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revolutionizing anesthesia
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With the development of artificial intelligence (AI), AI-related technologies
are being applied in many fields of medicine. Anesthesia is now widely
used in surgery, emergency resuscitation, pain treatment and other fields.
However, di�erent from some other common biomedical signals, such as the
electrocardiogram (ECG), electroencephalogram (EEG), and some other medical
imaging or biomarkers could be easily processed and analyzed by AI-related
models, how to collect the relevant data in the anesthesia process is still a
challenge, that has led to little current work on combining AI and anesthesia.
However, it can be foreseen that the combination of AI and anesthesia will
become increasingly important. This paper presents a comprehensive review of
anesthesia with AI basedmethods which have been now used in the preoperative
phase, intraoperative phase, and postoperative phase. We first overview some
crucial concepts of artificial intelligence, then discuss the related applications
of artificial intelligence used in di�erent phases of the anesthesia period, finally,
we look forward to the future development of intelligent anesthesia. We hope
through this review, we can provide comprehensive and objective guidance in
AI-related anesthesia process to help anesthesiologists use more advanced AI
techniques to diagnose and treat patients during the anesthesia period.

KEYWORDS

anesthesia, artificial intelligence, perioperative anesthesia management, machine
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1 Introduction

Artificial Intelligence (AI) is a broad field focused on developing systems capable

of performing tasks that typically require human intelligence. With advancements in

hardware and algorithms, AI applications have expanded beyond research labs, impacting

areas like speech recognition, image classification, and medical diagnostics (1). In the

medical field, machine learning (ML) and deep learning (DL) are commonly used.

Techniques like convolutional neural networks (CNNs) and support vector machines

(SVMs) can automatically learn from data. For example, they can analyze MRI or CT

images to help detect and classify diseases such as tumors or cardiovascular problems (2).

These models help doctors by offering quick and data-based insights, reducing the

time needed for diagnosis and improving accuracy. AI demonstrates significant value in
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healthcare, extending beyond diagnostic assistance to play a pivotal

role in optimizing therapeutic processes. A prime example is in

intensive care units (ICUs), where delirium is frequently associated

with suboptimal sedation management, and conventional

approaches often struggle to balance between oversedation

and undersedation. In anesthesiology, AI technologies enable

real-time analysis of patients’ physiological parameters and

medical histories, achieving not only precise anesthetic dosing and

intelligent intraoperative monitoring but also predicting potential

complications and optimizing personalized medication regimens,

thereby significantly enhancing perioperative safety (3). With

continuous technological advancements, AI is driving the field of

anesthesiology toward greater precision and personalization.

The innovative application of AI in anesthesiology is

systematically transforming perioperative management systems.

By leveraging multimodal data fusion analysis, AI technologies

have established an end-to-end solution spanning the pre-

intra-postoperative continuum: (1) Preoperatively, machine

learning algorithms enable accurate identification of high-risk

patients and prediction of postoperative complications (4); (2)

Intraoperatively, real-time physiological signal analysis facilitates

dynamic early warning of adverse events like hypotension (5);

and (3) Postoperatively, AI optimizes rehabilitation monitoring.

Particularly noteworthy is the reinforcement learning model

developed by Lee et al. (6), which overcomes limitations of

conventional sedation management through closed-loop control

of dexmedetomidine administration, establishing the first patient-

specific adaptive sedation protocol. These technological advances

not only validate the clinical value of AI in enhancing anesthesia

safety and efficiency (4, 7), but also signify the transition of

anesthesiology into a new era of data-driven precision medicine.

