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Background: At present, there are no specialized models for predicting mortality

risk in patients with alcoholic cirrhosis complicated by severe acute kidney injury

(AKI) in the ICU. This study aims to develop and validate machine learning models

to predict the mortality risk of this population during hospitalization.

Methods: A retrospective analysis was conducted on 856 adult patients

with alcoholic cirrhosis complicated by severe AKI, utilizing data from

the MIMIC-IV database. Within the dataset, 627 patients from the period

2008–2016 were designated as the training cohort, whereas 229 patients

from 2017 to 2019 comprised the temporal external validation cohort.

Feature selection was conducted utilizing LASSO regression, which was

subsequently followed by the development of eight distinct machine

learning models. The performance of these models in the temporal

external validation cohort was rigorously assessed using the area under

the receiver operating characteristic curve (AUROC) to determine the

optimal model. The model was interpreted using the SHAP method, and

nomograms were subsequently constructed. A comprehensive evaluation was

performed from the perspectives of discrimination (assessed via AUROC and

AUPRC), calibration (using calibration curves), and clinical utility (evaluated

through DCA curves).

Results: LASSO regression identified nine key features: total bilirubin, acute

respiratory failure, vasopressin, septic shock, oliguria, AKI stage, lactate, fresh

frozen plasma transfusion, and norepinephrine. In the temporal external

validation cohort, the Lasso-LR model achieved the highest AUROC value

of 0.809, establishing it as the optimal model. We developed both a static

nomogram and a web-based dynamic nomogram (https://zhangjingyu123456.

shinyapps.io/dynnomapp/) for visualization purposes. In the nomogram model,

the AUROC for the training cohort and temporal external validation cohort

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1570928
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1570928&domain=pdf&date_stamp=2025-05-08
https://doi.org/10.3389/fmed.2025.1570928
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1570928/full
https://orcid.org/0009-0008-7523-1563
https://orcid.org/0000-0002-7629-5541
https://orcid.org/0000-0002-0208-1823
https://orcid.org/0000-0002-9200-5348
https://orcid.org/0009-0001-8103-6384
https://zhangjingyu123456.shinyapps.io/dynnomapp/
https://zhangjingyu123456.shinyapps.io/dynnomapp/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1570928 May 3, 2025 Time: 16:44 # 2

Sun et al. 10.3389/fmed.2025.1570928

were 0.836 (95% CI: 0.802-0.870) and 0.809 (95% CI: 0.754–0.865), respectively.

The calibration slope and Brier score for the training cohort were 1.000 and

0.146, respectively; for the temporal external validation cohort, these values

were 0.808 and 0.177, respectively. The DCA curves indicate that the model has

certain clinical application value.

Conclusion: The Lasso-LR model exhibits robust predictive capability for in-

hospital mortality among patients with alcoholic cirrhosis complicated by AKI,

offering valuable prognostic insights and individualized treatment decision

support for healthcare professionals.

KEYWORDS

alcoholic cirrhosis, acute kidney Injury, in-hospital mortality, machine learning,
predictive model

GRAPHICAL ABSTRACT
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Introduction

Alcoholic cirrhosis represents a significant hepatic pathology,
with global mortality rates attributable to its complications on
an upward trajectory (1). The escalation in alcohol consumption
is a principal factor contributing to the increasing prevalence
of cirrhosis, especially among middle-aged and older male
populations (2). In the United States, it is estimated that
23.6 million individuals are affected by alcohol-related cirrhosis,
with approximately 2.46 million experiencing decompensated
cirrhosis (2). These individuals frequently encounter a range of
complications, notably severe acute kidney injury (AKI), which
occurs at an incidence rate of 28-65% (3, 4). AKI not only
exacerbates the impairment of liver function but also significantly
elevates both short-term and long-term mortality rates among
patients, thereby intensifying the consumption of healthcare
resources and contributing to the economic burden (3, 5, 6). Studies
have shown that hospitalized patients with alcoholic cirrhosis
who concurrently develop AKI may experience an increase in
mortality risk of up to 80% (7). Consequently, the identification
and prediction of in-hospital mortality risk in these patients are
of paramount clinical importance for optimizing management
strategies and enhancing survival outcomes.

Traditional clinical assessment instruments, including the
Model for End-Stage Liver Disease (MELD) score and the
Child-Turcotte-Pugh (CTP) score, provide a partial reflection of
patients’ conditions but frequently fall short in comprehensively
addressing the complexities associated with multiple complications
(8–10). This limitation is especially evident in patients with
alcoholic cirrhosis complicated by severe AKI, where conventional
scoring systems may inadequately predict individual mortality
risk. Moreover, current prognostic models predominantly utilize
statistical methodologies to assess known risk factors for predicting
patient mortality. Nonetheless, these models exhibit limitations
in identifying intricate data patterns and in their applicability
across diverse populations and clinical settings. Presently, there
is an absence of specialized prognostic models that effectively
encapsulate the complexity inherent in patients with alcoholic

Abbreviations: AKI, Acute kidney injury; ICU, Intensive care unit; MIMIC-
IV, Medical Information Mart for Intensive Care IV; LASSO, Least absolute
shrinkage and selection operator; AUROC, Area under the receiver operating
characteristic curve; SHAP, SHapley Additive exPlanations; AUPRC, Area
under the precision-recall curve; DCA, Decision curve analysis; MELD, Model
for End-Stage Liver Disease; CTP, Child-Turcotte-Pugh; MIT, Massachusetts
Institute of Technology; BIDMC, Beth Israel Deaconess Medical Center;
IRB, Institutional Review Boards; CITI, Collaborative Institutional Training
Initiative; TRIPOD, Transparent Reporting of a Multivariate Prediction
Model for Individual Prognosis or Diagnosis; ROC, Receiver operating
characteristic; KDIGO, Kidney Disease Improving Global Outcomes; CKD,
Chronic kidney disease; PMM, Predictive mean matching; APACHE II,
Acute Physiology and Chronic Health Evaluation II; PaO2, Partial pressure
of arterial oxygen; WBC, White blood cell count; RBC, Red blood cell
count; RDW, Red blood cell distribution width; MCV, Mean corpuscular
volume; ALT, Alanine aminotransferase; AST, Aspartate transaminase; INR,
International normalized ratio; BUN, Blood urea nitrogen; AMI, Acute
myocardial infarction; CHF, Congestive heart failure; COPD, Chronic
obstructive pulmonary disease; ARF, Acute respiratory failure; HE, Hepatic
encephalopathy; RRT, Renal replacement therapy; DT, Decision tree; RF,
Random forest; XGBoost, Extreme gradient boosting; SVM, Support vector
machine; KNN, K-nearest neighbor; NN, Neural network; LightGBM, Light
gradient boosting machine; ROC, receiver operating characteristic; PR,
Precision-recall.

