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Introduction: Breast cancer (BC) and diabetes are multifaceted diseases 
with interconnected molecular mechanisms that are not yet fully elucidated. 
These diseases share common risk factors, biological pathways, and treatment 
outcomes.

Methods: This study utilizes an integrative computational approach to investigate 
the interplay between BC and diabetes in African American (AA) and European 
American (EA) cohorts. It employs transcriptomic and exomic analyses to 
identify shared pathways and potential therapeutic targets.

Results: The pooled cohort of differential expression analysis identified 2,815 
genes differentially expressed in BC patients with diabetes compared to those 
without diabetes, including 1824 upregulated and 990 downregulated genes. 
We reanalyzed transcriptomic data by stratifying BC patients with and without 
diabetes into two cohorts, identifying 3,245 DEGs in AA and 3,208 DEGs in 
EA, with 786 genes commonly altered between both groups. Whole-exome 
sequencing (WES) of 23 BC patients with diabetes revealed 899 variants across 
208 unique genes, predominantly missense mutations. Among these, nine key 
genes were prioritized, with TNFRSF1B (L264P) and PDPN (A105G) identified as 
the most deleterious variants. Functional enrichment analyses highlighted the 
significant involvement of pathways related to extracellular matrix organization, 
angiogenesis, immune regulation, and signaling processes critical to cancer 
progression and metabolic dysfunction. The TNF pathway emerged as a central 
link connecting chronic inflammation, insulin resistance, and tumor growth. 
TNF-mediated mechanisms, including NF-κB activation, oxidative stress, and 
epithelial-to-mesenchymal transition (EMT), were found to drive both diseases, 
promoting tumorigenesis, immune evasion, and metabolic dysregulation.

Conclusion: This study provides critical molecular insights into the shared 
mechanisms of BC and diabetes, identifying the TNF pathway as a key therapeutic 
target to improve outcomes for patients with these interconnected conditions.
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1 Introduction

Breast cancer (BC) is a multifaceted disease characterized by a 
wide range of genetic, molecular, and phenotypic variations (1). It 
remains one of the most prevalent malignancies among women 
worldwide, with significant heterogeneity in its clinical presentation, 
prognosis, and therapeutic response (2). Concurrently, diabetes, a 
chronic metabolic disorder characterized by hyperglycemia and 
insulin resistance, has been increasingly recognized as a comorbidity 
that influences cancer risk, progression, and treatment outcomes (3, 
4). The intersection of BC and diabetes presents a unique and 
challenging clinical scenario that warrants a deeper understanding of 
the underlying molecular mechanisms and potential biomarkers (5). 
Diabetes has been implicated in altering the tumor microenvironment, 
enhancing chronic inflammation, promoting oxidative stress, and 
disrupting metabolic pathways, all of which can contribute to cancer 
initiation and progression (6, 7). The coexistence of diabetes with BC 
introduces additional layers of complexity, influencing tumor biology, 
therapeutic efficacy, and patient survival (3). Patients with diabetes are 
often associated with poor outcomes, including higher recurrence 
rates and reduced overall survival, potentially due to delayed 
diagnosis, altered pharmacokinetics of anticancer drugs, and the 
impact of hyperglycemia on cancer cell metabolism (8).

Advancements in high-throughput technologies, such as 
transcriptomics and exome sequencing, have significantly 
enhanced our ability to understand the molecular landscape of 
diseases (9). Exome sequencing facilitates the identification of 
somatic mutations, copy number variations, and other genomic 

alterations that drive cancer development (10). Conversely, 
transcriptomics provides insights into gene expression patterns, 
revealing dysregulated pathways and potential therapeutic targets 
(11, 12). Integrating transcriptomics and exome data has proven 
to be a powerful approach to uncover genetic and transcriptomic 
alterations, providing a more comprehensive understanding of the 
molecular mechanisms driving conditions such as cancer and 
other diseases. This integration has the potential to identify novel 
biomarkers and therapeutic targets. Biomarkers are invaluable for 
stratifying patients, predicting therapeutic responses, and 
monitoring disease progression (13–15). Few studies have 
explored the diabetes-associated gene expression profiles in BC, 
revealing the unique signatures that could be  targeted 
therapeutically or used as diagnostic tools (16–19). Understanding 
the molecular interplay between BC and diabetes can pave the way 
for personalized medicine approaches, ensuring more effective 
and tailored treatments.

In this study, we aim to explore the biomarker landscape in BC 
with diabetes (African American (AA) and European American 
(EA) cohorts) through a comprehensive analysis of transcriptomics 
and exome data. By examining the transcriptomic and genomic 
profiles specific to this cohort, we seek to identify key molecular 
players and pathways that underlie the interaction between these 
two conditions. Our findings could provide insights into the 
mechanistic basis of BC in diabetic patients, highlight potential 
therapeutic vulnerabilities, and contribute to the development of 
precision oncology strategies. The detailed workflow is illustrated in 
Figure 1.

