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Myopia is a significant global health challenge, with the incidence of pathologic

myopia (PM) on the rise. PM-related fundus diseases have become a leading

cause of irreversible blindness. Early detection and treatment are crucial for the

prevention and control of myopia. Recent advancements in artificial intelligence

(AI), particularly in machine learning and deep learning algorithms, have shown

promising results in the field of PM in ophthalmology. This review explores the

latest developments in AI technology for managing PM, emphasizing its role in

screening and diagnosis, grading and classification, and predictive assessment.

AI has shown significant potential for clinical application in PM management,

enhancing its intelligent, precise, and e�cient practices.
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1 Introduction

Myopia, a prevalent global condition, is characterized by focused light in front of the

retina due to the eye’s extended axial length (AL) or changes in the refractive medium (e.g.,

cornea and lens) or abnormal accommodation of the eye, leading to blurred vision (1).

Myopia can progress to high myopia (HM) and pathologic myopia (PM). HM is defined

as a significant lengthening of the AL of the eye with a refractive error usually at or above

−6.00 D. Typically, the AL of the eye is more than 26.5mm. In comparison, PM is defined

as structural changes in the eye due to excessive elongation of AL, resulting in severe

visual impairment and complications such as posterior scleral staphyloma, lacquer cracks,

choroidal neovascularization, macular hemorrhage, and myopic maculopathy (MM). PM

emerges with characteristic fundus lesions, indicating a more advanced stage compared

to HM, which highlights a significantly higher disease-related risk (2). With advances in

ophthalmic technology, significant breakthroughs have been achieved in the diagnosis

and treatment of PM. Advanced imaging tools such as color fundus photography (CFP)

and optical coherence tomography (OCT) have revealed new pathologic features such as

leopard-shaped fundus and myopia-associated MM. At the same time, new treatments

for these lesions and their complications have shown remarkable results. For example,

anti-VEGF therapy has been shown to be effective in treating macular neovascularization

triggered by PM, while vitreoretinal surgery has emerged as an effective means of managing

traction macular detachment. Posterior scleral reinforcement has been proposed as a

treatment option to address the problem of increasing axial growth, and its effectiveness

and limitations have been clinically.
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The prevalence of myopia, particularly in East and Southeast

Asia, presents a major health challenge. Predictions suggest a

significant rise in HM by 2050, with the prevalence of myopia

in the world population from 22.9% to 49.8% (3–5). The

widespread occurrence of myopia (30%−50%), especially

PM (1%−3%), underlines the urgent need for effective

management strategies to reduce its heavy societal impact

(6). Early detection and regular monitoring are essential for

managing PM, emphasizing the gap between growing diagnostic

needs and limited medical resources, posing a significant public

health challenge.

In the realm of managing such challenges, AI emerges as

a pivotal tool, encompassing machine learning (ML) and deep

learning (DL) which employ deep neural networks (DNNs) to

solve complex problems. Convolutional neural networks (CNNs),

a specific type of DNN, are adept at processing image data, making

them particularly useful in ophthalmology. The capability of AI

to analyze vast amounts of data offers unprecedented support

in diagnosing, grading, and predicting ocular diseases (7). Its

application in PM, through accurate analysis and interpretation of

fundus images, marks a significant advancement in ophthalmology,

potentially revolutionizing PM management (8–13). The China

Alliance of Research in High Myopia (CHARM), a large-scale

research project planned to cover more than 100,000 Chinese

patients, aims to investigate the diagnosis, progression, and genetic

factors of HM (14). AI applications for myopia have now been

identified and synthesized by many researchers, but there is not

a complete narrative of AI applications for PM. Complications of

PM bring serious health hazards and economic burdens to patients

and society, so it is urgent to fully recognize the application of AI

in PM.

This review delves into the application of AI technology in PM,

highlighting significant research breakthroughs and their value in

clinical practice. AI is transforming PM management through a

stepwise approach:

1. Screening and Diagnosis: AI-powered image analysis automates

early detection of PM lesions, significantly improving diagnostic

sensitivity compared to manual review.

2. Grading and Classification: Building upon diagnostic findings,

AI further quantifies lesion features to objectively classify

disease stages.

3. Predictive Assessment: By integrating longitudinal data

and lesion characteristics, AI models generate personalized

progression risks, enabling proactive interventions.