cirrhosis complicated by AKI (1, 7, 11). In recent years,
advancements in machine learning technologies have offered
novel opportunities to enhance the accuracy and interpretability
of prognostic models. Explainable machine learning models
are capable of processing extensive clinical datasets, identifying
potential risk factors, and developing a more adaptable and
dynamic prognostic assessment framework. This is essential
for improving clinical outcomes and informing personalized
treatment strategies (12).

The primary objective of this study is to develop and
validate an explainable machine learning model for predicting
the risk of in-hospital mortality in patients with alcoholic
cirrhosis complicated by severe AKI. Clinical data will be
utilized from the large-scale Medical Information Mart for
Intensive Care IV (MIMIC-IV 2.0) database, and various machine
learning algorithms will be employed to construct prognostic
models with clinical applicability. This research aims to provide
new perspectives and tools for clinical practice, enhancing
the management and prognosis of patients with alcoholic
cirrhosis complicated by severe AKI, ultimately improving
patient survival rates.

Materials and methods

Data source

This study employed the MIMIC-IV database (13), which was
developed by the Laboratory for Computational Physiology
at the Massachusetts Institute of Technology (MIT). The
MIMIC-IV database encompasses data from 76,943 ICU
admissions at Beth Israel Deaconess Medical Center (BIDMC)
in Boston, Massachusetts, covering the period from 2008 to
2019. The database includes comprehensive information such as
demographics, vital signs, laboratory test results, and diagnostic
codes, which are aligned with both the International Classification
of Diseases, ninth revision (ICD-9), and tenth revision (ICD-
10). The utilization of the database has received approval
from the Institutional Review Boards (IRBs) of BIDMC and
MIT. In accordance with pertinent regulations, all identifiable
personal information has been de-identified to ensure patient
privacy, obviating the requirement for individual patient
consent. Furthermore, all members of the research team have
successfully completed compliance training and are certified
by the Collaborative Institutional Training Initiative (CITI)
program, thereby adhering to established ethical guidelines for
human research. This research constitutes a retrospective clinical
investigation, wherein model development and validation were
performed in compliance with the Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) statement (14).

Study population

The study encompassed 856 patients diagnosed with alcoholic
cirrhosis complicated by AKI from the MIMIC-IV database. The
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inclusion criteria were as follows: (1) age ≥ 18 years, (2) diagnosis
of alcoholic cirrhosis, (3) diagnosis of AKI, and (4) patients with
multiple ICU readmissions, with only the first ICU admission
considered. The exclusion criteria included: (1) patients with
Kidney Disease Improving Global Outcomes (KDIGO) stage 1 AKI,
(2) patients with chronic kidney disease (CKD) stage 5, and (3)
patients with an ICU length of stay of less than 24 h. Patients treated
between 2008 and 2016 (n = 627) were utilized to establish the
training cohort, whereas those treated from 2017 to 2019 (n = 229)
constituted the temporal external validation cohort for evaluating
the model’s performance. Figure 1 offers a comprehensive depiction
of the patient selection process, as well as the flowchart for model
construction and validation.

Definitions and clinical outcomes

AKI was diagnosed within 1 week of hospital admission in
accordance with the KDIGO criteria (15). Baseline creatinine values
were obtained from the MIMIC-IV database. Severe AKI was
defined as stage 2 or 3 AKI (16). Oliguria was defined by a daily
urine output of less than 400 mL (17). The primary outcome

was in-hospital mortality. In-hospital mortality was defined as
all-cause death occurring between admission and discharge, as
verified by the definitive discharge status in the hospital’s electronic
medical records system.

Clinical data extraction

In this study, PostgreSQL software (version 14.5) was
employed to extract and process data from the MIMIC-IV
database. For variables with a missing rate of less than 25%,
multiple imputation was conducted using the “mice” package
in R, utilizing the predictive mean matching (PMM) method.
This process generated five complete datasets and involved 50
iterations. Variables with a missing rate exceeding 25% were
excluded from the analysis. The results indicated an absence of
missing values among the binary variables. Among the continuous
variables, lactate exhibited a missing rate of 24.88%, while the
remaining variables demonstrated missing rates below 20%, with
the majority showing a missing rate of less than 5%. The resultant
dataset included a comprehensive array of information, such
as age, sex, Acute Physiology and Chronic Health Evaluation

FIGURE 1

Patient selection process and model construction and validation flowchart. MIMIC-IV, Medical Information Mart for Intensive Care IV; ICU, intensive
care unit; KDIGO, Kidney Disease Improving Global Outcomes; CKD, chronic kidney disease; DT, decision tree; RF, random forest; XGBoost, extreme
gradient boosting; SVM, support vector machine; Lasso-LR, least absolute shrinkage and selection operator-logistic regression; KNN, k-nearest
neighbor; NN, neural network; LightGBM, light gradient boosting machine; ROC, receiver operating characteristic; AUROC, area under the receiver
operating characteristic curve; PR, precision-recall; AUPRC, area under the precision-recall curve; SHAP, SHapley Additive exPlanations.
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II (APACHE II) score, AKI stage, in-hospital mortality, vital
signs, laboratory test results, comorbidities/complications, and
therapeutic interventions. Clinical data (vital signs) and laboratory
results were extracted from the first recorded measurements
obtained during the initial patient assessment in the ICU.