FIGURE 1

Integration of transcriptomics and exome data analysis. The figure illustrates the workflow and outcomes of integrating transcriptomics and exome 
data analysis. Transcriptomics data provides insights into differential gene expression across conditions, while exome data reveals coding region 
mutations. The integration identifies overlapping features, including genes with significant expression changes and mutations. This combined approach 
highlights key biomarkers, potential driver genes, and pathways associated with the biological process of interest.
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2 Materials and methods

2.1 Transcriptomics data analysis

All data used in this study were obtained from the NCBI 
database. We acquired the gene expression profiling dataset produced 
through high-throughput sequencing (GSE202922) (16) using 
Illumina HiSeq 3,000 from the publicly available GEO database (20). 
The dataset has a total of 73 samples, and a further 66 samples have 
raw counts. A total of 66 samples were included in this study, 
comprising 32 diabetic and 34 non-diabetic cases. The detailed 
metadata information, along with transcriptomics data of the 
66 samples, were described in Supplementary Table  1 and 
Supplementary Figure  1A. We  also conducted race-specific 
transcriptomic analyses using datasets from African American (AA) 
and European American (EA) cohorts. The metadata for these 
cohorts is provided in Supplementary Table 2. GEO2R is a web-based 
analysis tool that enables user to compare multiple sample groups 
within a GEO Series to find deregulated genes under certain 
experimental conditions (21). Moreover, differentially expressed 
genes (DEGs) were detected using the limma R package (22), 
applying a threshold of |log2FoldChange| > = 0.5, adj p < =0.05, and 
p < = 0.05. All statistical analyses and data visualization were carried 
out using R/Bioconductor packages. Statistical plots such as boxplot 
and UMAP plot were performed and analyzed.

2.2 Exome data analysis

The study also utilized Whole Exome Sequencing (WES) data 
with ID: PRJNA840859 comprising 32 individuals with BC-associated 
diabetes (16). Supplementary Figure 1B provides detailed information 
on the selected exome data. After verifying the availability of exome 
data, 23 sample reads were retrieved and analyzed. These samples were 
subjected to exome sequence analysis. Sequencing was performed on 
Illumina NovaSeq 6,000 systems, generating paired-end reads. A shell 
script was employed to download the sequencing reads from the ENA 
database (23). The exome sequencing pipeline involves a 
comprehensive workflow for processing, analyzing, and interpreting 
genetic data to ensure high accuracy and reliability in identifying 
variants. The process begins with quality control using FastQC (24), 
which evaluates critical metrics such as read quality scores, GC 
content, and adapter contamination. This step helps to identify 
potential issues in the raw FASTQ files, ensuring only high-quality 
reads proceed to the next stage. Tools like Trimmomatic remove 
low-quality bases and adapter sequences in the read preprocessing 
step. Reads with quality scores below a threshold (commonly Q30) are 
trimmed or discarded, producing a clean dataset suitable for 
downstream analysis. Next, the high-quality reads are aligned to the 
human reference genome GRCh38 (25) using the BWA-MEM 
algorithm (26), a widely used tool for efficient and accurate alignment 
of short-read sequences. This step generates SAM files containing 
mapped reads and their corresponding positions on the genome. 
These SAM files are converted into BAM format using SAMtools, 
sorted by coordinate order, and indexed to enable efficient querying 
and visualization in downstream applications. The variant calling step 
identifies genetic variants such as SNPs and indels (27). BCFtools 
generate a pileup of aligned reads, and variants are called highly 

confidently (28). The resulting data is output in the Variant Call 
Format (VCF), which contains detailed information about each 
identified variant.

Once variants are called, they undergo filtering and annotation. 
Each sample VCF was merged using the “VCFmerge tool” and the 
Galaxy tool. The Ensembl Variant Effect Predictor (VEP) was used to 
annotate the functional consequences of genes (29). Filtering ensures 
that only high-confidence variants are retained by removing 
low-quality or potentially false-positive calls. Tools like the BCFtools 
filter allow for applying stringent criteria, such as minimum quality 
scores or read depth thresholds. Annotating the filtered variants with 
databases such as dbSNP and ClinVar provides functional insights, 
including potential pathogenicity, population frequency, and relevance 
to known diseases. The missense variants were retrieved and further 
used for functional analysis.

2.3 Functional enrichment analysis

Functional analysis of the differentially expressed genes (DEGs) 
identified from the transcriptomic analysis was conducted using 
EnrichR (30). Additionally, common genes identified from both 
transcriptomic and exome analyses were analyzed. Functional 
enrichment analysis included Gene Ontology categories: Biological 
Process (GO-BP), Cellular Component (GO-CC), and Molecular 
Function (GO-MF), as well as pathway analyses using KEGG and 
Reactome. Protein-coding genes with a p-value < 0.05 were used as 
the background gene set.

2.4 Identification of potentially deleterious 
variants

Genes featuring missense variants from a curated in-house list of 
cancer-associated genes were subsequently examined for functional 
effects using the PredictSNP web tool (31). This examination utilized 
six well-known predictive tools, MAPP, PhD-SNP, PolyPhen-1, 
PolyPhen-2, SIFT, and SNAP, to detect potentially harmful variants 
(missense).

MAPP demonstrated that the likelihood of disease or cancer risk 
is closely linked to breaches of physicochemical limitations due to 
amino acid variations (32). PhD-SNP, based on support vector 
machines (SVMs), was used to determine whether a given point 
mutation was a neutral polymorphism or associated with genetic 
disorders (33). PolyPhen-1 analyzed the impact of missense variants 
on protein structure and function (34). In contrast, PolyPhen-2 
incorporated both sequence- and structure-based features, utilizing a 
Naïve Bayesian classifier to predict the consequences of amino acid 
substitutions. Variants identified as “probably damaging” or “possibly 
damaging” (scores ≥0.5) were categorized as harmful, whereas 
“benign” variants (scores <0.5) were regarded as acceptable. Scores 
nearer to 1.0 were more prone to be damaging (35).