Our review employs a narrative literature analysis methodology

to investigate research advancements and clinical translation of

AI technologies in anesthesiology. As shown in Figure 1, the

research team has constructed a three-dimensional framework

for intelligent perioperative anesthesia, encompassing temporal

dimensions (preoperative risk assessment → intraoperative

real-time regulation → postoperative outcome prediction), and

application dimensions (personalized medication→ complication

Risk assessment

PREOPERATIVE

PHASE

• Postoperative mortality

• Acute kidney injury

• Hypotension

Endotracheal intubation

• Clinical decision support

• Monitoring depth of anesthesia

INTRAOPERATIVE

PHASE

AI-driven  drug delivery

Precise positioning

POSTOPERATIVE

PHASE

Continuous monitoring

• Al used for postopative 

complication monitoring

• Early detection systems 

Temperature control

FIGURE 1

An overview of the use of AI in anesthesia.

prediction → resource optimization), providing a systematic

analysis through these interconnected perspectives.

2 Method

This review explores how artificial intelligence and related

technologies are used during different stages of surgery in

clinical anesthesia. The focus lies in evaluating current research

progress in this area. A literature search was performed using the

PubMed database with combinations of keywords such as “artificial

intelligence,” “machine learning,” “deep learning,” “anesthesia,” and

“anesthesiology” (56). The inclusion criteria encompassed all peer-

reviewed, English-language articles published between March 2021

and March 2025, including original research and narrative reviews.

We excluded studies involving animals, editorials, letters to the

editor, and abstracts. Additionally, we manually reviewed the

reference lists of the included papers, incorporating any relevant

studies that met the inclusion criteria Table 1.

3 AI and preoperative phase

The preoperative phase is essential for minimizing anesthesia-

related risks and improving patient outcomes. Accurate risk

prediction enables clinicians to identify vulnerable patients and

anticipate complications such as hypotension, acute kidney injury,

or postoperative mortality. Meanwhile, effective airway assessment

is critical for planning intubation and avoiding intraoperative

emergencies. Artificial intelligence supports both tasks by analyzing

complex clinical data, improving prediction accuracy, and

enhancing the safety and precision of anesthesia planning.

3.1 Risk prediction

The use of artificial intelligence by analyzing vast amounts

of medical data, such as patient records, laboratory test results,

and imaging data, can detect potential risk factors and disease
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TABLE 1 PubMed search strategy (2021–2025).

Step 1-3: AI-related terms

Query #1: “Artificial Intelligence”[All Fields] OR “AI”[All Fields]

Query #2: “Machine Learning”[All Fields]

Query #3: “Deep Learning”[All Fields]

Step 4-5: Combine with Anesthesia terms

Query #4: #1 OR #2 OR #3

Query #5: “Anesthesia”[All Fields] OR “Anesthesia Management”[All Fields] OR
“Perioperative Anesthesia”[All Fields]

Query #6: #4 AND #5

Step 6-8: Time filter and exclusions

Query #7: (“2021”[Date - Publication] : “2025”[Date - Publication])

Query #8: “Case Report”[Publication Type] OR “Conference
Abstract”[Publication Type]

Step 9-10: Final filter

Query #9: #6 AND #7

Query #10: #9 NOT #8

characteristics, thereby aiding doctors in early risk assessment.

This integration of technology can provide a more comprehensive

understanding of each patient’s unique medical history, leading

to improved patient outcomes and overall quality of care

(8). Applying AI in the pre-anesthesia phase can significantly

enhance the understanding of a patient’s health status and

surgical risks. Soong et al. (9) developed a machine learning-

based risk stratification model to predict 90-day mortality

in patients with hepatocellular carcinoma undergoing liver

resection. Using the XGBoost algorithm and structured national-

level clinical data, the model achieved strong discriminative

performance (AUROC = 0.9376). The AUROC (Area Under

the Receiver Operating Characteristic Curve) is a standard

metric used to evaluate the discriminatory ability of a binary

classification model. An AUROC of 0.5 indicates no better than

random performance, while a value of 1.0 represents perfect

classification. Early prediction of acute kidney injury (AKI)

following adult cardiac surgery enables prompt identification and

intervention, thereby facilitating timely clinical decision-making.