This pipeline (Figure 1)—from detection to stratification to

prognosis—demonstrates AI’s capability to address the full clinical

spectrum of PM.

Abbreviations: AUC, area under the curve; PM, pathologic myopia;

HM, high myopia; MM, myopic maculopathy; PPA, peripapillary atrophy;

AL, axial length; DCA, di�use chorioretinal atrophy; mCNV, myopic

choroidal neovascularization; CPF, color fundus photograph(y); OCT, optical

coherence tomography; UWF, ultra-widefield; AI, artificial intelligence; DL,

deep learning; ML, machine learning; CNN, convolutional neural network.

2 Retrieval methods

On 31 January 2025, we conducted a thorough search of the

PubMed database and WOS Core Collection. We reviewed the

latest research on AI in the field of PM. Our focus was on screening

and diagnostic methods, classification and grading systems, and

prediction models for disease progression. We used search terms

including “artificial intelligence”, “machine learning”, “deep

learning”, “ensemble learning”, “reinforcement learning”, “transfer

network”, “neural network”, “supervised learning”, “computer

vision system”, “computational intelligence”, “evolutionary

computation”, “large language model”, “pathologic myopia”, “high

myopia”, “myopic maculopathy”, and “progressive myopia”.

Inclusion criteria: The inclusion criteria were as follows:

1. AI technology application: Research studies that utilize AI

technology for the diagnosis, grading, and prognostic evaluation

of PM.

2. Detailed model development: Research studies that provide

a comprehensive description of the AI model construction,

including the training and validation processes.

Exclusion criteria: The exclusion criteria were as follows:

1. Non-human research studies: Research studies that

involve animal models or in vitro experiments rather than

human subjects.

2. Review, conference papers, and non-peer-reviewed articles:

Research studies that are review articles, conference papers, or

articles that have not undergone peer review.

3. Clinical research articles unrelated to AI or PM.

After collecting the relevant literature, we manually screened

the titles and abstracts to match the research, and the screening

process details are provided in Figure 2.

Analyzing the latest AI research findings in the field of PM and

categorizing them based on their content, the application of AI in

managing PM is prominently showcased in three primary aspects:

screening and diagnosis, grading and classification, and predictive

modeling for assessing PM progression.

3 Applications of AI in screening and
diagnosis of PM

Early identification and accurate diagnosis of PM are crucial for

the effective prevention and management of its complications (15).

Table 1 lists AI applications in the diagnosis of PM (Literature not

listed is not clinical research studies in multiple case centers and

could not be included in the table).

3.1 AI screening and diagnosis of fundus
images for PM

AI plays a pivotal role in enhancing the capabilities of

primary care providers in detecting and managing PM by

automating the screening process and facilitating timely

referrals. This advancement is further supported by the

Frontiers inMedicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2025.1572750
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


He et al. 10.3389/fmed.2025.1572750

FIGURE 1

AI pipeline for PM clinical application.

development of imaging technologies ranging from CFP

and OCT to ultra-widefield (UWF) imaging (16), which has

dramatically improved the understanding of myopic fundus

lesions (17). The target population for this task is at-risk

individuals in the general population, especially adolescents

and children, as they are at a critical period in the development

of myopia.

3.1.1 Color fundus photography
Research initiatives have successfully used various AI models

(e.g., EfficientNet) based on CFP to diagnose common retinal

diseases such as PM, glaucoma, and diabetic retinopathy with

high accuracy (18–21). The multi-disease diagnostic tool PADAr

has been developed for primary eye screening, demonstrating the

potential of AI to increase the rate of early diagnosis of PM in the

primary care setting (22).

Developing an automatic, accurate, and non-invasive screening

system for PM patients through AI can significantly conserve time

and resources for both clinicians and patients. CNNs, specialized

in processing lattice-structured data, have demonstrated superior

performance in the automatic screening and diagnosis of PM.

The pre-processed fundus photographs were feature extracted by

the CNN model and categorized into normal fundus images and

pathologic myopic fundus, achieving the best AUC of 0.9845 (23).

