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Ulcerative colitis (UC) is a long-lasting inflammatory bowel disease that causes 
inflammation in the intestines and triggers autoimmune responses. This study 
aims to identify immune-related biomarkers for ulcerative colitis (UC) and explore 
potential therapeutic targets. First, we downloaded the expression profiles of 
datasets GSE87466, GSE87473, and GSE92415 from the GEO database. Next, 
we  identified differentially expressed genes (DEGs) that are associated with 
UC. Using the WGCNA algorithm, we screened key module genes in UC and 
retrieved immune-related genes (IRGs) from the ImmPort database. We identified 
immune-related differentially expressed genes by intersecting the results from 
WGCNA, DEGs, and IRGs. To build a diagnostic model for UC, we applied 113 
combinations of 12 machine learning algorithms. This included 10-fold cross-
validation on the training set and external validation on the test set. The single-cell 
results presented the cellular profile of UC and indicated that the key genes were 
significantly associated with macrophages, epithelial cells, and fibroblasts. The 
single-cell results presented the cell atlas of UC and suggested that key genes 
were significantly associated with macrophages, epithelial cells and fibroblasts. 
Quantitative polymerase chain reaction (q-PCR) was used to verify the expression 
levels of the core biomarkers screened out by machine learning. We conducted 
enrichment analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and gene set enrichment analysis (GSEA), which showed 
biological processes and signaling pathways associated with UC. Immune cell 
infiltration analysis based on CIBERSORT was also performed. We also screened 
potential drugs from the DSigDB drug database. To evaluate their effectiveness, 
we performed molecular docking and dynamics simulations. The results suggested 
that compounds like thalidomide and troglitazone are promising candidates for 
new UC drug development. Our findings provide insights into the pathogenesis 
of UC, its clinical treatment, and potential drug development.
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1 Introduction

Ulcerative colitis (UC) is a specific chronic inflammatory disease 
of the colonic mucosa. The main symptoms of UC include frequent 
bowel movements, bloody diarrhea, abdominal pain, weight loss, and 
a strong urge to urinate (1, 2). These symptoms can increase the risk 
of developing colorectal cancer (3). UC is recognized as a worldwide 
health issue (4), and its prevalence has been increasing since the 
mid-20th century. It is projected that by 2035, more than 2 million 
individuals in Asia will be affected by UC (5, 6).

The effects of ulcerative colitis (UC) extend beyond intestinal 
lesions. Its complications may affect multiple systems throughout the 
body, posing a serious threat to patients’ health. According to literature 
reports, about 30% of UC patients will have extraintestinal 
manifestations, which are diverse and may even be life-threatening. 
For example, pulmonary embolism, sacroiliitis (7, 8), and other 
complications can arise, with toxic megacolon being particularly life-
threatening (9). Furthermore, chronic inflammation over time 
significantly increases the risk of colorectal cancer. Among patients 
with extensive colitis, about 20% will develop cancer 30 years after the 
onset of the disease (10, 11). Additionally, about 15 to 30% of patients 
with acute severe UC eventually have to undergo colectomy (12).

Currently, existing treatment regimens have numerous limitations. 
Traditional preparations take effect slowly, and patients may be forced 
to discontinue medication due to adverse reactions. In the treatment 
of refractory UC, the exploration of combination therapy and new 
targeted drugs is still ongoing. Methotrexate, as an immunomodulator, 
only achieves complete remission in 42% of steroid-dependent 
patients, and 10% discontinue the medication due to side effects (13). 
In the combination therapy of basiliximab and hormones, although 
50% of patients achieve remission within 8 weeks, 25% still require 
colectomy (14). In addition, drug metabolism-related gene 
polymorphisms significantly affect the efficacy of tacrolimus, with a 
remission rate of only 20% in patients carrying the TT genotype, 
highlighting the importance of individualized medication (15). These 
data collectively reveal that current treatment regimens still need 
further optimization in terms of sustained remission, safety, and 
individualized precision treatment.

The pathogenesis of UC is complex and not fully understood, 
involving multiple contributing factors. It involves the interaction of 
multiple factors. Among these factors, the immune mechanism is 
particularly significant in the development of UC. Research indicates 
that an imbalanced mucosal immune response significantly 
contributes to the development and worsening of UC (3, 16). Immune 
cells, particularly monocytes and lymphocytes, regulate inflammatory 
responses by secreting cytokines and chemokines, thereby affecting 
the gut microenvironment and immune status. For instance, the 
NLRP3 inflammasome is considered an important therapeutic target 
for UC, as its activation can lead to the exacerbation of inflammation 
(17). Therefore, targeted treatments for specific immune cells, such as 
the application of regulatory T cells (Treg), may help restore immune 
balance and reduce inflammation (18). In conclusion, the immune 
mechanisms underlying ulcerative colitis are complex and dynamic, 
involving numerous immune cells and cytokines. Further exploration 
of the relationship between these elements can provide new insights 
for the early diagnosis and treatment of UC.

Recently, advancements in computer technology have made 
microarray technology and bioinformatics increasingly important in 
medicine. Powerful algorithms can create diagnostic models from 

high-throughput data to predict diseases. This method effectively 
combines large-scale genomic data with advanced analytical 
techniques to identify core biomarkers for disease diagnosis and 
treatment (19, 20). This study employed an integrated bioinformatics 
approach, analyzing expression profiles from the GEO database to 
investigate the molecular basis of UC, aiming to identify differentially 
expressed genes (DEGs). Weighted gene co-expression network 
analysis (WGCNA) was applied, which helps in identifying key gene 
modules associated with UC. The study aimed to identify immune-
related DEGs by intersecting DEGs, WGCNA with immune-related 
genes, thus discovering potential biomarkers for UC. Furthermore, 
the study utilized a robust machine learning framework, exploring 12 
algorithms among 113 combinations to construct a diagnostic model 
for UC. It also conducted Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses to elucidate 
disease-related biological pathways. Additionally, the CIBERSORT 
algorithm was used to assess immune cell infiltration, and the DSigDB 
drug database was employed to identify potential therapeutic drugs. 
Subsequently, molecular docking and dynamic simulations were 
conducted, providing deeper insights into the pathogenesis and 
potential treatment strategies for UC. The research workflow is 
illustrated in Figure 1.