Specifically, the vital signs assessed included heart rate,
mean arterial pressure, and respiratory rate. The laboratory
test parameters measured encompassed partial pressure of
arterial oxygen (PaO2), lactate, anion gap, bicarbonate, blood
glucose, white blood cell count (WBC), red blood cell count
(RBC), platelet count, red cell distribution width (RDW), mean
corpuscular volume (MCV), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), total bilirubin, international
normalized ratio (INR), blood urea nitrogen (BUN), creatinine, and
a range of electrolytes such as sodium, chloride, potassium, total
calcium, magnesium, and phosphate.

The study also examined a range of comorbidities and
complications, including obesity, diabetes, hypertension,
atherosclerotic heart disease, acute myocardial infarction
(AMI), atrial fibrillation, congestive heart failure (CHF), chronic
obstructive pulmonary disease (COPD), asthma, acute respiratory
failure (ARF), cerebral infarction, delirium, depression, CKD,
oliguria, sepsis, septic shock, hepatic encephalopathy (HE), and
malignant tumors. Therapeutic interventions encompassed the
administration of blood products such as RBC transfusion, fresh
frozen plasma transfusion, and platelet transfusion, as well as the
use of norepinephrine, vasopressin, mechanical ventilation, and
renal replacement therapy (RRT).

Statistical analysis

The quantitative data analysis was performed according to the
distributional characteristics of the data. Normally distributed data
were expressed as mean± standard deviation (x̄± s) and analyzed
using independent sample t-tests. Non-normally distributed
data were expressed as median (interquartile range) [M (QL,
QU)] and analyzed using the Mann-Whitney U-test. Categorical
variables were presented as frequencies and percentages, with
group comparisons conducted using the chi-square (χ2) test or
Fisher’s exact test.

To mitigate the risk of overfitting, this study employed least
absolute shrinkage and selection operator (LASSO) regression
combined with 10-fold cross-validation for feature selection,
effectively addressing the variable selection issue. Additionally,
a systematic approach combining grid search with 5-fold cross-
validation was utilized for hyperparameter tuning to determine the
optimal hyperparameter configuration. Based on these methods,
eight machine learning predictive models were developed,
including decision tree (DT), random forest (RF), extreme gradient
boosting (XGBoost), support vector machine (SVM), Lasso-logistic
regression (Lasso-LR), k-nearest neighbor (KNN), neural network
(NN), and light gradient boosting machine (LightGBM).

Subsequently, the models were evaluated for their
discriminatory ability, accuracy, and clinical applicability in
the temporal external validation cohort, leading to the selection
of the optimal model. The discriminatory ability was assessed
using the receiver operating characteristic (ROC) curve and the

area under the ROC curve (AUROC), as well as the precision-
recall (PR) curve and the area under the precision-recall curve
(AUPRC). Accuracy was evaluated using calibration curves and
Brier scores. Clinical utility was assessed through decision curve
analysis (DCA). To enhance the interpretability of the optimal
model, the SHapley Additive exPlanations (SHAP) method was
employed to illustrate how each variable contributes to predicted
outcome. Finally, the selected predictive model was visualized
as static nomograms and a web-based dynamic nomogram to
summarize the predictive performance of the optimal model. Data
processing and analysis were conducted using Stata version 14.0
(StataCorp, College Station, TX, United States) and R software
version 4.2.3 (R Foundation for Statistical Computing, Vienna,
Austria). Relevant R packages included glmnet (LASSO regression
for variable selection), mice (multiple imputation for handling
missing data), and tidymodels (model construction and validation),
among others. Results were considered statistically significant at
p < 0.05 (two-tailed).

Results

Study population characteristics

The MIMIC-IV database encompassed 76,943 adult ICU
patients, with 1,542 diagnosed with alcoholic cirrhosis. Of these,
1,084 also presented with AKI. To focus on severe AKI, 148 patients
in KDIGO stage 1 were excluded from the analysis. Additionally,
23 patients in CKD stage 5 and 57 patients with an ICU length
of stay of less than 24 h were also excluded. Ultimately, the
study included 856 patients with alcoholic cirrhosis complicated
by severe AKI. The demographic breakdown included 598 males
(69.86%), with an average age of 56.80 ± 11.29 years and an
APACHE II score of 24.63 ± 6.97. According to KDIGO staging,
382 patients were in stage 2 and 474 in stage 3. The in-hospital
mortality for this population was 34.40% (n = 295). Patients were
sequentially assigned to a training cohort (n = 627) and a temporal
external validation cohort (n = 229). Additionally, patients were
categorized into a survival group (n = 561) and a non-survivor
group (n = 295) based on their hospitalization outcomes. Table 1
presents a comparative analysis of the general characteristics across
the training and temporal external validation cohorts, as well as
between survivors and non-survivors.

Feature selection for predicting
in-hospital mortality

In this study, in-hospital mortality among patients with
alcoholic cirrhosis complicated by AKI was designated as the
dependent variable. A total of 56 clinical features from the training
cohort were utilized as independent variables. Lasso regression
analysis was employed to identify factors significantly associated
with in-hospital mortality. To prevent model overfitting, cross-
validation was conducted, determining the optimal λ (lambda)
value at 0.055 (refer to Figure 2). Consequently, nine key
features were identified: lactate, total bilirubin, AKI classification,
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TABLE 1 The general characteristics of patients with alcoholic cirrhosis complicated by severe acute kidney injury in different groups.