SIFT predicted the potential harm of variants using a normalized 
probability score, where scores <0.05 were deemed harmful and scores 
≥0.05 were considered neutral. The SIFT score assessed the effect of 
amino acid substitutions on protein function (36). SNAP was used to 
evaluate the functional impact of missense variants (37). Protein 
stability alterations due to single-point variants were forecasted using 
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I-Mutant 2.0, which categorized variants into two groups: reduced 
stability (<0 kcal/mol -decrease) and enhanced stability (>0 kcal/
mol – increase) (38).

The evolutionary conservation of amino acid positions for the 
most deleterious variants were assessed using the ConSurf online tool. 
Conservation scores ranges from 1 (most variable positions) to 9 
(most conserved positions), providing insights into the variants’ 
functional significance (39).

3 Results

3.1 Transcriptomics and functional analysis 
of pooled cohort

To identify differentially expressed genes (DEGs) between BC 
patients with and without diabetes, we utilized normalized expression 
data from the GEO database. The GEO2R tool, based on the limma 
package, was employed for the analysis. 2,814 DEGs were analyzed 
across 66 samples, including BC without and BC with diabetes 
samples. A boxplot is a graphical representation of the distribution of 
a dataset that shows its central tendency and variability. It provides a 
concise summary of the data’s statistical properties across samples. The 
boxplot of each group comparison is mentioned in the Figure 2A. A 

UMAP plot is a dimensionality reduction technique that is particularly 
useful for visualizing high-dimensional data, such as gene expression 
values plotted in Figure 2B. The comparison revealed 2,814 DEGs 
comprising 1824 upregulated and 990 downregulated genes (p-
value <= 0.05, adj p-value <= 0.05, |log2 fold change| > =0.5). The 
DEGs were visualized using a volcano plot (Figure 2C), highlighting 
significant genes with biological relevance. The detailed results of 
DEGs are mentioned in Supplementary Table  3. The heatmap 
illustrates the expression levels of selected genes across 66 samples, 
with rows representing genes and columns representing samples, as 
mentioned in Figure 2D.

The functional enrichment analysis of 2,814 DEGs was performed 
using EnrichR. The background genes are protein-coding genes with 
p-value<=0.05. The functional terms are GO (Gene ontology) terms 
and KEGG pathways. Significant enrichment is seen in processes such 
as extracellular matrix organization, regulation of cell migration, 
angiogenesis, and circulatory system development. These are key 
processes in tissue remodeling, cancer metastasis, and vascular 
development. Highlighted components include collagen-containing 
extracellular matrix, cell junctions, plasma membrane raft, and 
sarcolemma. These components are critical for cellular integrity, 
signaling, and intercellular communication. Functions such as 
tyrosine kinase activity, platelet-derived growth factor binding, and 
kinase inhibitor activity dominate. These molecular functions are 

FIGURE 2

Statistical plots of transcriptomics data. (A) The boxplot represents the distribution of normalized transcriptomics data across all samples. Each box 
corresponds to an individual sample, with the central line representing the median expression level. (B) The UMAP plot illustrates the clustering of 
transcriptomics data, with each point representing an individual sample. Samples are color-coded based on their respective groups (BC with diabetes 
vs. BC without diabetes). This visualization highlights the underlying structure and relationships in the dataset, revealing group-specific patterns. The 
“YES” label represents the BC with diabetes, and the “NO” label represents the BC without diabetes. The color-coded representation of the “YES” label is 
green, and the “NO” label is purple. (C) The volcano plot shows the relationship between statistical significance for all genes. Significant upregulated 
and downregulated genes are highlighted in distinct colors with respective thresholds. This visualization identifies key differentially expressed genes. 
The red denotes the upregulated genes, and the blue indicates the down-regulated genes. (D) The heatmap visualizes the expression levels of selected 
genes across 66 samples. Rows represent genes, and columns represent samples.
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often associated with signaling pathways and therapeutic targets in 
cancer and other diseases. Enriched pathways include systemic lupus 
erythematosus, cell cycle regulation, ECM-receptor interaction, and 
PI3K-Akt signaling. These pathways are relevant to immune disorders, 
cancer progression, and extracellular matrix interactions. The results 
suggest an association with processes and pathways related to cancer 
progression, immune regulation, and extracellular matrix dynamics. 
The length of the bar indicates the top function in the barplot. The 
detailed functional results are mentioned in Figure 3.

3.2 Transcriptomics and functional analysis 
of AA and EA cohorts

To identify DEGs between BC patients with and without diabetes, 
we  analyzed normalized expression data from the GEO database 
separately for African American (AA) and European American (EA) 
cohorts. The analysis was performed using the GEO2R tool, which is 
based on the limma package. In the African American (AA) cohort, a 
total of 3,245 differentially expressed genes (DEGs) were identified 
from 57 samples, including 1,922 upregulated and 1,323 
downregulated genes, based on thresholds of p-value ≤ 0.05, adjusted 
p-value ≤ 0.05, and |log₂ fold change| ≥ 0.5. Similarly, in the European 
American (EA) cohort, 3,208 DEGs were detected across 17 samples, 
with 1,640 genes upregulated and 1,568 downregulated using the same 
statistical criteria. Notably, 786 DEGs were found to be shared between 
the AA and EA cohorts. The statistical plots of boxplot and UMAP 
were performed and mentioned in Supplementary Figure  2. The 
detailed information of DEGs of both the cohorts were mentioned in 
the Supplementary Tables 4, 5.