2 Results

2.1 Identification of DEGs in ulcerative 
colitis tissue

Data downloading and processing were obtained from the GEO 
database (Gene Expression Omnibus), which included three original 
datasets (GSE87466, GSE87473, and GSE92415). GSE87466 is based 
on the GPL13158 platform and includes 87 UC patient samples and 
21 normal (control) samples; GSE87473 is also based on the GPL13158 
platform and includes 106 UC patient samples and 21 control samples; 
GSE92415 is based on the GPL13158 platform and includes 162 UC 
patient samples and 21 control samples. After preprocessing and 
removing batch effects (Figure  2A), a total of 267 differentially 
expressed genes (DEGs) were obtained using |logFC| >1 as the 
criterion, including 114 upregulated genes and 153 downregulated 
genes in UC samples. The volcano plot is shown in Figure 2B, and the 
heatmap is shown in Figure 2C.

2.2 Construction and module identification 
of WGCNA co-expression network and 
acquisition of immune genes

Using the R package “WGCNA,” a gene co-expression network 
analysis was constructed. First, clustering of samples was performed 
to ensure the accuracy of subsequent analyses. To ensure that the 
interactions between genes maximally conform to a scale-free 
distribution, the determination of soft-thresholding was carried out. 
As shown in Figure 3A, the optimal soft-threshold was determined to 
be 14 based on calculations from R software, at which point the R2 
value on the vertical axis of Figure 3A (left) is close to 0.9. Based on 
the optimal soft-threshold, gene modules in different DFUs were 
identified using the hybrid dynamic branch cutting algorithm 
(Figure 3B). The top 10,000 genes ranked by variation were clustered 
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and merged into 9 co-expression modules (Figure  3C). Pearson 
correlation analysis was used to explore the correlation between 
module characteristic genes and clinical traits. The results showed that 
the correlation of each module with clinical features was generally 
moderate, with the blue module (cor = 0.47, p < 0.01) showing a 
higher correlation than other modules, as seen in Figure 3C. Therefore, 
this module was selected as the important module, with a total of 971 
genes for subsequent analysis (Figure 3D). ImmPort is one of the most 
authoritative human immune gene databases, allowing for the 
download of data for effective analysis. From the ImmPort database,1 
a set of human immune genes was downloaded and after removing 
duplicate genes, 1,793 IRGs were obtained. Taking the intersection of 
the DEGs, WGCNA blue module genes, and IRGs, a total of 38 genes 
were obtained (Figure 3E).

2.3 GO function and KEGG pathway 
enrichment analysis

Upload 38 differential genes to the Metascape database for GO 
and KEGG enrichment analysis, set the filtering condition to 
p < 0.01, and a total of 314 GO pathways and 27 KEGG pathways 

1 https://www.immport.org/home

were obtained. Using −log10 (p-value) as the filtering condition, the 
top  10 annotation results of biological processes, cellular 
components, and molecular functions in the GO pathways and the 
top 10 KEGG pathways were selected to create a bubble chart. The 
biological processes mainly involve inflammatory response, myeloid 
leukocyte migration, leukocyte chemotaxis, etc. The cellular 
composition mainly involves the extracellular matrix, external 
encapsulating structure, lysosome, etc.; molecular function mainly 
involves chemokine activity, cytokine activity, cytokine receptor 
binding, etc. (Figure 4A); KEGG pathways (Figure 4B) mainly 
involve the IL-17 signaling pathway, Toll-like receptor signaling 
pathway, NF-kappa B signaling pathway, etc.

2.4 Identify hub genes with diagnostic 
value through machine learning and 
develop a diagnostic model for UC

During the 10-fold cross-validation process, a total of 12 machine 
learning algorithms were combined to determine the most powerful 
diagnostic model based on five shared genes. The AUC values of the 
models and the number of genes selected are shown in Figures 5A,B. The 
algorithm Rige with the highest AUC value identified 35 genes, while 
the second-best algorithm glmBoost + Enet [alpha = 0.6] identified 5 
genes (CCL18, DUOX2, GREM1, LCN2, and TNC). These five genes 
were included among the 35 identified genes. The AUC values of the 

FIGURE 1

Flow chart of this study.
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two algorithms differed by only 0.016. To make the model calculation 
faster, achieve higher positive benefits, and receive less interference, this 
approach was adopted, the five genes selected by the glmBoost + Enet 
[alpha = 0.6] algorithm were chosen for further analysis. The AUC value 
of the training set was 0.989 (Figure 5C), and the AUC value of the 
validation set GSE165512 was 0.791 (Figure 5D), both demonstrating 
good predictive rates. This indicates a high level of consistency between 
the predicted probabilities derived from the model and the actual 
observed clinical outcomes, thereby demonstrating robust 
calibration performance.

2.5 Evaluating machine learning models

Use the glmBoost + Enet [alpha = 0.6] algorithm to select five 
genes (CCL18, DUOX2, GREM1, LCN2, and TNC) for validation, 
we obtained scoring scales for these seven feature genes individually, 

the performance of genes in each model was quantitatively evaluated 
by their AUC values, which were displayed in the ROC curve 
(Figure 6A). We summed the feature gene expression scores to the line 
plot (Figure 6B), assessed the relevancy associated with the feature 
genes related to immunization in relation to UC. Furthermore, the 
calibration curve shows the minimum error between the actual DFU 
cluster risk and the predicted risk (Figure  6C). The DCA and 
calibration curve were used to evaluate the predictive accuracy of the 
line plot model. DCA demonstrates that the line plot has high 
accuracy and can provide reference for clinical decision-making 
(Figure 6D).

2.6 Single-cell analysis

Download the single-cell data of GSEE214695 from the GEO 
database and conduct single-cell analysis through the Seurat package. 

FIGURE 2

Screening differentially expressed genes (DEGs) and senescence related DEGs in ulcerative colitis (UC). (A) The principal component analysis (PCA) 
displaying a distinct profile between GSE87466, GSE87473 and GSE92415. (B) The volcano plot showing upregulated (red) and downregulated (green) 
DEGs. (C) Clustering analysis and heatmap of the DEGs between UC and control groups.
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Utilize the tSNE algorithm and UMAP (uniform manifold 
approximation and projection) to cluster the cells. Then, use the R 
package SingleR to annotate each cluster. All cells are categorized into 
12 categories: B-cells, CD4+ T cells, CD8+ T cells, epithelial cells, 
fibroblasts, macrophages, neutrophils, monocytes, basophils, and 
endothelial cells (Figure 7A). The expression levels of CCL18, DUOX2, 
GREM1, LCN2, and TNC in these 12 types of cells are shown in 
Figures 7B,C. The five core genes are most significantly expressed in 

three cell types: macrophages, fibroblasts, and epithelial cells. Among 
them, CCL18 is significantly expressed in macrophages, DUOX2 and 
LCN2 are most significantly expressed in epithelial cells, and GREM1 
and TNC are most significantly expressed in fibroblasts. Figure 7D 
shows the distribution and potential differentiation trajectories of 
these 12 types of cells in ulcerative colitis samples through 
dimensionality reduction analysis, revealing the dynamic changes and 
interrelationships among cells under the UC state.