Zhang et al. (10) developed a risk predictor for AKI after liver

transplantation using supervised machine learning techniques and

visualized the underlying mechanisms to aid in clinical decision-

making. Li et al. (11) used multicenter data and MIMIC-IV

to develop a model. It outperformed 12 algorithms, including

KNeighborsClassifier, with an AUROC of 0.85. Least absolute

shrinkage and selection operator (LASSO) regression selected key

preoperative factors, like blood urea nitrogen and serum creatinine.

The Shapley Additive Explanations (SHAP) analysis improved

model transparency, clarifying predictive factors. These advances

enhance risk stratification in anesthesiology.

In the preoperative assessment stage, artificial intelligence

technology assists in risk prediction and medical history

information extraction, improving the accuracy and efficiency

of anesthesia management. Bishara et al. (12) developed the

Opal platform, a clinical machine learning system built on

the Anesthesia Information Management System (AIMS). The

platform integrates electronic health record (EHR) data and

supports model visualization, feature extraction, and prediction.

It collected preoperative data from 29,004 surgical patients

and extracted 155 variables to build a postoperative acute

kidney injury (AKI) prediction model. A gradient boosting

tree algorithm was used, achieving an AUC of 0.85 on the test

set. The model also demonstrated high sensitivity (0.9) and

specificity (0.8), indicating strong clinical utility. Similarly,

accurate preoperative prediction of red blood cell transfusion

is essential for optimizing blood resource allocation, reducing

unnecessary type and screen tests, and enhancing patient safety.

Zapf et al. (13) developed a machine learning model for this

purpose using EHR data. To address data imbalance, the study

employed Synthetic Minority Oversampling Technique (SMOTE)

and weighted sampling techniques. These methods improved

model sensitivity and ensured better performance in detecting

transfusion needs.

3.2 Airway management

Endotracheal intubation plays a vital role in patients

undergoing general anesthesia, intensive care, or emergency

intervention, particularly in situations such as surgery, trauma, or

respiratory failure, and is a critical step in ensuring oxygenation
and ventilation. However, difficult airway management remains a
challenge and can lead to serious complications, including hypoxia,

aspiration, and even death if not recognized in a timely manner.
In high-risk departments such as intensive care, anesthesia, and
emergency care, good preparedness is not only prevention, but

also central to patient survival. The introduction of emerging
technologies–such as ultrasonography, nasal endoscopy, and

AI-assisted imaging–has provided more objective tools for

airway assessment. However, differences in predictive accuracy

across methods still remain. For complex or high-risk patients,
relying on a single approach is insufficient. The key lies in

integrating multiple assessment tools, applying individualized

clinical judgment, and maintaining adaptability in the face of

anatomical uncertainty (14). A CNN-based model trained on

specific medical facial landmarks demonstrated strong robustness,

with test loss consistently remaining below 0.01, indicating stable

predictive performance (15). Hayasaka et al. (16) proposed a

facial image-based intubation difficulty classification method

with a sensitivity of 81.8%, a specificity of 83.3%, and an AUC of

0.864, indicating its feasibility for clinical application. A model

incorporating attention mechanisms to extract discriminative

deep features from oral images achieved a classification accuracy

of 97.5% under five-fold cross-validation, further supporting the

utility of deep learning in airway image classification (17). Shim

et al. (18) developed a machine learning model based on elastic

net regression to predict endotracheal tube depth in pediatric

patients under 7 years old. The model uses an elastic net strategy

that combines L1 and L2 regularization to reduce overfitting and

improve interpretability. It requires only four basic preoperative

variables–age, gender, height, and weight–as input. The target label

is the endotracheal tube depth measured on chest radiographs.
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FIGURE 2

An application framework for the combination of intraoperative anesthesia AI.

This modeling approach is simple, stable, and easily deployable,

aligning well with the anesthesia field’s emphasis on lightweight,

clinically practical models.

4 AI and intraoperative phase

When AI is combined with surgical anesthesia, it gives

birth to a revolution in the medical field, pushing the surgical

process into a new era of more precision and intelligence.