The functional enrichment analysis of each cohort was performed. 
The functional enrichment analysis of 3,245 (AA cohort) and 3,208 
(EA cohort) DEGs was performed using EnrichR. The background 
genes are protein-coding genes with p-value<=0.05. Some of the 
KEGG’s significant functions are cell cycle, ECM receptor interactions, 
PI3K-Akt signaling, and AGE-RAGE signaling pathway in diabetic 
complications, and these functions were specific to the AA cohort. 
Some of the important functions in the EA cohort are Oxidative 
phosphorylation and Diabetic cardiomyopathy. The detailed 
information on these enrichment analyses is mentioned in 
Supplementary Figures 3, 4.

The Venn diagram illustrates the overlap in transcriptomic data 
between the African American (AA) and European American (EA) 
cohorts, revealing 786 genes common to both groups 
(Supplementary Figure  5A). Further functional analysis of 
GO-BP,GO-CC,GO-MF and KEGG pathways were performed on 
common genes. Some of the important functions are Notch signaling 
pathway and Hippo signaling pathway. Both these functions were 
related to BC and diabetes. The detailed functional enrichment 
analysis were mentioned in the Supplementary Figures 5B–E.

3.3 Exome data analysis

We retrieved WES datasets for BC with diabetes from the NCBI 
SRA database. The tumor data of BC with diabetes (n = 23) were only 
taken for further analysis. Each sample was processed using a 
computational pipeline tailored to laboratory protocols. Sequence 
quality was assessed using the FastQC tool. High-quality data for 
analysis was ensured by trimming low-quality reads, removing 

FIGURE 3

Functional enrichment analysis (transcriptomics). The figure showcases the functional enrichment analysis of differentially expressed genes (DEGs) 
derived from transcriptomics data. (A) GO-BP, (B) GO-CC, (C) GO-MF, and (D) KEGG pathways. Bar sizes indicate statistical significance (adjusted p-
values) and gene ratios, providing insights into DEGs’ molecular and functional context.
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adapters, and further validating the sequences’ base quality. Following 
the evaluation of read quality, the final reads were mapped to the 
human reference genome GRCh38.p13 (hg38) utilizing the BWA 
aligner with default settings. Every dataset attained a total alignment 
rate surpassing 85%. SAM tools were employed to process and 
enhance the sequenced files further in the “SAM” format. The SAM 
files were first transformed into BAM format by utilizing the “samtools 
view” command. This transformation enabled later processes, 
including file sorting, indexing, and arranging mapped reads for 
further analysis. Prior to indexing, samtools organized the aligned 
reads and clustered them according to particular genomic areas. In 
conclusion, base calls from the mapped reads aligned to the reference 
sequence were compiled using the “samtools mpileup” command.

After processing the output from “mpileup” with BCFtools, SNPs 
in relation to the reference genome were identified and interpreted as 
variations. The VCF and its binary counterpart, BCF, were used in the 
analysis to handle the data. The resulting output for each dataset was 
provided in a VCF format, containing detailed information about 
variant positions, types, and quality. Each VCF file was annotated 
using the Ensembl VEP database (release 113) which provided a 
thorough analysis of the variants detected in each sample. All 
identified variants are single-nucleotide (SNVs), accounting for 100% 
of the dataset. There are two types of variants: non-coding variants 
and coding variants. The non-coding variants constitute 56.9% of the 
total, including regions like upstream, downstream, and intronic 
variants. The coding variants represent 43.1%, further categorized into 
missense variants 96%, synonymous variants 3%, stop-gained 1%, and 
no start-lost variants. The results are depicted in Figure 4A. Among 

the 3,238 observed missense variants in the VCF file, filtered 899 
missense variants were chosen for further analysis (no novel variants 
were detected) (Figure 4B). After removing duplicate genes in the 298 
overlapped genes, 208 unique genes were finalized for further analysis. 
The detailed results of missense variants are mentioned in 
Supplementary Table 6. The distribution of 208 genes with respective 
metadata is depicted in Figure 5.

3.4 Identification of shared genes and their 
respective functional analysis

The Venn diagram illustrates the overlap between transcriptomic 
and exomic data. A total of 2,804 unique genes were identified only in 
transcriptomic analysis. One hundred ninety-seven unique genes are 
found exclusively in the exomic data. Eleven genes are shared between 
the datasets, representing key potentially important genes across 
transcriptional and mutational levels. The two genes with no variations 
were excluded from the analysis. The nine genes comprises six 
upregulated genes (SKI, TNFRSF1B, PDPN, SLC25A34, EPHA2, and 
IFFO2) and three down-regulated genes (ARHGEF16, FBXO6, and 
PADI2). The results of overlap genes are mentioned in 
Figure  6A. We  compared the selected genes across two different 
cohorts AA and EA populations. Four genes such as SKI, TNFRSF1B, 
SLC25A34, and EPHA2, were present in both cohorts.

The functional analysis of nine genes was performed and analyzed, 
including the functional categories such as GO-BP, GO-CC, GO-MF, 
and the Reactome pathway. The GO-BP enriched terms include 

FIGURE 4

Exome data analysis. Exome data analysis was conducted on tumor samples (n = 23) from breast cancer patients with diabetes. Variants were 
annotated using the VEP tool. (A) A pie chart was generated to classify coding and non-coding variants. (B) Among the filtered coding variants, 96% 
were identified as missense variants. A total of 208 missense variants, derived from all 23 samples, were selected for further analysis.
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FIGURE 5

Distribution of variants. This figure illustrates the distribution of genetic variants observed in 23 samples, stratified by metadata variables such as age, 
race, ER status, diabetes type, and diabetes info. Each sample is represented as a distinct bar or point, categorized by metadata groups.