FIGURE 3

Identification of gene modules associated with UC using WGCNA. (A) The selection of optimal soft thresholding power. (B) Gene dendrogram and 
modules. Gene modules associated with UC were shown in different colors under the gene dendrogram. (C) The correlation heatmap representing the 
relationship between different gene modules and status of DFU. (D) Scatter plot showing the correlation between module membership (MM) and gene 
significance (GS) in the blue module. (E) Intersection between DEGs, IRGs, and WGCNA. WGCNA, weighted gene co-expression network analysis.
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2.7 q-PCR validation of core genes 
expression

The expression levels of core immune genes including CCL18, 
DUOX2, GREM1, LCN2, and TNC in ulcerative colitis models were 
detected by fluorescence q-PCR. The experimental results showed that 
compared with the normal control group, the expression levels of 
CCL18, DUOX2, GREM1, LCN2, and TNC in the LPS group were all 
upregulated, among which the upregulation of GREM1 was the most 
prominent and there was a significant difference from the normal 
group. Therefore, it can provide guidance for the diagnosis and 
treatment of UC (Figure 8).

2.8 Gene set enrichment analysis

The results of the GSEA enrichment analysis show that these 
markers are involved in multiple pathways related to the occurrence 
and development of DFU, mainly involving myeloid leukocyte 
migration, granulocyte migration, epidermal cell differentiation, 
intermediate filament organization, keratinocyte differentiation, 
extracellular matrix structural constituent, collagen catabolic process, 
epidermis development, neutrophil chemotaxis, skin development, 
specific granule membrane, secretory granule membrane, 
antimicrobial humoral response, detection of stimulus involved in 
sensory perception, collagen containing extracellular matrix, receptor 
complex, translation factor activity RNA binding, tertiary granule. All 
these pathways may be closely related to immune regulation in DFU 
(Figure 9).

2.9 Immune infiltration

The immune abundance of UC patients and controls was 
evaluated using the CIBERSORT algorithm, the barplot was generated 

to visualize the proportions of immune cells in each sample, as shown 
in Figure  10A. The immunodifference analysis chart Figure  10B 
shows the comparison between UC patients and normal tissues, the 
proportion of macrophages M0, macrophages M0, mast cells activated 
and neutrophils were higher compared with control group. And the 
proportion of T cell CD8, macrophages M2 and mast cells resting 
were lower compared with control group, as shown in Figure 10B. In 
addition, the correlation analysis of 22 types of immune cells 
indicated that the correlation between monocytes and T cells 
regulatory (Tregs) (r = 0.36, p < 0.05) showed positive correlation. 
Correlation between mast cells activated and mast cells resting 
(r = 0.69, p < 0.05), macrophages M0 and macrophages M2 were 
negatively associated, as shown in Figure 10C.

2.10 Identification of candidate drugs

Model genes were analyzed using the DSigDB drug database on 
Enrichr to identify potential targeting agents. Top 10 drug candidates 
were beclomethasone, ibuprofen, glycoprotein, simvastatin, 
methotrexate, prednisolone, budesonide, troglitazone, sulfasalazine 
and thalidomide (Table 1).

2.11 Molecular docking

According to the receptor-ligand docking theory, the docking 
energy is inversely proportional to the binding affinity; the more 
negative the docking energy, the stronger the binding affinity between 
the protein and the ligand. The results of molecular docking as shown 
in Figure  11A. The eight compounds and proteins with the best 
binding affinity are: CCL18-thalidomide, CCL18-troglitazone, 
DUOX2-thalidomide, DUOX2-troglitazone, LCN2-thalidomide, 
LCN2-troglitazone, TNC-thalidomide and TNC-troglitazone. Import 
the docking data of the above eight pairs of compounds and proteins 

FIGURE 4

GO and KEGG enrichment analysis of DFU. (A) The bar chart of the GO enrichment of DEGs, including biological process, cellular component, and 
molecular function. (B) The Sankey diagram showing the KEGG enrichment analysis of DEGs.
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FIGURE 5

Machine learning prediction models. (A) One hundred and thirteen machine learning algorithm combinations evaluated via 10-fold cross-validation. 
(B) Number of genes selected by machine learning algorithm models. (C) AUC value of the training set. (D) AUC value of the validation set.
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into Pymol software for visualization to analyze the interactions 
between compounds and proteins, as shown in Figure 11B. Eight 
central therapeutic targets and the binding energy values of active 
compounds acting on them are all less than −5 kcal/mol, and they 
form at least one hydrogen bond with each other, indicating that these 
compounds have good binding affinity with key therapeutic targets 
and can fully exert their anti-DFU effects. The selection criteria for the 
core active ingredients are as follows: (1) compounds with the highest 
affinity for each key therapeutic target; (2) compounds acting on key 
therapeutic targets must have a docking energy of less than −5 kcal/
mol. According to the above selection criteria, the key active 
ingredients for treating UC are thalidomide and troglitazone.

2.12 Molecular dynamics analysis

As shown in Figure 12A, the combinations of protein CCL18 with 
compounds thalidomide, protein CCL18 with compound troglitazone, 
and protein DUOX2 with compound thalidomide exhibit good 
binding activity and docking stability. These three combinations were 
selected for kinetic simulation. From the graph, it can be seen that the 
root mean square deviation (RMSD) of the small molecules remains 
stable, while the RMSD of the complexes and proteins shows initial 

fluctuations, becomes stable in the middle, and experiences minor 
fluctuations towards the end (Figure  12A). As can be  seen from 
Figure  12B, the radius of gyration (Rg) of the complex is stable, 
indicating that the overall structure of the complex is compact and 
robust. The root mean square fluctuation (RMSF) can be used to 
represent the fluctuation of the complex at the residue level. From 
Figure 12C, it can be seen that proteins DUOX2 and compounds 
thalidomide have greater residue flexibility. Hydrogen bonding is a 
strong non-covalent interaction. The number of hydrogen bonds in 
the CCL18 and thalidomide was 0-6, CCL18 and troglitazone was 0–3, 
DUOX2 and thalidomide was 0–4, as shown in Figure  12D. The 
hydrogen bond between the ligand and the receptor helps maintain 
the stability of the complex.

