prognosis than those with wild-
type (WT) (12, 13). Further, PDAC patients with HRR gene 
mutations demonstrate greater sensitivity to platinum-based 
therapies than do those with HRR-WT PDAC (14). PARP inhibitors 
have been evaluated in PDAC patients with HRR gene mutations 
based on the concept of synthetic lethality (15); however, their 
efficacy is limited to germline BRCA1/2 mutations in maintenance 
therapy after platinum-based treatment (16). With the recent 
progress in molecularly targeted therapies for PDAC, a 
comprehensive understanding of the genetic landscape and its 
influence on survival outcomes has become an important area of 
investigation. Previous studies have noted that the mutation 
frequencies of KRAS, TP53, and CDKN2A in PDAC differ depending 
on the presence or absence of HRR gene alterations (17, 18); 
however, the prognostic significance of these genetic alterations 
when stratified by HRR gene alteration status has not yet 
been explored.

Thus, this study aimed to evaluate the prevalence and prognostic 
impact of coexisting gene alterations according to the HRR gene 
alteration status in PDAC. Toward this goal, we analyzed the data of 
patients with PDAC registered in the Center for Cancer Genomics and 
Advanced Therapeutics (C-CAT) (19), the largest real-world 
comprehensive genomic profiling registry in Japan.

Methods

Ethical approval

This study was approved by the Medical Ethics Review Committee 
of Kindai University of Medicine (Approval Number: R05-029) and 
the C-CAT review board (C-CAT Control Number: CDU2023-021 N) 

and was conducted according to the tenets of the Declaration 
of Helsinki.

Study design and patients

This retrospective observational study was conducted using data 
from the C-CAT database (19), a repository of clinical and genomic 
information on Japanese patients with cancer who underwent 
genomic profiling tests as part of the insurance system. This study 
focused on patients with pancreatic cancer who underwent 
Foundation One® CDx (F1CDx) testing (Foundation Medicine Inc., 
Cambridge, USA) (20). All reported pathogenic and likely pathogenic 
mutations met the quality control criteria defined by Foundation 
Medicine. The limit of detection (LOD) of F1CDx varies depending 
on the type of variant. The LOD ranges from 1.8 to 7.9% for base 
substitutions and from 7.1 to 11.7% for insertions and deletions 
(indels) (20, 21). All patients registered between June 2019 and 
December 2021 were included whose clinical and genomic data 
available at the time of the data update in April 2022. PDAC patients 
were identified as those documented with pancreatic adenocarcinoma 
according to the OncoTree cancer classification platform (November 
2, 2021), within the C-CAT database (22). Briefly, the C-CAT provides 
the following information: age, sex, Eastern Cooperative Oncology 
Group performance status (ECOG PS), smoking history, drinking 
habit, cancer type, pathological diagnosis, site of metastasis, site of the 
specimen used for genomic testing, type of specimen used for genomic 
testing, date of death, last confirmed date of survival, and information 
related to chemotherapy (e.g., regimens, first and last date of 
administration, best response, date of progression, and serious adverse 
events). Genomic information provided by C-CAT includes genetic 
alterations detected, allele frequencies, copy number (CN), 
and pathogenicity.

Outcomes

Clinical and genomic data were extracted on January 2024. 
HRR-altered PDAC patients was identified as those with pathogenic 
or likely pathogenic alterations in the following genes: ATM, BAP1, 
BARD1, BLM, BRCA1, BRCA2, BRIP1, CHEK2, FAM175A, FANCA, 
FANCC, NBN, PALB2, RAD50, RAD51, RAD51C, and RTELI. The 
prevalence of major pathogenic alterations in the frequently 
mutated genes KRAS, TP53, SMAD4, and CDKN2A, referred to as 
the “Big 4” driver mutations, was then compared between 
HRR-altered and HRR-WT PDAC patients. The prevalences of 
mutations and CN loss were analyzed separately. Patients with 
mutations and CN loss in the same gene (one patient with CDKN2A 
mutations and two patients with SMAD4 mutations) were excluded. 
Treatment outcomes were evaluated in patients who received the 
folinic acid, fluorouracil, irinotecan hydrochloride, and oxaliplatin 
(FFX) regimen including modified FFX or the gemcitabine and 
nab-paclitaxel (GA) regimen in the first-line setting. Patients who 
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received perioperative chemotherapy were excluded. Overall 
survival (OS) and time to treatment failure (TTF) were analyzed. 
OS was defined as the duration (days) from the date of first-line 
chemotherapy initiation for locally advanced or metastatic PDAC 
to the date of death or the last confirmed date of survival. TTF was 
defined as the duration from the start of treatment to the date of 
treatment discontinuation or death from any cause. Progression free 
survival, overall response rate, and adverse events were not 
evaluated in this study because relevant data were not available in 
the C-CAT registry.