Characteristic Total
(n = 856)

Training
cohort

(n = 627)

External
validation cohort

(n = 229)

t/Z/χ 2 P-value Survivors
(n = 561)

Non-survivors
(n = 295)

t/Z/χ 2 P-value

Demographics

Age (years) 56.80± 11.29 57.44± 10.96 55.04± 11.99 2.765 0.006 56.77± 11.31 56.85± 11.27 –0.095 0.925

Male, n (%) 598 (69.86) 445 (70.97) 153 (66.81) 1.379 0.240 402 (71.66) 196 (66.44) 2.499 0.114

APACHE II score
(score)

24.63± 6.97 24.69± 6.83 24.45± 7.35 0.458 0.647 23.36± 6.86 27.03± 6.54 –7.565 <0.001

AKI stage, n (%)

Stage 2 382 (44.63) 294 (46.89) 88 (38.43) 4.861 0.027 310 (55.26) 72 (24.41) 74.469 <0.001

Stage 3 474 (55.37) 333 (53.11) 141 (61.57) 251 (44.74) 223 (75.59)

Vital signs

Heart rate
(beats/min)

95.14± 20.14 94.59± 20.50 96.66± 19.07 –1.335 0.182 94.12± 20.16 97.07± 19.99 –2.038 0.042

Mean arterial
pressure (mmHg)

80.89± 18.22 80.46± 18.70 82.07± 16.85 –1.145 0.252 81.76± 18.27 79.24± 18.05 1.925 0.055

Respiratory rate
(beats/min)

20.33± 6.10 20.13± 6.01 20.89± 6.32 –1.602 0.109 19.70± 5.89 21.54± 6.31 –4.250 <0.001

Laboratory tests

PaO2 (mmHg) 78.50 (50.00, 146.50) 88.00 (54.00, 169.00) 60.00 (41.00, 101.00) 6.425 <0.001 82.00 (52.00, 169.00) 73.00 (46.00, 121.00) 2.948 0.003

Lactate (mmol/L) 2.20 (1.60,3.50) 2.10 (1.60,3.50) 2.30 (1.60,3.60) –0.543 0.587 2.00 (1.50, 3.00) 2.60 (1.80, 4.50) –6.364 <0.001

Anion gap (mmol/L) 17.36± 6.24 17.41± 6.63 17.24± 5.03 0.358 0.721 16.56± 5.94 18.88± 6.52 –5.256 <0.001

Bicarbonate
(mmol/L)

20.79± 5.26 20.99± 5.36 20.24± 4.94 1.868 0.062 21.36± 5.07 19.70± 5.44 4.442 <0.001

Blood glucose
(mmol/L)

6.72 (5.61, 8.86) 6.72 (5.61, 8.94) 6.83 (5.61, 8.33) 0.172 0.864 6.89 (5.72, 9.28) 6.50 (5.28, 8.28) 3.325 <0.001

WBC (× 109/L) 10.00 (6.60, 15.05) 9.90 (6.50, 14.60) 11.00 (7.00, 16.30) –2.278 0.023 9.20 (6.20, 13.70) 11.80 (8.00, 17.40) –5.346 <0.001

RBC (× 1012/L) 3.02± 0.79 3.06± 0.79 2.92± 0.79 2.160 0.031 3.11± 0.80 2.85± 0.75 4.504 <0.001

Platelet (× 109/L) 101.00 (67.00, 155.00) 102.00 (66.00,
154.00)

100.00 (67.00, 156.00) 0.176 0.861 103.00 (71.00,
160.00)

95.00 (60.00, 141.00) 2.648 0.008

(Continued)
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TABLE 1 (Continued)

Characteristic Total
(n = 856)

Training
cohort

(n = 627)

External
validation cohort

(n = 229)

t/Z/χ 2 P-value Survivors
(n = 561)

Non-survivors
(n = 295)

t/Z/χ 2 P-value

RDW (%) 17.48± 3.00 17.35± 2.90 17.84± 3.23 –2.089 0.037 17.14± 2.87 18.12± 3.14 –4.601 <0.001

MCV (fL) 98.30± 9.25 98.30± 9.28 98.29± 9.17 0.019 0.985 96.99± 8.77 100.78± 9.64 –5.792 <0.001

ALT (U/L) 36.00 (22.00, 67.00) 36.00 (22.00, 67.00) 33.00 (21.00, 72.00) 0.701 0.483 34.00 (21.00, 72.00) 40.00 (24.00, 63.00) –1.280 0.201

AST (U/L) 83.00 (45.00, 167.00) 83.00 (45.00, 164.00) 82.00 (49.00, 183.00) –0.670 0.503 77.00 (42.00, 164.00) 92.00 (55.00, 176.00) –2.574 0.010

Total bilirubin
(umol/L)

72.68 (30.78, 179.55) 66.69 (29.07, 165.87) 90.63 (39.33, 241.11) –3.729 <0.001 53.01 (25.65, 124.83) 138.51 (53.01,
333.45)

–9.548 <0.001

INR 1.80 (1.50, 2.40) 1.70 (1.40, 2.30) 1.90 (1.50, 2.50) –2.614 0.009 1.60 (1.40, 2.10) 2.10 (1.70, 2.80) –9.969 <0.001

BUN (mmol/L) 8.90 (4.98, 15.84) 8.90 (4.98, 16.02) 8.19 (4.98, 15.66) 0.675 0.500 7.48 (4.63, 13.88) 12.46 (6.41, 19.94) –6.061 <0.001

Creatinine (umol/L) 106.08 (70.72, 203.32) 106.08 (70.72,
203.32)

114.92 (79.56, 185.64) –0.605 0.545 97.24 (70.72, 167.96) 141.44 (88.40,
238.68)

–6.222 <0.001

Sodium (mmol/L) 135.64± 7.50 135.62± 7.27 135.69± 8.12 –0.115 0.908 136.11± 6.91 134.74± 8.46 2.537 0.011

Chlorine (mmol/L) 100.51± 9.10 101.10± 8.80 98.89± 9.72 3.163 0.002 101.28± 8.65 99.04± 9.75 3.437 <0.001

Potassium (mmol/L) 4.29± 0.95 4.26± 0.95 4.37± 0.93 –1.526 0.127 4.27± 0.89 4.32± 1.04 –0.809 0.419