FIGURE 6

Overlapping genes and functional analysis. This figure shows the overlapping genes identified through integrative analysis of exome sequencing and 
transcriptomics data. The shared genes represent a subset with potential biological functions. (A) Eleven genes overlapped the exome and 
transcriptomics data. The functional analysis of common genes was performed. (B) GO-BP, (C) GO-CC, and (D) GO-MF. (E) Reactome pathways.
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protein  localization processes and synaptic pathways, reflecting 
cellular organization and signaling roles. The GO-CC, the enriched 
components, such as synaptic and endosomal compartments, 
highlight cellular compartmentalization for signaling and transport. 
The GO-MF of enriched functions includes ubiquitin-protein ligase 
binding, TNF activity, chemokine activity, and cadherin binding, 
which are crucial for protein regulation and cellular interactions. The 
Reactome pathways enriched are RHOG GTPase cycle, TNFs Bind 
their physiological receptors. The other pathways include EPHA-
mediated growth cone collapse and signaling pathways. The functional 
results are mentioned in the Figures  6B–E. These variations were 
taken for further analysis.

3.5 Identification of potential variants

The analysis involved nine genes, focusing on identifying the most 
deleterious variants using a comprehensive suite of online prediction 
tools. These tools included PredictSNP, MAPP, PhD-SNP, PolyPhen-1, 
PolyPhen-2, SIFT, SNAP, and PANTHER, each offering distinct 
methodologies for assessing variant pathogenicity. The prediction 
results provided detailed insights into the potential impact of these 
variants on protein function and structure. A summary of the findings, 
highlighting the pathogenicity scores from each tool for the identified 
variants, is presented in Table 1. This table serves as a consolidated 
resource, showcasing the comparative outcomes from all tools, thus 
facilitating an in-depth evaluation of the most deleterious genetic 
changes. Among these nine genes, the TNFRSF1B (L264P) and PDPN 
(A105G) were the top 2 variants predicted by the above tools.

Variants classified as neutral were excluded from stability analysis 
using I-Mutant 2.0. analysis. Among these nine gene variants, the 
results revealed distinct patterns of stability changes. Three gene 
variants exhibited an increase in protein stability upon mutation. This 
indicates that these mutations potentially enhance the structural 
integrity or thermodynamic stability of the proteins, which could 
impact their functional roles positively or negatively, depending on 
the biological context. The remaining six gene variants showed a 
decrease in protein stability upon mutation. A reduction in stability 
suggests that these mutations may disrupt the protein’s structural 
conformation, potentially leading to misfolding, aggregation, or loss 
of function (38). Such destabilizing mutations could contribute to 
disease pathogenesis or altered protein activity. The results are 
mentioned in Table 2. Among these mutations, the TNFRSF1B variant 
(L264P) is the most deleterious variant confirmed by all computational 
tools. ConSurf is a tool that analyses the evolutionary conservation of 
amino acid positions in protein sequences. The variant (TNFRSF1B-
L264P) is categorized as a highly conserved position with a significant 
score (score range of 9), it may suggest a deleterious impact. The 
ConSurf results are mentioned in Figure 7.

4 Discussion

Integrating transcriptomics and exomic analyses combines the 
strengths of both methods to achieve a comprehensive understanding 
of genomic and transcriptomic changes in biological systems (40, 41). 
This integration represents a powerful approach to elucidating the 
molecular mechanisms underlying complex diseases, facilitating the 

identification of robust biomarkers and therapeutic targets (42). 
Several studies have successfully integrated transcriptomics and 
exomic data to provide deeper insights into biological mechanisms, 
disease pathogenesis, and therapeutic strategies (43–47). The etiology 
of BC associated with diabetes remains poorly understood. We aimed 
to identify differentially expressed genes (DEGs) between BC patients 
without diabetes and those with diabetes. Our analysis included 66 
samples, comparing BC without diabetes to BC with diabetes, and 
identified 2,815 DEGs, comprising 1,824 upregulated and 990 
downregulated genes with statistical significance. This integrative 
analysis provides insights into the gene expression changes associated 
with diabetes in BC patients, with visualizations effectively 
summarizing statistical properties, significant DEGs, and their 
expression patterns.

Functional enrichment analysis of the 2,814 DEGs was performed 
using EnrichR, with protein-coding genes as the background. The 
study focused on GO terms and KEGG pathways, revealing significant 
enrichment in processes and pathways related to cancer progression, 
immune regulation, and extracellular matrix (ECM) dynamics. 
Notable enrichment was observed in processes such as extracellular 
matrix organization, regulation of cell migration, angiogenesis, and 
circulatory system development. These processes are crucial for tissue 
remodeling, cancer metastasis, and vascular development. Key 
components highlighted include collagen-containing extracellular 
matrix, cell junctions, plasma membrane rafts, and sarcolemma, 
which are essential for cellular integrity, signaling, and intercellular 
communication. Functions like tyrosine kinase activity, platelet-
derived growth factor binding, and kinase inhibitor activity were 
dominant, indicating relevance to signaling pathways and therapeutic 
targets. The enrichment analysis underscores the involvement of key 
processes, components, and pathways in cancer progression, immune 
system regulation, and extracellular matrix interactions, offering 
potential insights into disease mechanisms and therapeutic targets. 
These processes are fundamental biological functions and pathways 
in BC and diabetes, as reported in several studies (48–54).