3 Method

3.1 Data download and processing

We obtained four raw datasets (GSE87466, GSE87473, GSE92415, 
and GSE165512) from the GEO database (Gene Expression Omnibus). 
GSE87466 is based on the GPL13158 platform, including 87 UC 
patient and 21 normal (control) samples; GSE87473 is based on the 

FIGURE 6

Validation based on differentially expressed associated genes (DEGs). (A) ROC curve of seven feature genes. (B) The diagnostic nomogram based on 
seven feature genes. (C) Calibration curve to evaluate the accuracy of the nomogram. (D) Decision curve of feature genes nomogram.
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GPL13158 platform, including 106 UC patients and 21 control 
samples; GSE92415 is based on the GPL13158 platform, including 162 
UC patients and 21 control samples; GSE165512 is based on the 
GPL16791 platform, including 124 UC patients and 46 control 
samples. Subsequently, probes in each dataset were annotated and 

converted to standard gene names based on the corresponding 
platform annotation files. We combined the expression profiles from 
the GSE87466, GSE87473, and GSE92415 datasets into a training set. 
We then adjusted the batch effects using the sva package, preparing 
the data for subsequent WGCNA and machine learning analyses. 
Additionally, GSE165512 was used as an additional dataset for 
validation. After standardization and normalization of the datasets, 
the “limma” R package was used to analyze the differentially expressed 
genes between DFU and control samples. The screening criteria were 
(|logFC| >1, p < 0.05). Volcano maps and heat maps were drawn using 
the R software ggplot2 package and the “ComplexHeatmap” package, 
respectively, to display the significantly regulated important genes.

3.2 Acquisition of immune-related genes

ImmPort is one of the most authoritative human immune gene 
databases, from which data can be downloaded for effective analysis. 
Download the human immune gene set from the ImmPort database 

FIGURE 7

Expression profiles of hub genes in single cells. (A) Cellular subtypes of UC. (B,C) Scatter plots and bubble plot of the expression of the five hub genes. 
(D) Cell trajectory diagrams of twelve types of cells.

FIGURE 8

The q-PCR analysis results of key gene expression. *p < 0.05.
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FIGURE 9

GSEA enrichment analysis conducted on the CCL18, DUOX2, GREM1, LCN2 and TNC genes, including enrichment in both high-expression and low-
expression groups. (A, C, E, G, I) show the enrichment results of the high-expression groups of the CCL18, DUOX2, GREM1, LCN2 and TNC genes, 
while (B, D, F, H, J) present the enrichment results of the low-expression groups of these genes.
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(see text footnote 1), after removing duplicate genes, a total of 1,793 
immune-related genes (IRGs) are identified.

3.3 Weighted gene co-expression network 
analysis and identification of core modules

WGCNA is a commonly used modular analysis technique often 
used to identify and screen biomarkers or drug targets for complex 
diseases, to identify highly co-varying gene expression matrices, 
and to provide new directions for studying the potential 
mechanisms of diseases. A co-expression network was constructed 
using the “WGCNA” package in R software (21). A co-expression 
network was built using the top  10,000 genes with the highest 
variance from the merged dataset, with the minimum number of 
genes within a module set to 100. Subsequently, we transformed 
the adjacency matrix into a topological overlap matrix (TOM) and 
constructed multiple gene modules and hierarchical clustering 
trees. Finally, the correlation between each module and clinical 
characteristics was assessed, and gene significance (GS) and 
module membership (MM) were calculated to measure the 
correlation and significance of genes with biological modules and 
clinical information, extracting important modules and genes for 
subsequent analysis. The intersection of immune-related genes, 
differentially expressed genes, and WGCNA module genes yielded 

a total of 38 significant genes. Detailed genetic information can 
be found in Supplementary Table S1.

3.4 Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes 
pathway enrichment analysis

Import the filtered 38 genes into the Metascape database. Perform 
GO enrichment analysis, which includes biological processes, 
molecular functions, and cellular components, as well as KEGG 
pathway enrichment analysis separately. Set the species to “sapiens” 
and the p-value threshold to less than 0.01. After that, conduct custom 
analysis and visualize the enrichment results using online 
bioinformatics graphing tools.

3.5 Machine learning for diagnostic 
signature genes

In the 10-fold cross-validation process, a total of 12 machine 
learning algorithms were combined: LASSO, Ridge, Stepglm, 
XGBoost, Random Forest (RF), Elastic Net (Enet), Partial Least 
Squares Regression for Generalized Linear Models (plsRglm), 
Generalized Boosted Regression Modeling (GBM), Naive Bayes 

FIGURE 10

Immune cell infiltration analysis. (A) The stacked bar plot representing the different immune cell proportions in each sample. (B) The heatmap showing 
the correlation between different immune cells. Red represented a positive correlation, while blue represented a negative correlation. (C) The boxplot 
depicting the comparison of 22 types of immune cells between DCM and control groups.
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(NB), Linear Discriminant Analysis (LDA), Generalized Linear 
Model Boosting (glmBoost), and Support Vector Machine 
(SVM), Through arrangement, 113 combinations are formed, and 
model development is carried out on the basis of 10-fold cross-
validation, to determine the most powerful diagnostic model 
based on 38 intersecting genes. The model with a higher AUC 
value and good gene selection effect was ultimately chosen. 
Subsequently, the R package “pROC” was used for visualizing the 
receiver operating characteristic (ROC) curves of the training set 
and validation set.

3.6 Construction and independent 
validation analysis of model

The external dataset GSE165512 was used to validate the 
effectiveness of models GSE87466, GSE87473, and GSE92415 in 
distinguishing between ulcerative colitis (UC) and normal 
controls. AUC values for the selected genes were obtained using 
the R package “pROC” (version 1.18.5). A bar-line chart model was 
then created using the R package “rms” (version 6.3.0), where each 
predictor is assigned a score. The total score is the cumulative sum 
of the individual scores assigned to each predictor in the bar chart. 
Additionally, we  used calibration curves and decision curve 
analysis (DCA) to evaluate the predictive capability of the 
bar chart.

3.7 Single-cell sequencing analysis

Download the GSE214695 data file from the NCBI GEO public 
database and use it for single-cell correlation analysis. Use the Seurat 
package to process the data, conduct PCA analysis, and perform 
clustering, dimensionality reduction, and cell visualization with the 
t-SNE algorithm and UMAP (uniform manifold approximation and 
projection). Next, annotate the cell clusters with the Celldex package. 
Finally, we extract the marker genes for each cell subtype from the 
single-cell expression profile using the logfc threshold and the 
FindAllMarkers function. Select the immune-related genes screened 
out by machine learning as the individual marker genes for each 
cell subtype.