Total calcium
(mmol/L)

2.06± 0.28 2.06± 0.29 2.07± 0.23 –0.121 0.904 2.05± 0.28 2.08± 0.27 –1.448 0.148

Magnesium
(mmol/L)

0.80± 0.20 0.80± 0.20 0.79± 0.17 1.192 0.234 0.78± 0.18 0.83± 0.21 –3.883 <0.001

Phosphate (mmol/L) 1.33± 0.58 1.32± 0.58 1.36± 0.59 –0.777 0.437 1.28± 0.52 1.43± 0.67 –3.792 <0.001

Comorbidities/complications, n (%)

Obesity 280 (32.74) 204 (35.43) 76 (27.10) 0.032 0.857 172 (29.86) 108 (38.57) 3.110 0.078

Diabetes 170 (19.90) 132 (19.20) 38 (22.40) 2.095 0.148 116 (16.93) 54 (31.76) 0.684 0.408

Hypertension 291 (34.03) 214 (34.11) 77 (26.50) 0.019 0.890 203 (35.91) 88 (29.76) 3.480 0.062

Atherosclerotic heart
disease

43 (5.02) 20 (3.19) 23 (53.49) 16.515 <0.001 31 (3.82) 12 (27.91) 0.862 0.353

AMI 37 (4.32) 23 (3.67) 14 (37.84) 2.425 0.119 17 (3.03) 20 (7.27) 6.572 0.010

Atrial fibrillation 145 (17.00) 112 (17.80) 33 (22.83) 1.421 0.233 88 (12.39) 57 (39.31) 1.816 0.178

(Continued)
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TABLE 1 (Continued)

Characteristic Total
(n = 856)

Training
cohort

(n = 627)

External
validation cohort

(n = 229)

t/Z/χ 2 P-value Survivors
(n = 561)

Non-survivors
(n = 295)

t/Z/χ 2 P-value

CHF 124 (14.46) 99 (15.81) 25 (10.87) 3.215 0.073 81 (12.60) 43 (34.68) 0.003 0.957

COPD 101 (11.82) 74 (9.80) 27 (26.73) 0.000 0.996 72 (9.57) 29 (28.71) 1.676 0.195

Asthma 59 (6.92) 50 (6.90) 9 (15.25) 4.275 0.039 44 (8.48) 15 (5.08) 2.292 0.130

ARF 371 (43.36) 251 (41.30) 120 (32.26) 10.452 <0.001 187 (38.56) 184 (62.07) 66.393 <0.001

Cerebral infarction 46 (5.42) 37 (4.60) 9 (19.57) 1.281 0.258 35 (6.54) 11 (4.05) 2.395 0.122

Delirium 70 (8.17) 43 (5.50) 27 (38.64) 5.435 0.020 53 (10.49) 17 (5.75) 3.496 0.062

Depression 170 (19.84) 120 (17.39) 50 (29.41) 0.766 0.382 116 (16.92) 54 (31.76) 0.684 0.408

CKD 99 (11.56) 76 (10.10) 23 (23.19) 0.708 0.400 61 (8.06) 38 (38.38) 0.762 0.383

Oliguria 181 (21.10) 117 (18.60) 64 (27.90) 8.677 <0.001 73 (12.56) 108 (31.67) 64.568 <0.001

Sepsis 702 (82.03) 515 (82.14) 187 (81.66) 0.026 0.872 443 (79.36) 259 (87.88) 10.218 0.001

Septic shock 226 (26.43) 147 (23.41) 79 (34.88) 10.546 <0.001 90 (14.29) 136 (60.18) 89.899 <0.001

HE 161 (18.92) 161 (22.30) 0 (0.00) 72.424 <0.001 97 (13.96) 64 (40.00) 2.456 0.117

Malignant tumor 124 (14.46) 98 (13.40) 26 (21.00) 2.476 0.116 78 (10.69) 46 (15.59) 0.445 0.504

Treatments, n (%)

Blood transfusion 587 (68.49) 418 (68.20) 169 (73.75) 3.960 0.047 366 (65.61) 221 (74.74) 8.397 0.004

RBC transfusion 498 (58.19) 356 (57.20) 142 (62.30) 1.886 0.170 318 (56.70) 180 (61.02) 1.492 0.222

Fresh frozen plasma
transfusion

367 (42.92) 267 (42.60) 100 (43.60) 0.081 0.777 188 (34.24) 179 (60.68) 58.257 <0.001

Platelet transfusion 295 (34.40) 204 (32.60) 91 (41.00) 3.852 0.050 183 (32.61) 112 (37.97) 2.446 0.118

Norepinephrine 414 (48.29) 268 (43.10) 146 (63.10) 29.655 <0.001 206 (46.62) 208 (50.00) 88.383 <0.001

Vasopressin 193 (22.63) 111 (18.00) 82 (35.80) 31.483 <0.001 63 (9.52) 130 (67.42) 119.382 <0.001

Mechanical
ventilation

629 (73.51) 448 (71.51) 181 (80.00) 4.956 0.026 383 (68.62) 246 (83.79) 22.679 <0.001

RRT 178 (20.83) 107 (17.10) 71 (29.50) 19.787 <0.001 78 (11.52) 100 (56.18) 46.928 <0.001

Outcome

In-hospital
mortality, n (%)

295 (34.40) 204 (32.54) 91 (39.74) 3.852 0.050

APACHE II, Acute Physiology and Chronic Health Evaluation II; AKI, acute kidney injury; PaO2 , partial pressure of arterial oxygen; WBC, white blood cell; RBC, red blood cell; RDW, red cell distribution width; MCV, mean corpuscular volume; ALT, alanine transaminase;
AST, aspartate transaminase; INR, international normalized ratio; BUN, blood urea nitrogen; AMI, acute myocardial infarction; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; ARF, acute respiratory failure; CKD, chronic kidney disease;
HE, hepatic encephalopathy; RRT, renal replacement therapy.
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FIGURE 2

Clinical features were selected based on LASSO regression with cross-validation. (a) Selection of optimal parameter lambda (cross-validation); (b)
Dynamic process diagram of feature selection using LASSO regression. LASSO, least absolute shrinkage and selection operator.

acute respiratory failure, septic shock, oliguria, vasopressin,
norepinephrine, and fresh frozen plasma transfusion.