However, the problem of overfitting cannot be avoided, and data

augmentation mode was matched to the image dataset, achieving

an accuracy increase of 2.85% (24). DL models, such as the

PM-AI system (25) and MyopiaDETR (26), not only effectively

detect the location of lesions but can also suggest the presence

of myopic choroidal neovascularization (mCNV) (27–30). MM

Frontiers inMedicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2025.1572750
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


He et al. 10.3389/fmed.2025.1572750

FIGURE 2

Illustration of the literature search strategy in PUBMED and WOS core collection.

TABLE 1 The application of AI in the screening and diagnosis of PM/HM.

Authors Modalities Sample size Algorithms AUC (%) Accuracy (%) Sensitivity (%) Specificity (%)

Zhu et al. (16) CFP 2,400 DL >95.0 95.6 96.1 99.6

Gu et al. (18) CFP 4,795 DL – 93 85 94

Rauf et al. (20) CFP – CNN 98.5 – – –

Ren et al. (22) CFP 1,156 DL – – 98.17 93.06

Wang et al. (25) CFP 7,606 CNN/TL 95.0–100.0 93.2–99.8 90.8–96.8 93.3–99.9

Tan et al. (26) CFP 226,686 CNN 97.3 – 95 86.9

Lu et al. (28) CFP 17,330 DL 99.3 97.7 97.7 97.2

Qian et al. (29) CFP 4,603 DL – – 80.1 94.6

Li et al. (30) CFP 36,515 DCNN 97.0–99.8 93.0–96.9 90.8–93.3 98.7–99.6

Zhang et al. (31) CFP 1,391 DL 99.9 96.8 83.1 95.6

Choi et al. (32) OCT 690 CNN 99 100 – –

Ye et al. (33) OCT 2,342 DL 92.7–97.4 – – –

Li et al. (34) OCT 5,505 CNN 96.1–99.9 – 90.0–100.0 90.5–96.5

Li et al. (39) OCT 720 DL – – 92.4 99.8

Xu et al. (40) OCT 800 DL 99.5 – – –

Zhang et al. (27) UWF 2,644 DCNN – 93 90.7 95.2

Mao et al. (46) UWF 317 DL/TL – 98.2 71.4 99.4

is a series of macular lesions associated with PM, characterized

by macular atrophy, lacquer cracks, choroidal neovascularization,

and posterior staphyloma. DL models show great potential in

screening the diagnosis of MM (31–33). Furthermore, self-

supervised learning is integrated with DL to make a more precise

diagnosis (34).

3.1.2 Optical coherence tomography and
ultra-widefield images

Fundus imaging presents significant challenges for PM. The

evolution of modalities for ophthalmic imaging provides a solid

foundation for entering the era of healthcare intelligence. Choi

et al. (35) comparatively assessed the ability of three DL models
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to screen for HM using OCT imaging, with ResNet 50 performing

the best. Innovations such as the application of models like

Inception ResnetV2 and ResNeSt101 (36) for detecting fundus

complications (retinoschisis, macular hole, retinal detachment, and

mCNV) affirm the value of CNNs in achieving high diagnostic

accuracy (37). Anatomically, Ota-Itadani et al. (38) used DL on

3D OCT imaging to detect and classify lamina cribrosa defects,

assisting in early screening for PM.

The advent of UWF technology has also solved many of the

challenges of PM imaging (30). UWF OCT improves the imaging

of mCNV, the vitreoretinal interface, and the progression of myopic

traction maculopathy (17).

These advancements underscore the transformative potential

of AI in the management of PM, highlighting AI’s role in refining

diagnostic methodologies through enhanced image analysis and the

integration of novel technologies.

3.2 AI applications of imaging markers and
multimodal data analysis for PM

The applications of AI in employing imaging markers and

bioinformation for the diagnosis of PM have shown significant

advancements. Choroidal thickness and the degree of peripapillary

atrophy (PPA) at the optic disc are recognized as effective indicators

for assessing PM-related lesions (39–41).