Surgery, as a high-risk medical procedure, places exceptionally

high demands on anesthesiologists. They must maintain absolute

concentration and sensitivity during the operation to ensure the

safety of the patient’s life. AI brings new capabilities to this

setting by enabling real-time monitoring, precision drug dosing,

and enhanced imaging interpretation. As shown in Figure 2, the

integration of anesthesia and artificial intelligence during surgery

covers the following aspects.

4.1 Intelligent sedation and drug delivery

Intraoperative anesthesia management requires real-time

adjustment of the patient’s physiological parameters, such as

anesthesia depth, blood pressure, heart rate, and respiratory

function, to ensure surgical safety and stability. Accurate titration

of anesthetic drugs is particularly important for maintaining

optimal sedation and avoiding intraoperative awareness or

hemodynamic instability. Artificial intelligence-based technologies,

especially those usingmachine learning and reinforcement learning

algorithms, are increasingly being used to automate and personalize

sedation management. Reinforcement learning frameworks

have also been enhanced by incorporating pharmacokinetic-

pharmacodynamic (PK-PD) simulations, allowing models to

retain accuracy even under complex conditions such as delays in

drug concentration feedback and bispectral index (BIS) variability

(19). Shenoy et al. (20) explored multiple regression-based

machine learning algorithms–including neural networks, support

vector machines, and Gaussian process regression–to predict

remifentanil pharmacokinetics using patient-specific physiological

parameters. Their optimized Gaussian process model achieved

superior accuracy compared to conventional PK-PD models,

demonstrating the feasibility of AI in real-time, individualized

drug concentration forecasting. The results showed that Gaussian

process regression (GPR) performed best among all models, with

the lowest mean square error (RMSE = 5.40) and the highest

coefficient of determination (R² = 0.9616), and further improved

the model performance through Bayesian optimization.
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4.2 Monitoring depth of anesthesia and
consciousness

During surgery, we often rely on multimodal monitoring

tools, including electroencephalogram (EEG), electrocardiogram

(ECG), blood pressure, heart rate, and end-tidal gas concentrations,

to accurately assess the depth of anesthesia and ensure patient

safety. To quantify both arousal and awareness dimensions

of consciousness, Afshar et al. (21) employed a combinatorial

deep learning model incorporating bidirectional long short-term

memory (BiLSTM) and attention mechanisms, achieving 88.7%

accuracy in real-time depth-of-anesthesia (DoA) classification

despite imbalanced BIS value distributions. Building on this, Lee

et al. (22) proposed the Explainable Consciousness Indicator (ECI),

which applies convolutional neural networks (CNN) to time-

series EEG data. In the other approach, Schmierer et al. (23)

applied empirical wavelet transform (EWT) to EEG signals for DoA

prediction. EEG provides direct insight into brain states, while

other physiological signals provide complementary information.

Yeh et al. (24) developed a portable ECG-monitoring prototype

using Arduino and Raspberry Pi hardware, integrating a ResNet-

based classifier for real-time waveform recognition. The system

allowed remote access to ECG data, offering the potential

for mobile cardiovascular risk monitoring before and during

anesthesia. The SQI-DOANet model designed by Yu et al. (25)

combined EEG signal quality evaluation and deep attention

mechanism to achieve a predictive correlation of up to 0.88 on

the VitalDB dataset, showing the practical application potential

of AI models in complex intraoperative environments. Dussan

et al. (26) and others built an anesthesia depth classification

system based on multimodal signals from EEG, ECG, and NIBP,

integrating central and autonomic nervous features. The neural

network achieved the best classification performance when jointly

using the complexity index of brain waves (CBI) and the heart rate

variability index (CVI).

4.3 Ultrasound-guided regional anesthesia

Regional anesthesia relies on ultrasound guidance technology

to achieve precise positioning to ensure that anesthetic drugs are

accurately injected into specific nerves or tissue areas to achieve

the desired anesthesia effect. Bowness et al. (27) analyzed the

results of 40 ultrasound scans of seven different body areas by

three regional anesthesia experts. They evaluated conventional

ultrasound videos and videos enhanced with AI highlighting and

found from the scoring results that the AI technology performed

well in accurately identifying specific anatomical structures,

achieving an accuracy of 99.7%. Subsequently, the research team

conducted a multicenter external validation of the AI-assisted

platform based on the ScanNav system, focusing on assessing its

clinical applicability in ultrasound-guided regional nerve blocks.