3.8 Cell culture and establishment of 
ulcerative colitis models

Colon mucosal epithelial cells (CP-H040) were purchased from 
Pricella and cultured in RPMI-1640 (Gibco; 21870084) complete 
medium supplemented with 10% fetal bovine serum (FBS), 1% 
glutamine (Gibco; 25030081), and 1% penicillin-streptomycin (Gibco; 
15070063) at 37°C in a 5% CO2 incubator. LPS solution was dissolved 
in the above complete medium and the LPS concentration was 
adjusted to 5 μg/mL. When the cell density reached 80%, the cells were 
washed twice with PBS, and the PBS was discarded. The cells were 
then exposed to RPMI-1,640 complete medium containing 5 μg/mL 
LPS and cultured for another 24 h. After the culture was completed, 
the cells were washed with PBS and RNA was extracted using RNA 
isolater Total RNA Extraction Reagent (Vazyme; R401-01) solution.

3.9 q-PCR analysis of UC-related markers

According to the manufacturer’s product instructions, RNA was 
extracted from cells using RNA isolater total RNA extraction reagent. 
The purity and concentration of RNA were evaluated using a 
microplate reader. The concentrations were adjusted to be consistent 
between the two groups. Reverse transcription was performed using 
the ABScript II cDNA First-Strand Synthesis Kit (ABclonal; 
RK20400). Real-time quantitative PCR reactions were conducted in a 
fluorescence quantitative PCR instrument (bio-rad; CFX Connect) in 
the presence of 2X Universal SYBR Green Fast qPCR Mix (ABclonal; 
RK21203). The reaction conditions were as follows: 95°C for 30 s for 
pre-denaturation; then 95°C for 15 s (denaturation), 60°C for 30 s 
(annealing/extension), for 40 cycles. The relative gene expression 
levels were calculated using the 2−ΔΔCT method, with GAPDH as the 
internal control. All primers used in the study are listed in 
Supplementary Table S2.

3.10 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is used to elucidate the 
biological significance of characteristic genes by employing the fast 
GSEA R package. To achieve normalized enrichment scores for 

TABLE 1 Predicted drug information.

Term p-value Combined score Genes

Beclomethasone 2.85195 × 10−9 1203.557661 CXCL10; IL1B; CCL4; CCL3; MMP9; LTF

Ibuprofen 1.14966 × 10−8 576.1780299 C3; CXCL10; IL1B; TNC; CCL3; DEFB4A; MMP9

Glycoprotein 5.93118 × 10−8 408.3725055 IL1B; TNC; LCN2; STC1; PI3; MMP9; LTF

Simvastatin 8.55094 × 10−8 288.3396864 MMP12; IL1B; CCL4; CCL3; MMP9; S100A9; S100A8; IDO1

Methotrexate 1.62111 × 10−7 177.4477246 C3; FCGR3B; IL1B; CCL4; CXCR2; TNC; CCL3; PI3; CCL19; S100A9

Prednisolone 1.86306 × 10−6 719.0071486 IL1B; CCL4; CXCR2; CCL3

Budesonide 2.59611 × 10−6 641.1431892 IL1B; CCL4; CCL3; LTF

Troglitazone 2.71535 × 10−6 119.6986126 CXCL10; IL1B; IL24; CCL4; CCL3; STC1; CXCL1; PI3; MMP9

Sulfasalazine 4.67698 × 10−6 522.6005686 IL1B; CXCL1; MMP9; IDO1

Thalidomide 6.75068 × 10−6 262.9742949 C3; IL1B; CXCR2; MMP9; LTF
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FIGURE 11

Results of molecular docking. (A) Binding energy results of molecular docking. (B) Presentation of molecular docking results.
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each analysis, gene set permutations are performed 1,000 times. 
False discovery rate (FDR) value <0.05 is considered 
significant enrichment.

3.11 Evaluation of the abundance and 
expression differences of immune cell 
subsets

Analyze the abundance and correlation of immune infiltrating 
cells using the CIBERSORT deconvolution algorithm. The 
CIBERSORT method mainly relies on the LM22 immune cell 
subtype expression matrix, using the CiberSortR script to perform 
qualitative and quantitative analysis on its matrix. Using the 
results from CIBERSORT, analyze the correlation between specific 
genes and immune cell types. Apply a screening criterion of 
p < 0.05 and utilize the corrplot package to create the 
corresponding plot (22).

3.12 Identification of candidate drugs

To identify candidate drugs for the pathological mechanisms 
potentially targeting ulcerative colitis (UC), we  utilized the Drug 
Signatures Database (DSigDB) within the Enrichr network platform2 
to screen for drugs. After identifying potential drugs, we filtered out 
those with high toxicity or significant side effects as reported in the 
literature, leaving us with 10 candidates for further analysis.

3.13 Molecular docking validation

Molecular docking is a computational method used to predict the 
docking pose and binding affinity between a protein and a ligand. To 

2 https://amp.pharm.mssm.edu/enrichr/

FIGURE 12

The molecular dynamics (MD) simulation of the PLA2G2A and naftopidil complex, PLA2G2A and PP-30 complex and FGFR3 and AZD-8055 complex. 
(A) The RMSD plot of the PLA2G2A and naftopidil complex, PLA2G2A and PP-30 complex and FGFR3 and AZD-8055 complex. (B) The Rg plot of the 
PLA2G2A and naftopidil complex, PLA2G2A and PP-30 complex and FGFR3 and AZD-8055 complex. (C) The RMSF plot of the PLA2G2A and naftopidil 
complex, PLA2G2A and PP-30 complex and FGFR3 and AZD-8055 complex. (D) The number of hydrogen bonds in the PLA2G2A and naftopidil 
complex, PLA2G2A and PP-30 complex and FGFR3 and AZD-8055 complex.
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perform molecular docking, download the 3D structures of active 
compounds from the ChemSpider database.3 Then, use Chem3D to 
energy minimize the compounds and save them in .pdb format. The 
protein crystal structures of core genes CCL18 (Alphafold ID: 
AF-P55774-F1-v4), DUOX2 (Alphafold ID: AF-E7FEH3-F1-model_
v4), GREM1 (Alphafold ID: AF-O60565-F1-v4), LCN2 (Alphafold ID: 
AF-P80188-F1-v4), and TNC (Alphafold ID: AF-P24821-F1-v4) were 
obtained from the Alphafold database.4 After adding hydrogen atoms, 
protons, and calculating charges using Autodock, both the receptor 
protein and the selected compounds are saved in PDBQT files. The 
position of the molecular docking binding site is optimized by 
modifying the center coordinates and size of the docking protein. 
Finally, Autodock Vina is used to dock the core receptor protein with 
the small molecule complex ligand. Each molecular docking generates 
100 conformations, and the best docking conformation is selected 
based on binding energy and site as the final docking result. Lower 
binding energy indicates a stronger affinity between the key target and 
the core active ingredient. Subsequently, the interaction between the 
compound and protein is visualized using PYMOL software. In 
addition, the docking results are compared with reference drugs/
inhibitors to assess reliability.