Statistical analysis

The prognostic significance of HRR gene alteration status was 
evaluated with respect to OS and TTF. The HRR-altered group was 
compared to the HRR wild-type (HRR-WT) group using Kaplan–
Meier method with the log-rank test. Additionally, interactions 
between TP53, CDKN2A, KRAS and SMAD4 alteration status and OS 
were analyzed within each HRR group. Univariate and multivariate 
analyses were performed by using the Cox proportional hazard model. 
The prevalence of these genetic alterations within the two HRR groups 
was summarized, and differences between the groups were calculated. 
We reported p values in addition to confidence intervals and statistical 
significance was set at p  < 0.05; however, there were not to 
be interpreted as hypothesis tests. The results should be interpreted 
with caution.

All statistical analyses were performed using EZR version 4.3.1 
(Saitama Medical Center, Jichi Medical University, Saitama, Japan) 
(23), and using GraphPad Prism version 10.2.2 for Windows 
(GraphPad Software, Boston, Massachusetts USA, www.
graphpad.com).

Results

Clinical and molecular characteristics 
based on HRR gene alteration status

Among the 2,381 patients with PDAC, 274 patients (11.5%) had 
HRR alteration (Figure 1). The most frequently altered HRR genes 
were ATM (n = 87, 32%) and BRCA2 (n = 87, 32%), followed by 
PALB2 (n = 40, 15%) (Supplementary Figure  1). The clinical 
characteristics of the patients in the HRR-altered and HRR-WT 
groups are shown in Table 1. The median patient age was 65 years 
(range, 30–83 years) in the HRR-altered group and 67 years (range, 
26–88 years) in the HRR-WT group. The median (range) ECOG PS 
was 0 (0–3) in the HRR-altered group and 0 (0–3) in the HRR-WT 
group. Sex distribution and the number of metastatic sites were 
comparable between the two groups. With respect to the prevalence 
of gene alterations, KRAS mutations (77% vs. 97%, p < 0.001), TP53 
mutations (48% vs. 79%, p < 0.001), and CDKN2A mutations (10% vs. 
19%, p < 0.001) were significantly less prevalent in the HRR-altered 
group than in the HRR-WT group (Table 2).

FIGURE 1

CONSORT diagram of the study.
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Clinical outcomes according to HRR gene 
alteration status

A total of 976 patients who were treated with chemotherapy only 
for palliative intent and had available survival data were included in 
the survival analysis (Figure  1). The clinical characteristics of the 
patients are shown in Supplementary Table 1. In total, 113 and 863 
patients had HRR-altered and HRR-WT PDAC. Patients with 
HRR-altered PDAC tend to have a better prognosis and obtain greater 
survival benefits from platinum-based agents than HRR-WT patients. 
Therefore, we analyzed survival outcomes based on the HRR gene 
alteration status. The results showed that OS was significantly better 
in the HRR-altered group than in the HRR-WT group (median OS: 
24.7 months [95% CI: 20.5–33.6 months] vs. 19.2 months [95% CI: 
17.7–20.8 months], p = 0.002; Figure 2).

Meanwhile, 308 patients who received FFX and 472 patients 
who received GA as the first-line therapy were included in the 
comparison of TTF and OS between the HRR-altered and 

HRR-WT groups. The clinical characteristics of the patients are 
shown in Supplementary Table 2. In patients treated with FFX as 
the first-line therapy, TTF was significantly prolonged in the 
HRR-altered group (median TTF: 7.8 months [95% CI: 
5.5–9.6 months] vs. 5.4 months [95% CI: 4.3–5.8 months], 
p = 0.012; Supplementary Figure  2A). Although OS was not 
significantly different, there was a favorable trend in the 
HRR-altered group (median OS: 24.3 months [95% CI: 13.5–
36.1 months] vs. 16.8 months [95% CI: 15.5–19.5 months], 
p = 0.100; Supplementary Figure 2B). In patients treated with GA 
as the first-line therapy, both TTF (median: 5.4 months [95% CI: 
4.4–6.9 months] vs. 5.2 months [95% CI: 4.7–6.0 months], 
p = 0.859) and OS (median: 24.5 months [95% CI: 17.1–
38.8 months] vs. 20.8 months [95% CI: 18.8–22.9 months], 
p = 0.094) were comparable according to the HRR gene alteration 
status (Supplementary Figures 3A,B).