ScanNav is an AI image enhancement device designed to highlight

anatomical structures in real-time B-mode ultrasound images.

The system employs a U-Net based deep learning model that

automatically identifies and labels key anatomical areas. In 720

clinical videos covering 9 block regions, the AI system achieved

an anatomical recognition accuracy of 93.5%. Most clinical experts

believe that the system’s image enhancement feature helps reduce

the risk of nerve damage and block failure. The study integrated

dimensions such as image segmentation performance and expert

evaluation, to reflect strong systematization and scalability (28,

29). Similarly, deep learning models have improved brachial

plexus identification in ultrasound images, achieving a balance

between segmentation accuracy and processing speed (30, 31).

Integration of AI has also been proven to be valuable in challenging

clinical scenarios. Compagnone et al. (32) evaluated a portable,

handheld ultrasound device enhanced with artificial intelligence

(Accuro R©, RivannaMedical, Charlottesville, VA, USA). The system

integrated real-time ultrasound imaging with machine learning

algorithms to automatically identify spinal anatomical landmarks.

This AI-assisted device enabled clinicians to determine the optimal

intervertebral insertion point and estimate the depth to the epidural

space. The study focused on severely obese parturients (BMI= 64.5

kg/m²). Compared with traditional palpation and conventional

ultrasound, the AI-enhanced approach significantly improved the

first-attempt success rate of epidural catheter placement. In further

research, Zhao et al. (33) constructed an artificial neural network

(ANN) based on U-net, which achieved real-time automatic

recognition of key anatomical structures in ultrasound images of

thoracic paravertebral nerve block (TPVB).

4.4 Multiple monitoring and precise
intervention

During gastrointestinal endoscopy, anesthesia is widely used

because it can effectively relieve discomfort and ensure that

the patient remains still, thus improving the success rate.

ENDOANGEL is a computer-aided system that incorporates

deep convolutional neural network technology and works in

conjunction with traditional endoscopic equipment to provide real-

time reminders for endoscopic surgeries. One of its main purposes

is to assist the anesthesiologist in monitoring the patient’s status

more effectively. ENDOANGEL ensures a smooth examination

process by sending reminders to the anesthesiologist about adding

or stopping medications. The application of this technology helps

improve the safety and efficiency of inspections (34). Xu et al. (35)

building on previous work, evaluated the use of ENDOANGLE

for anesthesia quality control in gastroenterology. An algorithm

has been developed designed to continuously identify and analyze

patients’ vital signs from devices equipped with complex sensors

to predict the occurrence of serious complications (36). Lofgren

et al. (37) combined non-invasive urine oxygen monitoring with

traditional preoperative indicators to develop a risk prediction

model for intraoperative AKI. The study integrates real-time

physiological signal collection, feature selection, and dynamic

prediction. This aligns with current trends in anesthesia research,

which emphasize both timeliness and system interoperability.

The integration of nociception monitors can be embedded

within a closed-loop system to optimize the management of

analgesic medications and identify patients more likely to

experience severe pain postoperatively. This promises to promote

more precise and personalized proactive pain intervention
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measures. An increasing number of monitors are being utilized to

quantify patients’ nociceptive responses during the anesthesia

process, thereby providing a more accurate reflection of

intraoperative stimulation. Recent studies have demonstrated

the advantages of multimodal deep learning approaches in

nociception monitoring. For instance, Abdel Deen et al. proposed a

neural network architecture that combines electroencephalography

(EEG), photoplethysmography (PPG), and electrocardiography

(ECG) signals to predict nociceptive states using multilayer

perceptrons (MLP) and long short-term memory (LSTM) models.

Trained on expert-annotated data, their model achieved robust

performance across key surgical events such as intubation,

incision, and extubation, highlighting the value of integrating

multiple physiological signals for enhanced intraoperative

nociception assessment (38).