Utilizing AI for precise segmentation and data collection on

choroidal characteristics greatly aids in disease diagnosis. Recent

research using DL algorithms has demonstrated a high degree

of accuracy in distinguishing between the choroidal thickness

measured automatically and manually, highlighting AI’s capability

in achieving detailed analysis with high agreement levels (42–

44). Research studies utilizing mask region CNN models have

automated the process of segmenting the choroidal region in OCT

images of myopic patients, enabling the assessment of myopia

severity based on choroidal thickness (45). Innovations such as

the Boundary Enhancement Module and the utilization of parallel

branches in AI architecture have aimed to improve segmentation

accuracy by enhancing boundary features from varied perspectives

(46). DL has also facilitated the automatic quantification of the

vascular structure of the choroid, allowing the extraction of valuable

metrics such as choroidal thickness, area, volume index, and vessel

density through automated segmentation (47, 48), while thinner

choroidal thicknesses tend to be associated with elongation of AL

over 2 years (49). Furthermore, DL models have been employed

successfully for noise reduction in OCT-scanned images, achieving

the automated three-dimensional reconstruction and segmentation

of intrachoroidal cavitation (50). AI applications extend to enhance

the accuracy of segmenting highmyopic choroid, withU-Net-based

sequence models showing promising results (51). Although UWF

imaging is primarily used to capture images of the peripheral retina,

its 200◦ panoramic field of view and high resolution also make it

possible to display details of the posterior pole clearly. The analysis

of UWF imaging has revealed an association between the severity of

mCNV and increased retinal blood vessel density and branching,

highlighting AI’s potential to provide foundational data for PM

screening and diagnosis (52).Moreover, AI-measured lacquer crack

extension is proved to be related to the progression of mCNV that

a larger initial LC area or a faster rate of LC expansion may predict

earlier CNV onset (53).

Advancements in AI have enhanced the segmentation accuracy

of the optic disc and PPA (54). Measurement of vascular parameters

and PPA area with a DL model confirms pathologic mechanisms

in the development of PM (55). Through the integration of vision

transformer and CNNs in model development, modern algorithms,

based on UWF imaging, significantly outperform classical models

in segmenting the optic disc and PPA (56). Its ability to

handle complex backgrounds and fuzzy boundaries, multi-scale

feature extraction, feature fusion, and boundary information

processing enable transformers to more accurately segment

PPA, fundamentally aiding ophthalmologists in diagnosing and

managing conditions related to PM. However, incorporating

transformers typically requires larger training datasets, so a

lightweight image segmentation network named simple CNN-

UNet is proposed for precise segmentation of the optic disc (57).

In response to the limitations of retinal atrophy such as unclear

boundaries and irregular shapes, ARA-Net-segmented retina has

been proposed to detect retinal atrophy in various area sizes (58).

AI significantly enhances the diagnosis of PM by integrating

more biological data alongside the direct screening and

identification of distinctive fundus images. Zhang et al. (59)

developed the PM-BMII, a computer-aided diagnostic framework

that smartly merges diverse biomedical data from various sources,

such as genetic, demographic, clinical information, and imaging

data, improving the diagnostic accuracy of ∼4.2–46.3% of PM.

Furthermore, AI’s capability to discern correlations between

multiple potential factors and HM enriches our understanding,

as evidenced by Zhang et al.’s (60) discovery of a significant link

between increased serum vitamin A levels and HM prevalence. The

role of AI extends beyond diagnostic advancement to enhancing

healthcare service quality and the efficacy of medical interventions.

A comparative research by Fang et al. (61) highlighted the superior

educational effectiveness of an AI-driven PM auto-recognition

system over traditional teaching methods in improving students’

diagnostic accuracy and learning efficiency, showcasing the impact

of AI in medical education.

The deployment of AI in the diagnosis of PM presents

multiple advantages, such as convenience, speed, and medical

resource conservation, alongside ensuring accuracy and enhancing

management efficiency. Its automated screening and diagnostic

capabilities play a pivotal role in early detection, raising

awareness, and mitigating complications. This not only improves

the ophthalmologist’s ability to deliver timely and personalized

interventions but also improves the overall patient experience

through more accurate diagnostic results. Consequently, AI’s

contributions are vital in preserving visual health and alleviating

societal burdens.

4 Applications of AI in grading and
classification of PM

The application of AI in grading and classifying PM is

indispensable for determining the severity of damage, the risk of

complications, and its impact on visual acuity. This categorization
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TABLE 2 The application of AI in the grading and classifying of PM/HM.