Construction and evaluation of mortality
prediction models

In this study, nine key clinical features were utilized across
various machine learning models, including DT, RF, XGBoost,
SVM, Lasso-LR, KNN, NN, and LightGBM. To optimize
model performance, five-fold cross-validation was employed for
parameter tuning, and multiple iterations of model training
were conducted to identify the most effective predictive model.
The performance metrics of the eight machine learning models,

evaluated on both the training cohort and the temporal external
validation cohort, are presented in Table 2 and Supplementary
Figures 1–4.

In the training cohort, the AUROC for all models surpassed
0.830, indicating robust predictive performance. In the temporal
external validation cohort, the Lasso-LR model achieved the highest
AUROC value of 0.809, followed sequentially by the LightGBM,
RF, XGBoost, SVM, and NN models. Conversely, the DT model
exhibited the lowest AUROC at 0.723 (refer to Supplementary
Figure 1). In the PR curve analysis, we found that the SVM and
XGBoost models exhibited higher AUPRC values of 0.730 and
0.727, respectively, indicating their strong capability in identifying
positive cases across different thresholds. Other models such as RF,
NN, Lasso-LR, and LightGBM also showed decent AUPRC values
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TABLE 2 Performance assessment of eight algorithmic models in both training and temporal external validation cohorts.

Models AUROC (95%CI) Sensitivity (%) Specificity (%) accuracy Kappa

Training cohort

Decision tree 0.843 (0.807–0.878) 0.686 0.903 0.833 0.607

Random forest 0.870 (0.842–0.899) 0.789 0.797 0.794 0.556

XGBoost 0.837 (0.804–0.870) 0.809 0.735 0.759 0.498

Support vector machine 0.836 (0.803–0.870) 0.750 0.780 0.770 0.503

Lasso-LR 0.836 (0.802–0.870) 0.750 0.780 0.770 0.503

K-nearest neighbor 0.907 (0.884–0.929) 0.833 0.813 0.820 0.612

Neural network 0.830 (0.795–0.864) 0.696 0.837 0.791 0.528

LightGBM 0.856 (0.824–0.887) 0.779 0.790 0.786 0.539

Temporal external validation cohort

Decision tree 0.723 (0.656–0.791) 0.725 0.674 0.694 0.385

Random forest 0.801 (0.744–0.858) 0.846 0.580 0.686 0.393

XGBoost 0.800 (0.743–0.856) 0.868 0.551 0.677 0.383

Support vector machine 0.800 (0.744–0.857) 0.824 0.565 0.668 0.360

Lasso-LR 0.809 (0.754–0.865) 0.857 0.609 0.707 0.433

K-nearest neighbor 0.772 (0.709–0.834) 0.791 0.580 0.664 0.346

Neural network 0.800 (0.743-0.857) 0.791 0.652 0.707 0.421

LightGBM 0.808 (0.752–0.864) 0.857 0.580 0.690 0.403

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; XGBoost, extreme gradient boosting; Lasso-LR, least absolute shrinkage and selection operator-logistic
regression; LightGBM, light gradient boosting machine.

of 0.718, 0.718, 0.714, and 0.711, respectively, demonstrating a
good balance between precision and recall (refer to Supplementary
Figure 2). Furthermore, calibration plots for the eight models in
the temporal external validation cohort (refer to Supplementary
Figure 3) indicated satisfactory calibration performance, with the
Lasso-LR model demonstrating an excellent fit, as evidenced by
a Brier score of 0.177. Moreover, DCA curves demonstrated that
all eight models exhibited clinical utility (refer to Supplementary
Figure 4), thereby substantiating their potential for future clinical
decision-making. Notably, the Lasso-LR model exhibited superior
performance in the DCA curve, with its net benefit exceeding
that of the other models across a wide spectrum of thresholds.
This finding implies that the Lasso-LR model may be the most
advantageous option for practical clinical applications.

SHAP for model interpretation

To elucidate the role of the selected variables, we utilized
the SHAP algorithm to quantify the contribution of each feature
to the prediction of in-hospital mortality within the Lasso-
LR model. By plotting the SHAP values for each sample, we
were able to visually assess the impact of each feature on the
prediction outcome. Supplementary Figure 5 presents a beeswarm
plot that ranks the importance of the features in descending
order, highlighting the following variables as most significant:
total bilirubin, acute respiratory failure, vasopressin, septic shock,
oliguria, AKI classification, lactate, fresh frozen plasma transfusion,
and norepinephrine. Figure 3 provides a detailed depiction of the
specific impact of these features on in-hospital mortality rates. It

is noteworthy that all nine features exhibited a positive correlation
with higher SHAP values, suggesting that an increase in these
characteristics is associated with an elevated risk of in-hospital
mortality.

Nomogram for predicting in-hospital
mortality

In this study, we employed a nomogram tool to convert
nine key predictive factors derived from the Lasso-LR
model into a mortality risk assessment for patients with
alcoholic cirrhosis complicated by severe AKI. The nomogram
assigns specific scores to each predictive variable, aggregates
these scores to produce a total score, and subsequently
translates this total score into a probability of mortality.
Utilizing R software, we streamlined the model into a
static nomogram for ease of interpretation, as depicted
in Figure 4. Clinicians can evaluate the mortality risk in
patients through the computation of a composite score
derived from the nine parameters. Furthermore, we have
developed a web-based dynamic nomogram, accessible at
https://zhangjingyu123456.shinyapps.io/dynnomapp/, to provide
healthcare professionals with convenient access via smartphones
and computers.