To identify DEGs between BC patients with and without diabetes, 
normalized expression data from the GEO database were analyzed 
separately for AA and EA cohorts. In the AA cohort, 3,245 DEGs were 
identified from 57 samples, including 1,922 upregulated and 1,323 
downregulated genes, while in the EA cohort, 3,208 DEGs were 
detected across 17 samples, with 1,640 upregulated and 1,568 
downregulated genes. A total of 786 DEGs were found to be common 
between the two cohorts. Key KEGG pathways identified in the AA 
cohort included cell cycle, ECM-receptor interaction, PI3K-Akt 
signaling, and AGE-RAGE signaling in diabetic complications. In 
contrast, significant pathways in the EA cohort included oxidative 
phosphorylation and diabetic cardiomyopathy. A Venn diagram 
illustrating the overlap between AA and EA transcriptomic profiles 
revealed 786 shared genes. Some of the key KEGG pathways, such as 
Notch signaling and Hippo signaling, both of which are relevant to 
breast cancer and diabetes (55–58).

The study analyzed WES data from 23 BC patients with diabetes, 
sourced from the NCBI SRA database, using a customized 
computational pipeline. Annotation via the Ensembl VEP database 
classified these variants into non-coding (56.9%) and coding (43.1%). 
Among coding variants, 96% were missense, 3% synonymous, and 1% 
stop-gained, with no start-lost variants detected. A total of 899 
variants were analyzed, with no novel variants identified. After 
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TABLE 1 Prediction of deleterious variants of common genes by different tools.

Protein Uniport 
ID

Amino_
acid_

change

Existing_
variation

PredictSNP 
prediction

MAPP 
prediction

PhD-SNP 
prediction

PolyPhen-1 
prediction

PolyPhen-2 
prediction

SIFT 
prediction

SNAP 
prediction

PANTHER 
prediction

SKI P12755 A62G rs28384811 Neutral Neutral Neutral Neutral Deleterious Deleterious Neutral Unknown

SKI P12755 E491D rs1266460001 Neutral Neutral Neutral Neutral Deleterious Neutral Neutral Neutral

TNFRSF1B P20333 M196R rs1061622 Neutral Deleterious Neutral Neutral Neutral Neutral Neutral Neutral

TNFRSF1B P20333 E232K rs5746026 Neutral Deleterious Neutral Neutral Neutral Neutral Neutral Neutral

TNFRSF1B* P20333 L264P rs2229700 Deleterious Deleterious Deleterious Deleterious Neutral Deleterious Deleterious Deleterious

PDPN Q86YL7 M43V rs141726617 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral

PDPN* Q86YL7 A105G rs2486188 Neutral Deleterious Neutral Deleterious Deleterious Neutral Neutral Neutral

PDPN Q86YL7 A147G rs2486188 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral

SLC25A34 Q6PIV7 I215M rs62621224 Neutral Deleterious Deleterious Neutral Neutral Neutral Neutral Neutral

EPHA2 P29317 V747I rs145592908 Neutral Neutral Deleterious Neutral Deleterious Neutral Neutral Unknown

EPHA2 P29317 M631T rs34021505 Neutral Neutral Neutral Deleterious Neutral Neutral Neutral Neutral

EPHA2 P29317 V541M rs61731097 Neutral Neutral Neutral Neutral Neutral Deleterious Neutral Neutral

EPHA2 P29317 G391R rs34192549 Neutral Na Neutral Deleterious Neutral Deleterious Neutral Neutral

EPHA2 P29317 D232G rs114498261 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral

IFFO2 Q5TF58 V352I rs6675316 Neutral Neutral Neutral Neutral Deleterious Neutral Neutral Neutral

ARHGEF16 Q5VV41 V137M rs3806164 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Deleterious

ARHGEF16 Q5VV41 H370Y rs2185639 Neutral Neutral Deleterious Neutral Neutral Neutral Neutral Deleterious

FBXO6 Q9NRD1 R60Q rs3125818 Neutral Neutral Neutral Neutral Deleterious Neutral Neutral Neutral

FBXO6 Q9NRD1 V72M rs766167101 Neutral Neutral Neutral Neutral Neutral Neutral Neutral Unknown

FBXO6 Q9NRD1 V290I rs140436527 Neutral Na Neutral Neutral Neutral Neutral Neutral Unknown

PADI2 Q9Y2J8 Y275H NA Neutral Neutral Neutral Deleterious Deleterious Neutral Neutral Neutral

PADI2 Q9Y2J8 D259N rs150731573 Neutral Neutral Deleterious Neutral Neutral Deleterious Neutral Neutral

* Represents the most deleterious variants from all the tools.
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removing duplicates, these variants spanned 298 genes, which were 
reduced to 208 unique genes. A Venn diagram illustrated the overlap 
between transcriptomic and exomic datasets, identifying 2,804 genes 
unique to transcriptomics, 197 genes exclusive to exomics, and 11 

common genes (Figure  6A). Two genes without mutations were 
excluded, leaving nine key genes: SKI (59, 60), TNFRSF1B (61, 62), 
PDPN (62, 63), SLC25A34 (64), EPHA2 (65, 66), IFFO2 (67, 68), 
ARHGEF16 (69, 70), FBXO6 (71, 72), and PADI2 (73, 74) for further 

TABLE 2 Prediction of protein stability using I-Mutant 2.0.