Authors Modalities Sample
size

Algorithms AUC (%) Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

MM grading
methods

Wan et al. (55) CFP 758 DCNN 99.6–99.7 98.2 – – –

Huang et al. (56) OCT 2,837 CNN 96.1–99.8 – 91.7–97.8 98.3–99.1 –

Hemelings et al. (57) CFP 1,200 CNN 98.6 – – – –

Lu et al. (28) CFP 16,428 DL 99.3 97.7 97.7 97.2 –

Du et al. (58) CFP 7,020 DL 88.1–98.2 92.1 37.8–87.2 94.5–98.3 –

Zheng et al. (59) CFP 4,642 DL 96.0–99.2 83.6 64.7–96.9 – –

Sogawa et al. (60) OCT 910 CNN 97.0–100.0 67.6–96.5 90.6–100.0 94.2–100.0 –

Lu et al. (65) CFP 32,010 DL 99.5 97.4 93.9 98.2 META-PM

Wu et al. (66) OCT 1,853 DL 89.5–96.9 85.3–94.2 – – ATN

He et al. (67) OCT 3,945 DL/TL 98.6 96 – – ATN

Wan et al. (69) CFP 1,750 DL 96.6 – 92.3–100.0 98.1–100.0

Tang et al. (71) CFP 1,395 DL 99.8 – – – META-PM

Zhu et al. (70) CFP 4,252 ALFA-Mix+ – 89.6 86.4 97.2 META-PM

Zhang et al. (80) CFP 2,159 DL 99.5 95.4 95.4 98.9 META-PM

ALFA-Mix+: an active learning algorithm based ALFA-Mix.

is essential to develop specific treatments, ranging frommonitoring

the progression in mild cases to preventing complications in severe

conditions. The target population for this task is patients who have

been diagnosed with PM, which facilitates clinicians to regularly

track the progress of PM, assess the effectiveness of treatment, and

make timely adjustments to the treatment plan. Table 2 lists AI

applications in the grading and classification of PM.

4.1 General advances in AI for grading and
classification of PM

In general, many advances have beenmade bymany researchers

in AI for PM grading and classification. Wan et al. (62) have

successfully utilized a DL model for intelligent risk grading of

HM in fundus images. The model’s ability to automatically classify

fundus images into normal fundus, low-riskHM, and high-riskHM

categories demonstrates its superiority over traditional assessments

by ophthalmologists, with sensitivity and specificity close to 100%.

In another research, Huang et al. (63) employed the ResNet-34

architecture to enhance the grading of traction retinopathy in

highly myopic eyes across five categories, achieving significant

accuracy in identifying varying severities of traction retinopathy.

To optimize current automated diagnostic tools, Wang et al. (18)

applied lightweight classification models such as MobileNetV3

and ShufflenetV2, which offer the benefits of shorter diagnosis

times along with reduced storage and parameter requirements.

Hemelings et al. (64) combined PM classification with lesion

segmentation for PM complications using 2D fundus images and

the transformer architecture, leading to a reduced false-positive rate

for PM cases. Furthermore, the recent contributions of Lu (31)

and Du et al. (65) in employing the International Classification

System (META-PM) for PM identification and classification have

been notable.While Du R’s research is primarily aimed at predicting

the risk of developing HM in children, Lu L’s research focused more

on identifying and classifying PM, with a particular emphasis on

pathologic retinal changes.

4.2 Advances in AI for grading and
classifying MM

Advances in AI have significantly improved the grading and

classifying of MM, a major complication of PM that substantially

affects vision quality. MM refers to characteristic degenerative

changes in the macula, including chorioretinal atrophy, Fuchs

spot, lacquer cracks, posterior staphyloma, and optic disc changes.

A CNN model was designed for automatic extraction and

quantification of features of the posterior scleral wall from OCT

images, which were finally presented as 3D-MRI images (66).

The classification of MM is crucial, given its implications on

treatment and prognosis. Zheng et al. (67) utilized the EfficientNet

model applied to fundus photographs of MM, achieving notable

sensitivity and specificity. By exploiting SS-OCT imaging, Sogawa

et al. (68) found that DL models could precisely diagnose MM,

distinguishing it from non-degenerate conditions. In addition,

Du et al. (69) investigated novel imaging biomarkers within the

optic disc region of fundus images through ML and radiomics,

uncovering features that effectively differentiate between varying

degrees of MM severity. Tessellated fundus (TF), well-defined

choroidal vessels at the posterior fundus pole, is associated with the

development and progression of MM. The choroidal area per unit

area exposed on fundus photographs can be used as an assessment

metric for deep learning models, reflecting the severity of MM

(70–73). Quantified FT was found to migrate toward the macula

Frontiers inMedicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2025.1572750
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


He et al. 10.3389/fmed.2025.1572750

TABLE 3 The application of AI in the predicting of PM/HM.