5 AI and postoperative phase

The postoperative period is a vulnerable period, especially for

the elderly and high-risk patients, during which complications such

as delirium, cardiac events, and deterioration of vital signs may

occur. Early identification and intervention are key to improving

recovery and outcomes. AI offers promising tools for predicting,

detecting, and managing postoperative risks through continuous

monitoring, data-driven risk scoring, and multimodal analysis.

5.1 Predicting postoperative delirium

Postoperative delirium, a transient mental state disturbance

after surgery or medical treatment, is more common in elderly

patients. It is generally considered to be of milder severity

compared to other major postoperative complications (39, 40).

Zhao et al. (41) investigated postoperative delirium (POD) in

elderly patients undergoing hip fracture surgery under spinal or

general anesthesia. They analyzed perioperative features, including

preoperative preparation time, frailty index, and intraoperative

vasopressor use, achieving predictive accuracies of 83.67% to

87.75% using machine learning models trained on electronic

anesthesia records. Röhr et al. (42) has successfully integrated

electroencephalogram (EEG) data into a machine learning

approach to provide a reliable assessment of POD risk. This

multimodal approach substantially improved predictive accuracy

(AUC increased from 0.75 to 0.80), underscoring the value of brain

signal monitoring in real-time POD risk detection, particularly

when stratified by anesthetic technique. Song et al. (43), on the

other hand, emphasized model interpretability. By comparing six

algorithms and applying SHAP analysis, the authors identified

key biochemical markers such as Brain Natriuretic Peptide (BNP),

C-reactive protein(CRP), and lactate dehydrogenase(LDH) as

significant contributors to POD risk. This highlights the role of

systemic inflammation and cardiac biomarkers in the pathogenesis

of delirium, while also supporting clinical transparency in AI-

driven prediction. Unlike prior models focusing primarily on

clinical or physiological data, Wan et al. (44) incorporated

blood-based biomarkers into POD prediction. Using lipid-related

and inflammatory indicators–such as cholesterol, trimethylamine-

N-oxide (TMAO), and IL-6–their model achieved comparable

performance (AUC ∼0.80) to physiology-driven models. The

findings suggest that metabolic and immune pathways may

contribute meaningfully to delirium risk and offer a novel direction

for biomarker-informed prediction.

5.2 Vital sign monitoring

Postoperative deterioration often manifests subtly through
changes in physiological signals before overt clinical symptoms
arise. AI-enhanced monitoring systems, utilizing real-time data
from wearable devices or bedside monitors, enable early detection

of critical events such as hemodynamic instability or cardiac

complications. A machine learning-driven screening tool known as
the Cardiac Comorbidity Risk Score (CCoR) has been developed

to identify patients at elevated risk for major adverse cardiac

events (MACE) within four weeks of hip or knee arthroplasty
(36). This screening tool represents a new advance in the field

of artificial intelligence. Unlike traditional tools such as the

Revised Cardiac Risk Index (RCRI), CCoR requires no additional

testing and relies solely on existing diagnostic codes, achieving an

area under the receiver operator characteristics curve (AUROC)

of 80% in a large validation cohort (>445,000 patients), and

demonstrating superior predictive power across sex, age, and

comorbidity subgroups–even in patients without known RCRI

conditions. In addition to static risk stratification, continuous vital

sign monitoring offers dynamic insight into postoperative risk.

Using wearable technology, Onishchenko et al. (45) collected real-

time physiological data–including heart rate, respiratory rate, and

blood pressure–to predict serious postoperative complications in

high-risk patients. Among various machine learning models tested,

random forest and boosted ensemble methods achieved the best

balance between sensitivity and false positive rates. These findings

underscore the potential of integrating continuousmonitoring with

AI algorithms to support timely clinical intervention and improve

postoperative outcomes. Further expanding the scope of AI-based

perioperative monitoring, Hoshijima et al. (46) applied gradient

boosting models to predict postoperative nausea and vomiting

(PONV) across 33,676 adult surgical cases. Intraoperative total

blood loss emerged as the strongest risk factor, with additional

contributors including female sex, limited fluid infusion, use

of desflurane, and lateral positioning. Gradient boosting was

chosen for its ability to model complex nonlinear relationships.