For instance, when a patient with alcoholic cirrhosis
complicated by severe AKI meets the following criteria (blood
lactate concentration of 30 mmol/L, total bilirubin concentration
of 50 µmol/L, reaches AKI stage 3, accompanied by oliguria
and septic shock, without acute respiratory failure, receiving
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FIGURE 3

The predictive impact of nine clinical features on in-hospital mortality risk. SHAP values indicate the contribution direction and strength of each
feature to the predictive model. Positive values signify an increased risk of mortality, while negative values indicate a reduced risk. Color coding:
• Black represents surviving cases, and • Yellow represents in-hospital mortality cases. AKI, acute kidney injury; SHAP, SHapley Additive exPlanations.

norepinephrine treatment, and without fresh frozen plasma
transfusion or vasopressin use), the nomogram model indicates
that the in-hospital mortality probability for this patient is 84.30%,
as detailed in Supplementary Figure 6.

Performance evaluation of the
nomogram

In the Lasso-LR model, the AUROC for the training cohort and
the temporal external validation cohort were 0.836 (95% CI: 0.802-
0.870) and 0.809 (95% CI: 0.754-0.865), respectively, as illustrated
in Figure 5a. These results indicate that the model exhibits robust

discriminative performance in predicting in-hospital mortality
among patients. Furthermore, the PR curves, depicted in Figure 5b,
corroborates the model’s strong discriminative capability.

The calibration curves for the training cohort and the
temporal external validation cohort are shown in Figures 6a,b,
respectively. The calibration slope for the training cohort was 1.000,
accompanied by a Brier score of 0.146, whereas the calibration slope
for the temporal external validation cohort was 0.808, with a Brier
score of 0.177. These results suggest a high degree of concordance
between the predicted and observed outcomes. Additionally, the
close alignment of the calibration curves with the ideal curve
further substantiates the model’s high accuracy across the entire
dataset.
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FIGURE 4

Nomogram for predicting in-hospital mortality in patients with alcoholic cirrhosis complicated by severe acute kidney injury. AKI, acute kidney injury.

FIGURE 5

ROC curves (a) and PR curves (b) of Lasso-LR model in the training cohort and the temporal external validation cohort. ROC, receiver operating
characteristic; PR, precision-recall; Lasso-LR, lasso-logistic regression.

The DCA curves indicate that, over a broad spectrum
of threshold probabilities, the model’s predictions for in-
hospital mortality outperform both the “treat all” and “treat
none” strategies. This superiority is evident in both the
training cohort and the temporal external validation cohort,
where the model exhibits a favorable net benefit, thereby
underscoring its potential clinical utility, as illustrated in
Figures 6c,d.

Discussion

This study developed and validated various machine learning
models to predict the risk of in-hospital mortality in patients
with alcoholic cirrhosis complicated by severe AKI. By analyzing
clinical data from the MIMIC-IV database, the Lasso-LR model was
identified as outperforming other models in the temporal external
validation cohort, achieving a high AUROC and a low Brier score,
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FIGURE 6

Calibration curves (a,b) and decision curve analysis (c,d) of Lasso-LR model in the training cohort and the temporal external validation cohort.
Lasso-LR, lasso-logistic regression.

demonstrating excellent predictive performance. This finding not
only provides a novel tool for assessing the mortality risk in patients
with alcoholic cirrhosis complicated by severe AKI but also offers a
basis for clinical decision support in practical applications.

The findings of our study suggest that the nine identified key
features possess substantial clinical significance in forecasting in-
hospital mortality. Elevated total bilirubin levels generally indicate
compromised liver function, especially in patients with alcoholic
cirrhosis. At this juncture, the liver’s capacity to metabolize
and excrete bilirubin diminishes, resulting in heightened serum
bilirubin concentrations. This condition is frequently linked
to the onset of AKI, and in patients with cirrhosis, direct
bilirubin levels are regarded as a critical predictor of AKI
development (18). In the context of AKI, elevated bilirubin
levels may indicate concurrent hepatic and renal damage, a
condition frequently observed in patients with alcoholic cirrhosis
(19). A recent study employed nomograms to predict in-
hospital mortality among patients with cirrhosis complicated
by AKI, revealing that total bilirubin serves as a prognostic
indicator for mortality within this cohort (7). Furthermore, animal

studies have demonstrated that hyperbilirubinemia can induce
pro-apoptotic effects and exacerbate renal ischemia-reperfusion
injury (20).

In patients with cirrhosis and AKI, oliguria serves as a
significant risk factor for mortality. As a clinical manifestation
of AKI, oliguria indicates the severity of tubular damage and is
strongly associated with increased mortality rates (21). This study
suggested an association between the stages of AKI and patient
mortality, aligning with findings from previous research (11, 22).
These results underscore the importance of early recognition and
intervention in the management of AKI by clinicians. Moreover,
the onset of acute respiratory failure results in a systemic reduction
in oxygenation, which exacerbates hepatic injury and triggers a
systemic inflammatory response, consequently elevating the risk of
mortality. Studies suggest that acute respiratory failure frequently
correlates with infections, deterioration of liver function, and
dysfunction of other organs, all of which substantially increase the
mortality risk in patients with cirrhosis (23). Furthermore, hypoxia
can induce metabolic abnormalities, biochemical disturbances,
and structural dysfunction in renal tubular epithelial cells. These
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alterations trigger inflammatory responses and generate reactive
oxygen species, thereby exacerbating the pathological changes in
the kidneys associated with hypoxic injury (24).