Authors Modalities Sample size Algorithms AUC (%) Accuracy (%) Projected content

Zhao et al. (72) Refraction records 88,250 – 96.5–99.7 – Spherical equivalent (SE)/high

myopia onset

Yoo et al. (73) OCT 936 DL 81.3 71.4 Uncorrected refractive error

Wang et al. (74) Clinical and imaging

information

967 – 87 – Visual acuity

Chen et al. (75) Clinical and imaging

information

660 – 85–89 – Myopic maculopathy Risk

Lu et al. (76) OCT 710 ML 93.4–95.6 84.7–94.4 Axial length

Li et al. (77) blood tests 20,870 ML 79 72 Occurrence of retinal

detachment

Lin et al. (78) Refraction records 132,457 RF 80.2–88.8 – Myopia development

Foo et al. (79) CFP 9,456 DL 90.0–99.0 – The 5-year risk of high

myopia

Li et al. (80) Medical records 612 530 ML 99 – Myopic progression

Guan et al. (81) Medical records 1,285,609 RF 95.7 97.1 High myopia onset

as myopia progressed by DL techniques, which has potential

applications for predicting HM and its complications.

Currently, the META-PM and ATN (A—atrophy; T—traction;

N—neovascularization) grading systems are the primary methods

for MM assessment. Lu et al. (74) utilized these systems to train

DL algorithms for grading retinal fundus images, achieving an

accuracy comparable to that of expert evaluations. Based on the

META-PM system, DL models were automatically extracted from

fundus images of diffuse chorioretinal atrophy (DCA) regions

from fundus images, which were quantitatively graded into four

classes based on size, density, and ocular biology (75). It has

been shown that the presence of DCA and its association with

visual function impairment is linked to a reduction in choroidal

perfusion and stromal composition (76). However, challenges

remain, such as the algorithm’s inability to detect posterior

staphyloma or accurately diagnose “PLUS” lesions. Wu et al.

(77) investigated myopic macular lesions using the ATN system,

employing CNNs (ResNet) and MB-ASPP techniques for finer

subgroup classifications. This DL approach demonstrated high

accuracy, as reflected in the AUC values for A, T, and N

classifications. He et al. (78) employed macular OCT images from

the ATN system, developing two algorithms, where the latter,

utilizing transfer learning, showed improved performance. A gated

attention mechanism network (GAMNet) achieves 93.3% accuracy

in classifying myopic tractional macular degeneration (79). Ye

et al. (36), adopting the ResNet 501 architecture across five distinct

models, achieved differentiation of various MM features such as

macular choroidal atrophy and myopic tractional maculopathy

among others. The ensemble model made by combining different

deep learning models performs better on MM classification (80).

Comparative research studies of AI models by Wan et al. (81), Zhu

et al. (82), and Tang et al. (83) showcased advancements in MM

detection and classification, employing techniques such as VOLO-

D2 models and the DeepLabv3+ network for lesion segmentation

and classification. On the basis of the above META-PM grading,

Meng et al. (84) proposed to grade HM by combining the visual

index of contrast sensitivity function (CSF) and fundus features,

emphasizing the non-negligible role of functional indexes, which

help to identify the hidden visual damage in early stage (84).

These research studies have enhanced our understanding of myopic

retinopathy onset signs and provided innovative approaches for

monitoring myopia progression.

5 Applications of AI in predicting and
assessing PM

The application of AI in predicting and assessing PM is essential

for identifying individuals at the highest risk and accurately

forecasting future trends early in the disease (Table 3). AI’s

capability in DL-based classification has demonstrated considerable

potential in ophthalmic research for the early prediction and

assessment of PM.