It also handles heterogeneous perioperative data effectively and

provides high predictive accuracy. The model achieved an AUC

of 0.77, illustrating how machine learning can uncover complex

intraoperative contributors to postoperative complications beyond

hemodynamics alone. Body temperature is a key vital sign that

reflects both physiological homeostasis and potential pathological

changes. In the postoperative period, continuous temperature

monitoring is particularly critical, as new-onset fever is often

the earliest–and sometimes the only–clinical indicator of serious

complications such as infections, thromboembolic events, or drug

reactions (47). The patient’s body temperature is one of the key

vital signs and can accurately reflect the body’s physiological

status and metabolic activities. During the postoperative period,
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continuous monitoring of the patient’s temperature is particularly

important. After surgery, patients may be in a state of physical

and psychological stress, which may lead to fluctuations in body

temperature. Therefore, continuous body temperature monitoring

helps medical staff detect and deal with potential complications

promptly, ensuring a smooth patient recovery process (48).

6 Limitations and challenges

The development of artificial intelligence has attracted

widespread attention and expectations. But sometimes, it also

raises the myth that AI seems to be going to completely replace

the role of the clinician. The concern that AI will replace

clinicians is often overstated. While large models are increasingly

implemented in hospitals, their primary function is to support

clinicians in analysis and decision-making, not to substitute for

clinical diagnosis (49). In current medical practice, AI applications

are mainly concentrated in decision support and simulation. In

anesthesiology, most professionals remain optimistic about AI-

assisted tools and consider their predictive outputs to be a useful

reference (50). In the field of medicine, especially in the critical

field of anesthesia, innovation and technological advancements

are crucial.

While advancing artificial intelligence technologies, researchers

must proceed with caution. It is essential to continuously improve

correction and fine-tuning mechanisms to ensure that task-

specific models remain reliable and secure in broader clinical

use (51). Although AI holds significant promise, its application in

anesthesiology faces several key challenges. One major limitation

is the narrow scope of available data. Many datasets are

restricted to specific surgical procedures or patient subgroups,

limiting the model’s ability to generalize across diverse anesthesia

scenarios. Although AI holds significant promise, its application in

anesthesiology faces several key challenges. One major limitation

is the narrow scope of available data. Many datasets are confined

to specific surgical procedures or patient subgroups, which limits

the model’s ability to generalize across varied clinical scenarios.

For instance, Hoshijima et al. (46) developed a machine learning

model to predict postoperative nausea and vomiting (PONV)

using data from over 33,000 adult patients at a single tertiary-

care hospital. The dataset, although large in scale, was restricted to

adult patients undergoing general anesthesia in a single academic

center in Japan over a 10-year period. Pediatric patients, regional

anesthesia cases, and outpatient procedures were excluded. This

homogeneity in patient characteristics and surgical settings limits

the external validity of the model, especially when applied to more

diverse or high-risk populations. While the model demonstrated

good predictive performance, its applicability to other anesthesia

types, institutions, or more diverse populations remains uncertain.

Since model performance depends heavily on both the volume and

diversity of data, broader access to high-quality and representative

datasets is essential to enhance the robustness and generalizability

of AI applications in anesthesiology. Data heterogeneity is another

concern. Patient information collected across different institutions

often varies in format and quality, and may include considerable

noise. When merging such datasets, data harmonization is

necessary to maintain model accuracy (52).

In addition, anesthesia involves large volumes of sensitive

patient data. Ensuring data security and patient privacy remains

a major challenge (51). There is a need for compliant data

management and transmission frameworks that can safeguard

confidentiality in clinical AI applications. For a long time, artificial

intelligence technology has been widely used in the healthcare

sector. Part of the diagnostic evaluation is to extract patient clinical

information, examination results, and other data from electronic

health records (EHR), and perform model training and analysis.