3.14 Molecular dynamics simulation

Molecular dynamics (MD) simulation of ligand-receptor 
docked complex was carried out using GROMACS (version 2022.2). 
Protein topology file was generated using the AMBER99SB-ILDN 
force field, whereas ligand topology file was generated by ACPYPE 
script using the AMBER fore field. We  performed the MD 
simulation in a triclinic box filled with TIP3 water molecules, 
applying periodic boundary conditions. System was neutralized 
with NaCl counter ions. Before the MD simulation, we minimized 
the complex for 1000 steps and equilibrated it by running NVT and 
NPT for 100 ps. Then MD simulation was performed for 100 ns for 
each system under periodic boundary conditions at 310  K 
temperature and 1.0 bar pressure.

4 Discussion

UC is a chronic disease that affects the colonic mucosa. The global 
prevalence and incidence of ulcerative colitis have been rising over 
time. Notably, up to 15% of patients initially present with acute disease 
(23–25). Patients with ulcerative colitis face an increased risk of 
developing rectal cancer, which also imposes a significant economic 
burden on society (26). Currently, endoscopic examination and biopsy 
are the only methods for diagnosing ulcerative colitis (25). There are 
multiple treatments for this disease, with clinical practice primarily 
relying on drug therapy, such as 5-aminosalicylic acid (5-ASA), 
corticosteroids, immunosuppressants, and biologics. However, these 
medications have limitations, including side effects, individual 
differences, compliance issues, and economic burdens. No ideal 

3 https://www.chemspider.com/

4 https://alphafold.com/

treatments exist for ulcerative colitis in clinical practice, highlighting 
the urgent need for research into better therapeutic options (27).

Recent studies have found that the occurrence of ulcerative colitis 
(UC) is closely linked to immune function. I UC is a chronic and 
relapsing disease that occurs when genetically susceptible individuals 
have an abnormal immune response to intestinal luminal antigens 
(28). Several components of the mucosal immune system contribute 
to the pathogenesis of UC. These components include luminal 
antigens, intestinal epithelial cells (IEC), cells of the innate and 
adaptive immune systems, etc. (28). Additionally, research using 
mouse models has shown that the absence of certain immune 
cytokines significantly affects the likelihood of developing UC under 
various microbial conditions (29–31). Moreover, after treatment with 
broad-spectrum antibiotics, the inflammatory conditions of the 
experimental animals were alleviated (32). The intestine functions as 
a part of the innate immune system and has three lines of defense: the 
mucous layer, the epithelium, and the lamina propria, all of which 
contain a diverse range of immune cells that contribute to immune 
responses. When these barriers are damaged, immune tolerance is 
affected (33). Therefore, exploring the pathogenesis of UC from an 
immunological perspective and seeking potential therapeutic drugs is 
very meaningful.

Bioinformatics integrates biology, mathematics, and information 
science, employing computational methods to process, analyze, and 
interpret biological data like genomic sequences, protein structures, 
and metabolic pathways. Its strength lies in efficiently extracting 
insights using algorithms and software, aiding disease research. By 
analyzing gene expression, it identifies disease biomarkers, advancing 
personalized medicine and treatment strategies (34).

Through machine learning methods and experiments, we proved 
that the key genes: CCL18, DUOX2, GREM1, LCN2, and TNC are of 
great significance for the diagnosis and treatment of UC. CCL18 is a 
chemokine protein that primarily regulates the immune system. It 
regulates the migration and activation of white blood cells within the 
body by binding to its receptors. Recent studies have found that the 
CCL18 gene is located downstream of UC lncRNA, involved in the 
inflammatory immune response process of UC, and this process can 
be regulated by methylation (35–37). Comprehensive analyses of gene 
expression profiles in UC patients have confirmed that DUOX2 holds 
significant diagnostic and predictive value for mild to moderate UC, 
DUOX2 is a multifunctional enzyme that primarily participates in the 
synthesis of thyroid hormones and local immune defense, playing a 
significant role in immune responses and local cell signaling (38), it is 
a key enzyme in the production of hydrogen peroxide (H2O2) in the 
human colon, and its expression increases in active colitis as a 
response to inflammation (39). GREM1 is a gene that encodes a bone 
morphogenetic protein antagonist, belonging to the negative 
regulators of the bone morphogenetic protein (BMP) signaling 
pathway. Current experimental models suggest that the physiological 
attenuation of BMP signaling after ulceration can be promoted by 
upregulating the secretion of the antagonist GREM1 from different 
populations of fibroblasts, which in turn facilitates the regeneration of 
intestinal epithelial cells (40). Furthermore, this gene has been 
identified as a reliable potential biomarker for the diagnosis and 
treatment of UC. This biomarker mediates an immune response that 
is crucial for the onset and progression of UC by interacting with 
infiltrating immune cells (41). LCN2 is a key protein involved in iron 
metabolism, immune responses, kidney function, inflammation, and 
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cancer development. Studies have found that LCN2 is a characteristic 
gene in the colonic mucosa of UC patients, and LCN2 plays a 
pro-inflammatory role in UC by promoting colonic epithelial cell 
pyroptosis, which may become a new target for inhibiting pyroptosis 
in UC. In addition, some studies suggest that LCN2 is a key factor in 
the regulation of ferroptosis in UC, providing more evidence for the 
significant role of ferroptosis in UC (42, 43). TNC (Tenascin C) is a 
multifunctional extracellular matrix protein involved in intercellular 
signaling and the maintenance of tissue structure and function. Its 
aberrant expression is associated with the development of various 
diseases. Studies have found that compared to normal controls, the 
expression level of TNC in the inflamed mucosa of UC patients is 
significantly elevated, and TNC is mainly expressed in the stromal 
areas of the intestinal mucosa. Studies also indicate that in UC patients 
treated with infliximab, the mucosal expression of TNC mRNA is 
higher and is associated with a poor response to treatment. This 
suggests that TNC may play a role in the pathogenesis of UC, 
especially in affecting patients’ responses to anti-TNF-α therapy. 
Therefore, the elevation of TNC may not only be  a marker of 
inflammation in UC but could also serve as a biomarker for disease 
activity and response to treatment (44).