Distinct impact of KRAS, TP53, SMAD4, and 
CDKN2A gene alterations by HRR alteration 
status

We investigated the impact of KRAS, TP53, SMAD4, and 
CDKN2A alterations on the survival of HRR-altered and HRR-WT 
PDAC, respectively.

Patients with TP53 mutation had significantly worse prognosis in 
both the HRR-altered (median OS: 17.1 months [95% CI: 13.6–
24.5 months] vs. 34.0 months [95% CI: 24.7–39.0 months], p < 0.001) 
and HRR-WT (median OS: 17.6 months [95% CI: 16.3–19.2 months] 
vs. 24.3 months [95% CI: 21.2–30.1 months], p < 0.001) groups 
(Figures 3A,B). In the HRR-altered group, patients with CDKN2A 
alteration tended to have a poor OS compared to CDKN2A WT 
patients (median OS: 21.4 months [95% CI: 13.6–35.7 months] vs. 
28.9 months [95% CI: 20.7–33.7 months], p = 0.095). In the HRR-WT 
group, patients with CDKN2A alteration had significantly shorter OS 
compared to patients with CDKN2A WT (median OS: 17.6 months 
[95% CI: 15.9–19.2 months] vs. 22.4 months [95% CI: 19.7–
25.8 months], p < 0.001; Figures 4A,B).

Regarding the presence or absence of KRAS mutations, OS was 
not significantly different between the HRR-altered (median OS: 
24.5 months [95% CI: 16.6–34.0 months] vs. 24.7 months [95% CI: 
17.8–49.8 months], p = 0.878) and HRR-WT groups (median OS: 
19.2 months [95% CI: 17.6–20.8 months] vs. 19.7 months [95% CI: 
14.4–26.4 months], p = 0.715) (Figures 5A,B).

Patients with SMAD4 alteration had a significantly better OS in 
the HRR-altered group (median OS: 36.4 months [95% CI: 14.1-NA 
months] vs. 24.0 months [95% CI: 17.1–32.0 months], p = 0.025). In 
the HRR-WT group, there is no significantly difference in OS between 
SMAD4 alteration and SMAD4 WT (median OS: 19.2 months [95% 
CI: 16.2–21.3 months] vs. 22.4 months [95% CI: 19.7–25.8 months], 
p = 0.912; Figures 6A,B).

Finally, we examined the prognostic factors associated with OS 
using univariate and multivariate analyses for the HRR-altered and 
HRR-WT groups, respectively (Supplementary Tables 3, 4). Therefore, 
these analyses were conducted including age, sex, and coexisting gene 
alterations. In HRR-altered group, TP53 mutation was identified as a 
statistically significant independent predictor of OS (HR = 2.91; 95% 
CI 1.64–5.16, p < 0.001), while SMAD4 alteration was associated with 

TABLE 1  Patient characteristics by HRR alteration status.

Characteristic HRR-altered 
group

HRR-WT group

n = 274 n = 2,107

Age at registration, years

median (range) 65 (30–83) 67 (26–88)

Sex, n (%)

Female 124 (45) 933 (44)

Male 150 (55) 1,174 (56)

Unknown 0 (0) 0 (0)

Smoking, n (%)

Yes 127 (46) 1,001 (48)

No 132 (48) 1,014 (48)

Unknown 15 (5) 92 (4)

Heavy alcohol consumption, n (%)

Yes 35 (13) 253 (12)

No 206 (75) 1,638 (78)

Unknown 33 (12) 216 (10)

ECOG PS, n (%)

0–1 259 (95) 2,006 (95)

≥ 2 6 (2) 38 (2)

Unknown 9 (3) 63 (3)

Metastatic sites, n (%)

1 143 (52) 1,165 (55)

≥ 2 100 (36) 689 (33)

Unknown 31 (11) 253 (12)

Sampling methods, n (%)

Surgery 137 (50) 1,146 (54)

Biopsy 135 (49) 936 (44)

Unknown 2 (1) 25 (1)

HRR, homologous recombination DNA repair; WT, wild type; ECOG PS, Eastern 
Cooperative Oncology Group performance status.
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better OS (HR = 0.42; 95% CI 0.20–0.89, p = 0.023). In HRR WT 
group, TP53 mutation (HR = 1.51; 95% CI 1.19–1.91, p < 0.001) and 
CDKN2A alteration (HR = 1.41; 95% CI 1.18–1.70, p < 0.001) were 
identified as a statistically significant independent predictor of OS.