One of the challenges faced by artificial intelligence technology in

data analysis is privacy leakage. In the healthcare system, EHR data

is private. Even if metadata such as patient information is removed,

more is needed to ensure the full protection of patient privacy.

Especially in complex healthcare environments, public healthcare

databases may be accessed by multiple parties, including hospitals,

insurance companies (53).

7 Advantages and future development
of combining artificial intelligence
with anesthesia

With the continuous emergence of new technologies

and methods, anesthesia is no longer isolated but closely

connected with multiple fields to form a complex and diverse

system. This intersection and integration bring unprecedented

challenges to anesthesia, and also provide more opportunities for

anesthesiologists and researchers to explore and practice. The

research and application of AI in anesthesiology are becoming

more and more extensive, and preliminary results have been

achieved, which are mainly reflected in preoperative anesthesia

management, intraoperative drug delivery, pain management,

and postoperative complication prediction. AI can analyze large

amounts of anesthesia records and clinical data through machine

learning and deep learning algorithms to discover potential

patterns and associations, and help anesthesiologists make more

accurate diagnoses and predictions.

AI technology has significantly advanced the development of

closed-loop anesthesia control systems, improving the stability and

safety of the anesthesia process by continuously monitoring vital

signs and automatically adjusting drug infusion parameters (54).

Beyond operating rooms, office-based anesthesia (OBA) presents

uniquemonitoring challenges due to lower-resource environments.

Addressing this, Wang et al. (55) introduced Anes-Metanet,

combining CNN and LSTM to extract power spectral density

(PSD) features while modeling temporal dependencies. In a small

validation cohort, the model achieved 81.8% accuracy in classifying

three levels of consciousness: awake, semi-awake, and unconscious.

In anesthesiology, from preoperative planning and preoperative

assessment to intraoperative monitoring and postoperative

management, artificial intelligence technology can profoundly

impact all preoperative care phases, improving anesthesia

outcomes, increasing surgical safety, and improving patient

outcomes. The research and application of machine learning in the

anesthesia discipline are becoming more and more extensive, and

initial results have been achieved, mainly in preoperative anesthesia

management, postoperative complication prediction, drug delivery,
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pain management, etc. Artificial intelligence can analyze large

amounts of anesthesia records and clinical data through machine

learning and deep learning algorithms, discover potential patterns

and associations, and help anesthesiologists make more accurate

diagnoses and predictions. We searched the literature at the

intersection of artificial intelligence and anesthesia, intending

to identify technologies in the field of artificial intelligence used

in anesthesia research and their application in clinical practice

in anesthesiology.

Artificial intelligence can analyze large amounts of anesthesia

records and clinical data through machine learning and deep

learning algorithms, discover potential patterns and associations,

and help anesthesiologists make more accurate diagnoses

and predictions. Artificial intelligence can control anesthesia

equipment, adjust the anesthetic dose, and monitor the patient’s

indicators for improved accuracy and safety. Overall, the

application of artificial intelligence in the field of anesthesia has

broad prospects and is expected to bring a more efficient, safe,

and personalized anesthesia experience to anesthesiologists and

patients. However, with the development of artificial intelligence, a

series of ethics, privacy, and security issues also need to be solved

to ensure that the application of artificial intelligence can genuinely

benefit human health.

8 Conclusion

With the vigorous development of artificial intelligence

technologies such as deep learning and multi-modal analysis, the

application of artificial intelligence technology in perioperative

medicine has been continuously promoted. In the field of

anesthesia, although the application of artificial intelligence is

still in its infancy, a lot of progress has been made in recent

years. Shortly, the combination of anesthesiology and artificial

intelligence is bound to bring about major changes in perioperative

medicine, and the work of anesthesiologists may change

dramatically. More accurate, safer, and more effective anesthesia

technology is worth looking forward to, bringing more efficient,

comfortable, and safe medical effects and guarantees to patients.
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