5.1 AI prediction for risk assessment of PM

In the realm of risk assessment for PM, AI methods have been

deployed to gauge prospective risk and predict the tendency toward

progressive myopia in patients with HM. Zhao et al. (85) employed

random forest and gradient boosting decision tree (GBDT) models

to predict refraction and the likelihood of developing HM using

a refractive data span of 15 years. This approach aids in the

early identification and prevention of myopia. Yoo et al. (86)

extracted structural features from the posterior segment of OCT

images and utilized ML to predict uncorrected refraction, which

reduces the risk of overlooking problems associated with PM or

HM. Similarly, machine learning models for predicting long-term

visual acuity in patients with high myopia have also achieved

good results using fundus imaging information (87). In addition,

machine learning based on SS-OCT can make predictions about

the progression of MM after 10 years based on relevant predictors
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such as longer AL or thinner choroidal thickness (88). Although AL

and choroidal thickness are important predictors of PM, they have

no discriminative ability sufficient for prediction. Kim et al. (89)

utilized a support vector machine (SVM) to accurately measure the

relative tomographic elevation of posterior sclera on OCT images,

increasing accuracy by 10% compared to that which only measured

AL and choroidal thickness. Lu et al. (90) developed classifiers

to predict ocular AL using OCT scanning, while Li et al. (91)

continuously monitor and predict retinal detachment in patients

with HM using the conditional probability algorithm based on

blood parameters designed, with an AUC of ∼0.96.AI prediction

for myopia risk in visually developing children.

Regarding the assessment of myopia risk in visually developing

children, it is crucial to predict refractive changes during this

critical period tomanage the prevalence of HM and PM adequately.

Multiple machine learning algorithms were constructed to confirm

the correlation between BMI and HM with an AUC of 85%, with

implications for the etiologic progression of HM (92). Lin et al.

(93) used random forest on large datasets, alongside factors such

as age and spherical lenses, to forecast HM incidence over 8 years.

Foo et al. (94) combined DenseNet-121, a deep neural network

model, with random forest to evaluate fundus images and clinical

data, assessing the likelihood of children developing HM within

5 years. Li et al. (95) aggregated data from various cohorts to

predict myopia progression and the risk of HMusingML, achieving

an AUC of 0.99. Guan et al. (96) explored risk factors for HM

through ML, with random forest showing notable accuracy. Clark

et al. (97) introduced “polygenic scoring” (PGS) to predict myopia

in children by assessing genetic susceptibility through DL and

examining refractive error across different European populations.

Ota-Itadani et al. and Liu et al. have further illustrated the

potential of AI in PM research, focusing on structural abnormalities

in PM patients. Liu et al. (98) and Kang et al. (99) observed

optic disc and peripapillary atrophy (PPA) changes related to

refractive errors in school-aged children, suggesting the PPA to

optic disc area ratio as an early indicator of myopia progression.

Tiny retinal vascular changes in children with HM can also be

recognized by AI, such as a decrease in arterial branching angle

and vascular arteriovenous ratio, which can help identify trends in

HM earlier (100, 101).

5.2 AI prediction for treatment outcomes in
PM

AI has demonstrated its potential to effectively predict

treatment outcomes and efficacy in patients with PM. For instance,

Zhou et al. (102) applied AI algorithms to calculate lens power

during intraocular lens (IOL) implantation in highly myopic

eyes, achieving high prediction accuracy. Notably, AI models

such as XGBoost, Hill-RBF, and Kane excelled in cases with

an AL exceeding 26mm. In another research, Guo et al. (103)

utilized extreme gradient boosting and support vector regression

algorithms to formulate the Zhu-Lu formula, a novel ML approach

for predicting post-surgical lens dioptric power in highly myopic

patients. Wei et al. (104) developed and compared five ML

algorithms based on OCT scans, all of which showed high accuracy

and stability in predicting the optimal corrected visual acuity

after cataract surgery in highly myopic patients. Yang et al.

(105) and Kang et al. utilized a deep neural network to predict

visual acuity in patients with PM and mCNV treated with anti-

VEGF, achieving an accuracy rate of over 80%. Sawai et al.

(106) investigated the impact of the denoising process on the

prediction of PM using single-frame optical coherence tomography

angiography (OCTA) imaging, highlighting its role in providing

fast and high-quality image analysis. Despite these advancements,

the AI-based prediction of PM progression remains in its early

stages. To enhance the management of PM and improve patient

outcomes, it is crucial to increase scientific research investment,

foster interdisciplinary collaboration, and conduct more rigorous

clinical trials.