Protein Uniport ID Amino_acid_
change

Existing_
variation

Stability RI DDG_value 
(kcal/mol)

SKI P12755 A62G rs28384811 Decrease 5 −0.28

SKI P12755 E491D rs1266460001 Increase 6 0.04

TNFRSF1B P20333 M196R rs1061622 Decrease 7 −1.07

TNFRSF1B P20333 L264P rs2229700 Decrease 4 −2.29

PDPN Q86YL7 A105G rs2486188 Decrease 7 −1.68

SLC25A34 Q6PIV7 I215M rs62621224 Decrease 7 −1.91

EPHA2 P29317 V747I rs145592908 Decrease 7 −0.57

EPHA2 P29317 M631T rs34021505 Increase 1 0.1

EPHA2 P29317 D232G rs114498261 Decrease 3 −0.9

IFFO2 Q5TF58 V352I rs6675316 Decrease 8 −1.04

ARHGEF16 Q5VV41 V137M rs3806164 Decrease 7 −2.43

ARHGEF16 Q5VV41 H370Y rs2185639 Increase 4 2.02

FBXO6 Q9NRD1 R60Q rs3125818 Decrease 8 −0.94

PADI2 Q9Y2J8 Y275H NA Decrease 6 −0.62

PADI2 Q9Y2J8 D259N rs150731573 Decrease 0 −0.56

FIGURE 7

ConSurf analysis of potential deleterious variant (TNFRSF1B-L264P). This figure presents the results of a ConSurf analysis, highlighting the evolutionary 
conservation of amino acid residues in the TNFRSF1B (L264P) protein. Residues are color-coded based on their conservation scores, ranging from 
highly conserved (dark shades) to variable (light shades).
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analysis. Among these, six were upregulated, and three were 
downregulated. These genes play significant roles in both diabetes and 
BC. We analyzed gene expression across two cohorts—AA and EA 
populations and mapped these four genes (SKI, TNFRSF1B, 
SLC25A34, and EPHA2) that were consistently present in both groups.

Functional analysis of these nine genes revealed enriched terms 
across GO categories and Reactome pathways. GO-BP terms included 
processes like protein localization and synaptic pathways. GO-CC 
analysis highlighted synaptic and endosomal compartments, 
indicating roles in cellular organization and signaling. GO-MF terms 
included ubiquitin-protein ligase binding, TNF activity, chemokine 
activity, and cadherin binding, essential for protein regulation and 
interactions. These biological functions were enriched in BC and 
diabetes in other studies (75–79). Reactome pathways featured RHOG 
GTPase cycle, TNF-receptor binding, EPHA-mediated growth cone 
collapse, and other signaling pathways. Among these, the TNF 
pathway is significant in connecting BC and diabetes (16, 80, 81). The 
analysis focused on identifying the most deleterious variants using a 
comprehensive suite of online prediction tools. Among the nine genes 
analyzed, TNFRSF1B (L264P) and PDPN (A105G) were identified as 
the top two variants predicted to be most deleterious. These mutations 
remain poorly characterized and have not been extensively studied. 
TNFRSF1B (also known as TNFR2), a receptor for the 
pro-inflammatory cytokine TNF-α, is primarily expressed in immune 
cells, endothelial cells, and certain tumor cells, playing a pivotal role 
in immune regulation, inflammation, and cell survival. As chronic 
inflammation is a common feature of both BC and diabetes, 
TNFRSF1B may represent a molecular link between these diseases. It 
contributes to shared inflammatory pathways by promoting a 
pro-inflammatory microenvironment, and the presence of missense 
mutations in TNFRSF1B among BC patients with diabetes may 
exacerbate both tumor progression and metabolic dysfunction. Given 
its involvement in both cancer and metabolic disease, TNFRSF1B 
holds potential as a biomarker for identifying at-risk BC patients with 
diabetes and guiding personalized treatment strategies. Moreover, 
targeting TNFRSF1B signaling such as through TNF-α inhibitors 
could offer therapeutic benefits by mitigating inflammation and tumor 
development. Understanding genetic variations in TNFRSF1B may 
also inform precision medicine approaches that address the dual 
challenges of cancer and metabolic dysregulation (5, 16, 82–84).

TNF pathway plays a crucial role in linking chronic inflammation, 
metabolic dysfunction, and cancer progression, providing an everyday 
mechanistic basis for its involvement in diabetes and BC. TNF, 
produced by adipocytes and macrophages in adipose tissue, is elevated 
in obesity and diabetes (85, 86). It inhibits insulin signaling by 
phosphorylating insulin receptor substrate-1 (IRS1), disrupting 
pathways essential for glucose uptake. TNF-induced NF-κB activation 
and oxidative stress exacerbate inflammation, worsening insulin 
resistance (87). TNF-mediated inflammation also contributes to beta-
cell dysfunction, reducing insulin secretion. Prolonged TNF signaling 
increases circulating free fatty acids, further impairing metabolic 
homeostasis (88). In BC, chronic TNF secretion by cancer-associated 
macrophages and stromal cells creates a pro-inflammatory 
environment that supports tumor growth (89). NF-κB activation in 
cancer cells increases the expression of anti-apoptotic genes, helping 
tumor cells evade programmed cell death (90). TNF drives epithelial-
to-mesenchymal transition (EMT), enhancing cancer cell motility and 
invasion, and promotes angiogenesis via VEGF induction, facilitating 

tumor vascularization and growth (91). The cross-talk between 
diabetes and BC with shared mechanisms. Obesity and hyperglycemia 
heighten TNF levels, creating a pro-inflammatory milieu (92). TNF 
exacerbates oxidative stress, which damages DNA and increases 
cancer risk (93). TNF-mediated immune suppression allows cancer 
cells to escape immune surveillance. Insulin resistance and 
hyperinsulinemia, driven by TNF, activate pathways like PI3K/AKT, 
promoting cancer cell proliferation (94). Elevated TNF levels in 
diabetic patients may accelerate BC progression through increased 
inflammation and angiogenesis (95, 96). These mechanisms are 
illustrated in a simplified manner in Figure 8.