Discussion

The current study showed the prognostic significance of HRR 
status in a large Japanese PDAC cohort, showing that PDAC patients 
with HRR alteration had significantly longer TTF with the first-line 

FFX than PDAC patients with HRR-WT. In contrast, no survival 
benefit was observed with GA. Also, our study demonstrated the 
prognostic impact of coexisting KRAS, TP53, CDKN2A, and SMAD4 
alterations according to HRR status in PDAC.

Our results underscore previous findings of a correlation between 
HRR gene alterations and favorable prognosis, as well as the clinical 
benefit of platinum agents in PDAC (13, 17). Preclinical research has 
indicated that HRR gene-altered tumor cells have defective DNA 
repair, making them more vulnerable to platinum-induced DNA 
damage (24). The GENERATE trial demonstrated the superior 
survival benefit of GA over mFFX as a frontline treatment for locally 
advanced or metastatic PDAC patients in Japan (25). Therefore, GA is 
the preferred first-line treatment in Japan. The combination of 
irinotecan liposomes and fluoropyrimidine is preferred over mFFX 
following GA (26), limiting the subsequent use of mFFX and reduces 
platinum exposure throughout the clinical course. Although NGS is 
not currently recommended in the management guidelines for 
patients with PDAC (27), our findings highlight the importance of 
NGS in identifying patients with HRR-altered PDAC who are likely to 
benefit from platinum agents.

The current study demonstrated that KRAS, TP53, and CDKN2A 
mutations were significantly less prevalent in HRR-altered patients 
than in HRR-WT patients, consistent with previous findings (17, 18). 
The exact reasons for the differences in these gene mutations between 
HRR-altered and HRR-WT PDAC remain unclear. However, 
considering the carcinogenesis in BRCA1/2-mutated tumors (28), the 
development of HRR-altered PDAC may be  different from the 
stepwise mutations of KRAS, CDKN2A, TP53, and SMAD4 typically 
observed in general PDAC (29).

Although alterations in TP53, CDKN2A, KRAS, and SMAD4 
affect the prognosis of PDAC (3–6, 30), the influence of these gene 
alterations on the prognosis of HRR-altered PDAC has not been 
previously reported. To our knowledge, this study is the first to report 
on the prognostic impact of these gene alterations according to HRR 
alteration status in PDAC. The results demonstrated that TP53 
mutation was a poor prognostic factor, regardless of the HRR gene 
alteration status. Tumors harboring TP53 mutations have higher 

TABLE 2  Prevalence of KRAS, TP53, SMAD4, and CDKN2A gene alterations based on HRR gene alteration status.

Gene alteration Status HRR-altered 
group (n = 274)

HRR-WT group 
(n = 2,107)

Percentage 
difference (%)

p Value

KRAS mutation, n (%)
+ 212 (77) 2,039 (97) 20

< 0.001
− 62 (23) 68 (3) −

TP53 mutation, n (%)
+ 132 (48) 1,656 (79) 31

< 0.001
− 142 (52) 451 (21) −

CDKN2A mutation, n (%)
+ 28 (10) 410 (19) 9

< 0.001
− 246 (90) 1,697 (81) −

CDKN2A Loss, n (%)
+ 84 (31) 684 (32) 1

0.583
− 190 (69) 1,423 (68) −

SMAD4 mutation, n (%)
+ 54 (20) 421 (20) 0

1.000
− 220 (80) 1,686 (80) −

SMAD4 Loss, n (%)
+ 13 (5) 166 (8) 3

0.085
− 261 (95) 1,941 (92) −

HRR, homologous recombination DNA repair; WT, wild type.
Fisher’s exact test was used to compare the proportions between the groups.