6 Limitations of AI in PM

While AI technology has made significant strides in various

fields, its application in the clinical research and treatment of PM

faces notable challenges. One such challenge is the poor quality of

retinal images, such as artifacts caused by eye movements during

imaging, which impede the accurate identification and diagnosis

of ocular microscopic lesions. To address this, Cheng et al. (107)

proposed the structure-preserving guided retinal image filtering

(SGRIF) method, which enhances image quality by simulating

the natural attenuation and scattering of the human eye lens,

thereby improving contrast and aiding in the automated diagnosis

of ophthalmic diseases such as optic disc analysis. Improving image

quality in clinical work is the basis for AI in ophthalmology

clinical work.

In addition, several overarching issues persist in AI research

and application for PM. First, the issue of data heterogeneity deficits

and model generalization bottlenecks represents the foundational

barrier to advancing AI applications in PM research studies.

Research studies have predominantly utilized single datasets, which

may lack the size and diversity to represent the global spectrum

of PM, thus limiting the models’ generalizability. In classification

tasks, the limited availability of imbalanced lesion distribution (e.g.,

“plus” lesions) in the META-PM classification of MM can result in

overfitting. Second, lack of algorithm interpretability, particularly

in tasks such as lesion localization (e.g., posterior staphyloma) and

progression prediction, directly undermines clinicians’ trust in AI

outputs and their integration into practice. Third, deficiencies in

clinical validation frameworks affect the spread and the use of AI

for PM in clinical management. Of the included research studies

above, overreliance on retrospective single-center data with limited

real-world prospective validation limited prospective real-world

validation research studies. The impact of variations in imaging

equipment and quality remains understudied, despite its critical

importance—especially given the heterogeneous image quality in

primary care settings (e.g., county/township hospitals), which may

limit the generalizability of AI models. Moreover, there is a need for

a more in-depth exploration of model parameter tuning to enhance

the accuracy of screening, grading, and prediction. While most

algorithms struggle with detecting or localizing complications such

as posterior staphyloma, some have shown promise in segmenting

retinal lesion regions to improve detection rates. Last but not the
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least, the application of AI in PM andHM is still in the experimental

stage and has not been widely put into clinical use, but some of

the research studies mentioned above compared the accuracy of AI

with the work of ophthalmic professionals, showing AI was better

than or equal to the level of experts. Therefore, the development

of AI and the advancement of its use in PM management is a

major trend.

7 Conclusion

This review provides a comprehensive review of the recent

advancements in using AI technologies to manage PM. It highlights

the significant contributions of AI in improving screening and

diagnostic processes, as well as in grading, classification, and

predictive assessment. Integrating AI has notably enhanced the

accuracy and efficiency of PM diagnosis and its complications,

surpassing traditional methods. AI enables the segmentation

and extraction of retinal lesions, which helps in understanding

disease severity and predicting disease progression, crucial

for its management. In summary, AI is revolutionizing PM

clinical management by enhancing its intelligence, precision,

and efficiency.

In summary, AI, through the application of DL and ML,

has been effectively utilized in the domain of PM. Despite

its demonstrated potential, several challenges remain. These

include the need to address the limitations in processing low-

quality images, refining disease progression models, and fostering

interdisciplinary collaboration to advance research and application.

Looking ahead, the value of AI in the management of PM

can be further enhanced by focusing on the following areas:

(1) The development of more extensive and diverse multicenter

PM datasets that include demographic parameters such as age,

gender, and occupation, and increase the representation of rare

findings such as “plus lesions”. (2) Researchers should concentrate

on enhancing the image processing capabilities of AI models,

particularly in improving clarity and noise reduction, while also

considering the constraints of equipment in primary healthcare

settings during clinical applications. (3) Although AI is not yet

fully mature for predicting PM, future research can integrate

predictive models with intervention strategies. For example,

researchers can provide clinical interventions to patients at

different risks and compare them with preclinical patients without

interventions to see whether there is any difference in the patients’

prognosis. By training AI models with substantial datasets and

diverse cases, researchers can develop personalized prevention

and treatment recommendations for PM patients based on their

risk profiles.
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