Our analysis identifies the TNF pathway as a crucial mediator in 
the interplay between BC and diabetes. While pathways such as 
PI3K-AKT, JAK–STAT, and mTOR are also implicated, our 
differential expression analysis reveals a significant enrichment of 
TNF receptor activity among genes common to both conditions. This 
indicates that TNF signaling plays a pivotal role in inflammation, 
apoptosis, and immune regulation, potentially driving the 
interactions between these diseases. Although the PI3K-AKT and 
MAPK pathways contribute broadly, TNF signaling stands out as a 
central hub, highlighting its potential as a therapeutic target (5, 50, 
97). Further studies are needed to refine these insights. Targeting the 
TNF gene or its variants could have substantial therapeutic 
implications, especially for research on comorbidities. Anti-TNF 
therapies could reduce inflammation, benefiting patients with both 
metabolic disorders and cancer. Combining TNF inhibitors with 
treatments specific to metabolic or cancer conditions may offer 
synergistic benefits, particularly for patients with both diabetes and 
BC. The TNF pathway exemplifies how chronic inflammation is a 
common factor in complex diseases like diabetes and BC, 
emphasizing the importance of addressing systemic inflammation in 
therapeutic strategies.

5 Conclusion

This study provides a comprehensive examination of the 
biomarker landscape in BC associated with diabetes through 
integrative transcriptomics and exome analysis. Utilizing 
computational approaches, we identified key differentially expressed 
genes, mutations, and genes with potential deleterious variants that 
may elucidate the interplay between these conditions. Our findings 
highlight potential biomarkers and therapeutic targets that could 
enhance stratification, diagnosis, and treatment for patients with 
comorbid BC and diabetes. Future studies validating these 
biomarkers in experimental and clinical settings could significantly 
advance our understanding and management of this complex 
disease intersection.

5.1 Limitation of the study

We acknowledge the limitation of our Whole Exome 
Sequencing (WES) analysis due to the relatively small sample size 
(n = 23). This constraint primarily arises from our focus on 
integrating transcriptomic and exomic data specifically for BC 
patients with diabetes, ensuring a well-defined cohort for robust 
multi-omics analysis. Additionally, the stringent patient selection 
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criteria and data availability restricted our analysis to tumor 
samples alone, as paired normal controls were not available within 
the dataset.
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FIGURE 8

Pathway mechanism linked with diabetes and cancer. This schematic illustrates the interconnected molecular mechanisms linking diabetes and 
cancer. Key pathways include insulin signaling, chronic inflammation, oxidative stress, and altered metabolism. The figure highlights how 
hyperinsulinemia and insulin resistance influence cancer cell proliferation and survival through pathways like PI3K/AKT/mTOR and MAPK.
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SUPPLEMENTARY FIGURE 1

(A) Selection of samples from transcriptomics data. (B) Selection of samples 
from exomic data.

SUPPLEMENTARY FIGURE 2

Statistical plots of transcriptomics data. The boxplot represents the 
distribution of normalized transcriptomics data across all samples. Each box 
corresponds to an individual sample, with the central line representing the 
median expression level. (A) Boxplot of AA cohort; (B) Boxplot of EA cohort. 
The UMAP plot illustrates the clustering of transcriptomics data, with each 
point representing an individual sample. Samples are color-coded based on 
their respective groups (BC with diabetes vs BC without diabetes). (C) UMAP 
of AA cohort; (D) UMAP of EA cohort.

SUPPLEMENTARY FIGURE 3

The figure presents the functional enrichment analysis of DEGs identified 
from transcriptomic data of the AA cohort. Panels include (A) GO-BP, 
(B) GO-CC, (C) GO-MF, and (D) KEGG pathways. Bar lengths represent both 
statistical significance (adjusted p-values) and gene ratios, offering insights 
into the molecular roles and functional relevance of the DEGs.

SUPPLEMENTARY FIGURE 4

The figure presents the functional enrichment analysis of DEGs identified 
from transcriptomic data of the AA cohort. Panels include (A) GO-BP, 
(B) GO-CC, (C) GO-MF, and (D) KEGG pathways. Bar lengths represent both 
statistical significance (adjusted p-values) and gene ratios, offering insights 
into the molecular roles and functional relevance of the DEGs.

SUPPLEMENTARY FIGURE 5

This figure displays the overlapping genes identified through a 
transcriptomics analysis of the AA and EA cohort. These shared genes 
represent a subset with potential biological significance and functional 
relevance. (A) 786 overlapping genes were present in both cohorts. The 
functional analysis of common genes was performed. (B) GO-BP, (C) 
GO-CC, and (D) GO-MF. (E) KEGG pathways.

SUPPLEMENTARY TABLE 1

Metadata information of transcriptomics data.

SUPPLEMENTARY TABLE 2

Detailed metadata information of AA and EA cohorts.

SUPPLEMENTARY TABLE 3

Detailed information of differentially expressed genes (pooled cohort) in 
comparison of BC with and without diabetes.

SUPPLEMENTARY TABLE 4

Detailed information of differentially expressed genes of the AA cohort in 
comparison of BC with and without diabetes.

SUPPLEMENTARY TABLE 5

Detailed information of differentially expressed genes of the EA cohort in 
comparison of BC with and without diabetes.

SUPPLEMENTARY TABLE 6

Detailed information of missense data.
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