According to the Third International Consensus Definitions
for Sepsis and Septic Shock (Sepsis-3), septic shock is delineated
as a specific form of sepsis marked by sustained hypotension
that necessitates the use of vasopressors to maintain a mean
arterial pressure of at least 65 mmHg, despite adequate volume
resuscitation, alongside serum lactate levels exceeding 2 mmol/L
(25). In individuals with alcoholic cirrhosis, the incidence of
septic shock is frequently associated with systemic inflammatory
responses that result in compromised microcirculatory perfusion,
thereby aggravating renal injury and contributing to multiple
organ dysfunction. A study examining patients with cirrhosis in
the ICU demonstrated a significant association between septic
shock and the onset of AKI, with an incidence rate of AKI
reaching up to 61% among these patients (3). Elevated lactate
levels are indicative not only of tissue hypoxia and microcirculatory
disturbances but are also associated with the diminished capacity
of the liver to metabolize lactate in cases of advanced liver
cirrhosis (26). Microcirculatory dysfunction is posited to play
a pivotal role in the pathophysiology, potentially resulting in
hepatic hypoxia and subsequent deterioration of renal function
(27). Furthermore, vasoactive agents, including vasopressin and
norepinephrine, are frequently administered to critically ill
patients to manage hypotension and sustain circulatory volume.
Nevertheless, the overuse of these agents can lead to peripheral
vasoconstriction, which may further diminish renal blood flow,
exacerbate AKI, and elevate mortality risk (28). Empirical
studies have demonstrated a correlation between vasopressin
administration and a heightened incidence of AKI, particularly
among critically ill patients (4). Moreover, the administration
of vasopressin can result in electrolyte imbalances, thereby
exacerbating the risk of renal dysfunction (29). In individuals with
alcoholic cirrhosis, norepinephrine treatment is frequently linked
to elevated incidences of liver dysfunction and multiple organ
failure, further compounding the risk of an unfavorable prognosis
(30). While the infusion of fresh frozen plasma is employed to
address coagulopathy, excessive transfusion in some instances may
lead to volume overload, negatively impacting cardiac and renal
function. Therefore, while the transfusion of fresh frozen plasma is
necessary in acute hemorrhage situations, the balance of risks and
benefits in some patients may impact inpatient mortality rates.

In summary, the nine clinical features identified through
LASSO regression are associated with in-hospital mortality in
patients with alcoholic cirrhosis complicated by AKI. The Lasso-
LR model demonstrates potential clinical utility, as evidenced
by a high concordance between predicted and observed risks in
the calibration curve and potential net clinical benefits across
decision thresholds in the DCA. Based on the current findings,
clinicians may consider incorporating the model’s predictions as a
supplementary tool for individualized treatment planning, though
its clinical applicability requires further validation in prospective
cohorts and external settings.

The findings of this study bear substantial implications for
clinical practice. Firstly, this research addresses a relatively
underexplored cohort of patients with alcoholic cirrhosis
complicated by severe acute kidney injury (AKI), thereby
contributing novel insights to the field. Secondly, the study utilized

LASSO regression for feature selection and developed various
machine learning models, undertaking a thorough evaluation of
model performance through the use of ROC curves, PC curves,
calibration curves, and DCA curves. Furthermore, the application
of SHAP methods to interpret the models significantly enhances
their interpretability. Finally, the study successfully developed
both static and dynamic nomograms to enhance usability and
comprehension for clinicians. This study is subject to certain
limitations. First, the research data were exclusively sourced from
the MIMIC-IV database, which is derived from a single institution,
Beth Israel Deaconess Medical Center. Consequently, potential
systematic bias may exist due to institution-specific demographic
distributions (e.g., race, age) and clinical protocols (e.g., medication
regimens, critical care standards). These factors necessitate
cautious interpretation when attempting to generalize the findings
to populations with diverse ethnicities, geographic regions, or
healthcare systems. Second, while the model was validated using
a temporal external cohort, its generalizability in other clinical
settings (e.g., primary care hospitals and non-European/American
healthcare centers) requires further verification. Future work will
focus on prospective validation studies in multicenter clinical
environments, utilizing real-world data from diverse populations
to assess the model’s practical applicability. Additionally, we plan
to refine the algorithm to enhance its stability and adaptability in
heterogeneous clinical scenarios.

Conclusion

The Lasso-LR model exhibits robust predictive capability
for in-hospital mortality among patients with alcoholic cirrhosis
complicated by AKI, offering valuable prognostic insights
and individualized treatment decision support for healthcare
professionals. Future research should aim to further investigate the
applicability of these features across diverse populations, optimize
risk prediction tools, and improve the precision and efficacy of
clinical management strategies.
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SUPPLEMENTARY FIGURE 1

AUROCs of eight machine learning models in the temporal external
validation cohort. AUROC, area under the receiver operating characteristic
curve; XGBoost, extreme gradient boosting; Lasso-LR, lasso-logistic
regression; LightGBM, light gradient boosting machine.

SUPPLEMENTARY FIGURE 2

AUPRCs of eight machine learning models in the temporal external
validation cohort. AUPRC, area under the precision-recall curve; XGBoost,
extreme gradient boosting; Lasso-LR, lasso-logistic regression; LightGBM,
light gradient boosting machine.

SUPPLEMENTARY FIGURE 3

Calibration curves of eight machine learning models in the temporal
external validation cohort. DT, decision tree; RF, random forest; XGBoost,
extreme gradient boosting; SVM, support vector machine; Lasso-LR, least
absolute shrinkage and selection operator-logistic regression; KNN,
k-nearest neighbor; NN, neural network; LightGBM, light gradient boosting
machine.

SUPPLEMENTARY FIGURE 4

Decision curve analysis of eight machine learning models in the temporal
external validation cohort. DT, decision tree; RF, random forest; XGBoost,
extreme gradient boosting; SVM, support vector machine; Lasso-LR, least
absolute shrinkage and selection operator-logistic regression; KNN,
k-nearest neighbor; NN, neural network; LightGBM, light gradient boosting
machine.

SUPPLEMENTARY FIGURE 5

Beeswarm plot of feature importance ranked by SHAP values in the
Lasso-LR model. SHAP, SHapley Additive exPlanations; Lasso-LR,
lasso-logistic regression; AKI, acute kidney injury.

SUPPLEMENTARY FIGURE 6

Example case using the web-based dynamic nomogram.
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