This study found that the expression characteristics of chemokine 
CCL18 and cytokinesTNF-α and IL-1β in the colonic tissues of UC 
patients suggest that they may become new therapeutic targets. CCL18 
belongs to the CC subfamily of chemokines and exhibits complex dual 
roles in immune regulation. Its functional mechanisms show 
significant differences under different pathological and physiological 
conditions. Research indicates that CCL18 mediates immune cell 
migration via classical chemokine receptors, promoting NK cell 
movement and cytotoxicity in non-allergic individuals, while this 
function is impaired in allergic patients, indicating a specific 
imbalance in immune regulation (45, 46).

GO enrichment analysis revealed that the immune mechanism of 
UC is related to cytokine pathways, and pro-inflammatory cytokines 
TNF-α play an important role in the pathogenesis of UC. During UC, 
levels of TNF-α and other pro-inflammatory cytokines rise 
abnormally, leading to inflammatory responses. These inflammatory 
responses lead to damage of the intestinal mucosa, resulting in ulcers, 
bleeding and other symptoms, and aggravating the condition of 
UC. Studies have shown that metformin can alleviate DSS-induced 
colitis, and one of its mechanisms is that it inhibits the production of 
pro-inflammatory cytokines including TNF-α, thereby alleviating 
intestinal inflammation and further indicating that TNF-α has a close 
association with ulcerative colitis and inhibiting the production or 
activity of TNF-α may become a potential strategy for treating UC 
(47). Interleukin-1β (IL-1β) is also an important pro-inflammatory 
cytokine, which plays an important pro-inflammatory role in 
UC. IL-1β mainly promotes inflammatory responses by activating the 
NLRP3 inflammasome. In UC patients, activation of the NLRP3 
inflammasome leads to the massive production of IL-1β, which 
recruits immune cells to the intestinal mucosa and triggers 
inflammatory responses. In addition, IL-1β can induce the 
differentiation of Th17 cells, which further secrete pro-inflammatory 
factors such as IL-17, exacerbating intestinal inflammation (48), 
indicating that this cytokine plays a key role in the pathogenesis of UC.

Single-cell analysis showed that key immune-related genes were 
highly expressed in macrophages, fibroblasts, and epithelial cells. 
Macrophages, as the core effector cells of innate immunity, their 

abnormal activation is a key mechanism for the uncontrolled 
inflammation in UC, and excessive activation can trigger persistent 
inflammatory responses, leading to symptoms such as diarrhea and 
abdominal pain (49). In UC, fibroblasts exhibit dynamic regulation. 
The reduction of pericanal fibroblasts is linked to goblet cell depletion 
and changes in the mucosal villi, which may worsen barrier disruption 
and increase the risk of carcinogenesis (50). In contrast, ulcer-related 
myofibroblasts help regulate the inflammatory microenvironment by 
secreting IL-33 and play a role in mucosal repair or fibrosis (51). 
Abnormal regulation of colonic epithelial cell apoptosis is an 
important feature of UC progression, and patients show significantly 
upregulated anti-apoptotic genes, resulting in epithelial barrier 
dysfunction and persistent inflammation (52). Therefore, the 
imbalance of macrophage activation, the heterogeneity of fibroblast 
phenotypes, and the dysregulation of epithelial cell apoptosis jointly 
drive the pathological process of UC.

The immune infiltration analysis indicates that UC is closely related to 
mast cells and neutrophils. Some studies have emphasized the significant 
activation role of mast cells during the active phase of UC. This study 
compared the number of mast cells in the active and remission phases of 
the same UC patient using immunohistochemical methods and found that 
the accumulation of mast cells in the colonic mucosa during the active 
phase was significantly higher than that in the remission phase (p < 0.01). 
Further analysis revealed that the number of mast cells in UC patients was 
even higher than that in colon cancer tissues, suggesting its specific role in 
inflammation (53). Some studies have revealed that the level of anti-
neutrophil cytoplasmic antibody (ANCA) in the serum of UC patients is 
significantly elevated. The specificity of this is due to the binding of 
immunoglobulin G (IgG) of neutrophils and the nuclear perinuclear 
staining pattern. The high titer of ANCA in UC is associated with active 
inflammation and is distinct from other colitis and diarrhea diseases, 
indicating that it is not merely a concomitant phenomenon of 
inflammation, but an autoimmune reaction specific to the antigens of 
neutrophils. The combination of perinuclear ANCA and ELISA positive 
results has a high diagnostic specificity for UC (94%), suggesting that 
neutrophils may play a key role in the pathogenesis of UC (54).