FIGURE 2

Kaplan–Meier analysis of overall survival (OS) based on homologous 
recombination DNA repair (HRR) gene alteration status.
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genomic instability, resulting in the evasion of apoptosis, plasticity, 
and reduced lethality (31). Although TP53 mutation is a well-known 
negative prognostic marker in PDAC (4, 6), our findings further 
confirm that is also associated with poor outcomes even in 
HRR-altered PDAC.

In the HRR-WT group, patients with CDKN2A alteration had 
significantly shorter OS than those with CDKN2A WT. In the 
HRR-altered group, patients with CDKN2A altered group had a trend 
toward worse prognosis than those with CDKN2A WT. These results 
were consistent with the previous studies (30, 32), while we indicated 

that CDKN2A alteration was a poor prognostic factor regardless of 
HRR alteration status in PDAC for the first time. The difference in 
prognosis between HRR-altered and WT group is probably due to the 
limited number of HRR-altered PDAC patients with CDKN2A 
alterations, despite our cohort being the largest in Japan, remains a 
challenge for this analysis. Understanding the status of CDKN2A 
alteration is important as CDKN2A loss frequently accompanies 
methylthioadenosine phosphorylase (MTAP) deletion (33) that is the 
target of AMG193, a protein arginine methyltransferase 5 (PRMT5) 
inhibitor (34).

FIGURE 3

Kaplan–Meier analysis of overall survival (OS) by TP53 mutation status in PDAC patients. Data for the homologous recombination DNA repair (HRR)-
altered group (A) and the HRR wild-type (WT) group (B) are shown.

FIGURE 4

Kaplan–Meier analysis of overall survival (OS) by CDKN2A alteration status in PDAC patients. Data for the homologous recombination DNA repair 
(HRR)-altered group (A) and the HRR wild-type (WT) group (B) are shown.
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The impact of KRAS mutation on survival outcomes has been 
inconsistent in previous studies (35, 36). However, our analysis found 
no significant differences in OS between patients with and without 
KRAS mutations in both the HRR-altered and WT groups. Although 
the prevalence of KRAS mutations was significantly lower in the 
HRR-altered group than in the HRR-WT group, it remains relatively 
high. As the development of pan-KRAS inhibitors (37), represents 
promising strategies to improve the prognosis of patients with PDAC, 
it is important to understand the presence and absence of 
KRAS mutations.

In the HRR-altered group, patients with SMAD4 alteration had a 
significantly longer OS than those of SMAD4 WT. Meanwhile, in the 
HRR-WT group, there was no significantly difference on survival 
between SMAD4 altered and SMAD4 WT groups. The impact of 
SMAD4 alteration on survival outcomes has been obscure in previous 
study (5, 6). Our finding suggests a possibility that SMAD4 alteration 
had a different prognostic impact according to HRR alteration status, 
while it is difficult to explain the reason at this point.

This study has some limitations. First, we could not differentiate 
between germline and somatic HRR gene alterations, and homologous 

FIGURE 5

Kaplan–Meier analysis of overall survival (OS) by KRAS mutation status in PDAC patients with homologous recombination DNA repair (HRR) alteration 
group (A) and with HRR wild-type (WT) group (B).

FIGURE 6

Kaplan–Meier analysis of overall survival (OS) by SMAD4 alteration status in PDAC patients. Data for the homologous recombination DNA repair (HRR)-
altered group (A) and the HRR-wild type (WT) group (B) are shown.
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recombination deficiency (HRD) status was not incorporated into the 
analysis as it was not reported by in the F1CDx testing. The HRD 
score, which serves as a genomic scar score and predicts treatment 
response to platinum agents in advanced PDAC, is generally higher in 
tumors with germline HRR alterations than in those with somatic 
alterations (38). Second, clinical data in the C-CAT database are 
limited with respect to both quantity and quality, with a notable 
number of missing entries. Thus, we  were unable to perform 
propensity score matching to adjust for detailed patient characteristics 
when comparing the survival outcomes.

In conclusion, HRR gene alteration is a favorable prognostic factor 
and provides clinical benefit from platinum-based chemotherapy in 
PDAC. HRR-altered PDAC has a distinct molecular profile. 
Additionally, coexisting gene alterations affect the prognosis in both 
HRR-altered and HRR-WT PDAC patients. Collectively, these results 
emphasize the practical value of routine comprehensive genomic 
profiling to predict prognosis and guide treatment decisions in 
patients with PDAC.
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