To further accelerate the process of clinical treatment for UC, and 
to screen drugs for treating UC, we analyzed UC-related pathogenic 
genes through the DSigDB database to discover potential compounds 
targeting UC. Select 10 small molecule compounds (beclomethasone, 
ibuprofen, glycoprotein, simvastatin, budesonide, methotrexate, 
prednisolone, troglitazone, sulfasalazine, thalidomide) as candidate 
compounds. Beclomethasone is a corticosteroid commonly used to 
treat inflammation. It exerts its anti-inflammatory effect by binding to 
glucocorticoid receptors within cells. It reduces inflammation by 
inhibiting related molecules, such as cytokines and chemokines. 
Additionally, it helps suppress excessive immune reactions, thereby 
reducing damage caused by these responses. Beclomethasone has high 
receptor affinity and fewer side effects, making it commonly used for 
asthma and topical applications. Recently, it has also been found 
effective in treating patients with mild to moderate ulcerative colitis. 
Encapsulating it into fibrous micelles can greatly improve the 
utilization rate, which is reduced due to its hydrophobicity (55–57). 
Ibuprofen, a nonsteroidal anti-inflammatory drug (NSAID), inhibits 
cyclooxygenase (COX) to suppress prostaglandin synthesis, thereby 
alleviating pain, fever, and inflammation. Experimental studies 
demonstrate that ibuprofen specifically blocks inflammation-induced 
Rac1b upregulation in murine colon models (58), underscoring its 
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therapeutic relevance in UC. Glycoproteins are a class of important 
biomolecules composed of proteins and sugar moieties 
(polysaccharides) linked by covalent bonds. Glycoproteins play critical 
roles in cell recognition, signal transduction, immune responses, and 
intercellular interactions. Glycoprotein is an important component of 
the intestinal epithelium and may play a role in the pathogenesis of 
intestinal inflammation, such as inflammatory bowel disease. Studies 
have found that ISO (isotope) can regulate intestinal microbiota and 
their metabolites, increase the expression of glycoprotein in the 
intestinal epithelium, thereby maintaining colonic homeostasis, 
improving the integrity of the colonic epithelium, and alleviating 
colitis (59). Simvastatin is a commonly used cholesterol-lowering drug 
belonging to the statin class of medications. Studies have shown that 
immune-mediated mechanisms play a dominant role in the action of 
statins. For instance, statins can weaken the activation and proliferation 
of T cells, thereby suppressing the secretion of pro-inflammatory 
cytokines and enhancing the release of anti-inflammatory cytokines 
(60). Recent mouse studies have shown that simvastatin can effectively 
treat inflammatory bowel disease by inhibiting NF-κB-induced IL-8 
gene expression and blocking the transcriptional activity, 
phosphorylation, and DNA binding of NF-κB. Through analyses of 
body weight, colon length, disease activity index (DAI), and histology, 
simvastatin exhibited significant dose-dependent anti-inflammatory 
effects. These results suggest that simvastatin may attenuate the 
pathological process of inflammatory bowel disease (IBD) by 
modulating the NF-κB signaling pathway and suppressing the 
expression of pro-inflammatory genes, indicating its potential as a 
therapeutic agent for IBD (61). Budesonide is a steroid medication 
mainly used to treat inflammatory diseases. As a corticosteroid, 
budesonide has local anti-inflammatory effects. Studies show that its 
different formulations can serve various roles in treating UC (62), such 
as oral budesonide-MMX for the treatment of active, mild to moderate 
UC patients, and budesonide rectal foam for active, mild to moderate 
distal UC patients (from the anal margin to 40 centimeters) (63). 
Prednisolone is also a steroid medication that reduces inflammation 
and immune responses by inhibiting certain parts of the immune 
system, and Research indicates that budesonide has fewer side effects 
than prednisolone, making it a more favorable option in managing 
inflammatory bowel disease (64). Methotrexate (MTX) is an 
antimetabolite drug widely used to treat various cancers and certain 
immune system disorders. It works by inhibiting folate metabolism, 
disrupting DNA synthesis, and preventing cell division, which helps 
suppress tumor cell growth and the immune system’s overreaction. 
Currently, there is limited data on the use of Methotrexate in the 
treatment of UC. A study involving 40 patients treated with MTX for 
induction therapy found that it is safe and effective for maintaining 
clinical remission in those with UC in the short term (65). Troglitazone 
is an early drug used to treat type 2 diabetes, but a large number of 
studies in the literature have confirmed the beneficial effects of 
troglitazone in the intestine, with significant anti-inflammatory 
properties that can significantly reduce the levels of pro-inflammatory 
cytokines, thus potentially successfully used in the treatment and 
prevention of non-specific intestinal diseases (66, 67). Sulfasalazine is 
composed of sulfapyridine and 5-aminosalicylic acid (5-ASA), and is 
a widely used anti-inflammatory drug for the treatment of autoimmune 
diseases such as UC, Crohn’s disease, and rheumatoid arthritis (68). 
Sulfapyridine mainly reduces systemic inflammation by inhibiting the 
synthesis of inflammatory mediators, decreasing white blood cell 

infiltration at the inflammation site, and regulating cytokine secretion. 
In contrast, 5-ASA offers local protection to the intestinal mucosa by 
clearing oxidative free radicals, inhibiting neutrophil infiltration, and 
preserving the mucosal barrier’s integrity (69, 70). Thalidomide is a 
potent immunomodulatory drug used to treat various autoimmune 
diseases (71). Studies indicate that thalidomide can increase the 
mRNA expression of the anti-inflammatory factor IL-10 while 
decreasing the mRNA levels of pro-inflammatory factors IL-6, IL-1β, 
and TNF-α. Additionally, thalidomide exerts anti-inflammatory effects 
by inhibiting the PI3K/Akt pathway, which may explain its use in 
treating UC (72). The above-mentioned drugs, by targeting the 
immune mechanism of UC, provide a potential new strategy for the 
immunomodulatory treatment of ulcerative colitis and offer a 
reference for the development of new drugs for treating UC.

However, this article has certain limitations. In the future, 
adding more ulcerative colitis (UC) samples can optimize the 
machine learning model and improve its predictive accuracy. 
Although this article has identified potential drugs for treating 
ulcerative colitis, clinical trials have not yet been conducted, so 
their effectiveness in real-world settings cannot be determined. 
Thus, conducting relevant clinical trials is essential to verify the 
efficacy of these drugs.

5 Conclusion

This study employed various techniques and the experimental 
verification to analyze immune-related markers and immune-related 
mechanisms in UC. The identified immune biomarkers (CCL18, 
DUOX2, GREM1, LCN2, and TNC) demonstrated strong diagnostic 
efficacy and are key immune genes for ulcerative colitis (UC). 
Enrichment analysis revealed that DFU is related to inflammatory 
responses, leukocyte chemotaxis, etc. Additionally, we  discovered 
potential therapeutic drugs, thalidomide and troglitazone. These 
findings enhanced the understanding of the pathogenesis of DFU and 
laid a solid foundation for future research and clinical applications, 
aiming to improve the prevention, diagnosis, and treatment of this 
severe diabetic complication.
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Glossary

RF - Random forest

LASSO - Least absolute shrinkage and selection operator

UC - Ulcerative colitis

WGCNA - Weighted gene co-expression network analysis

CIBERSORT - Cell-type identification by estimating relative subsets 
of RNA transcript

ROC - Receiver operating characteristic

GEO - Gene Expression Omnibus

DEGs - Differentially expressed genes

RMSD - Root mean square deviation

RMSF - Root mean square fluctuation

Rg - Radius of gyration

PCA - Principal component analysis

GO - Gene Ontology

KEGG - Kyoto Encyclopedia of Genes and Genomes

DCA - Decision curve analysis

GSEA - Gene set enrichment analysis

CCL18 - C-C motif chemokine ligand 18

DUOX2 - Dual oxidase 2

GREM1 - Gremlin 1

LCN2 - Lipocalin 2

TNC - Tenascin C

Enet - Elastic Net

GBM - Generalized boosted regression modeling

LDA - Linear discriminant analysis

SVM - Support vector machine

FDR - False discovery rate

DSigDB - Drug Signatures Database

MD - Molecular dynamics

5-ASA - 5-Aminosalicylic acid

NSAID - Nonsteroidal anti-inflammatory drug

IBD - Inflammatory bowel disease

DAI - Disease activity index

q-PCR - Quantitative polymerase chain reaction
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