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Introduction: Machine learning technology has demonstrated significant

potential in glaucoma research, particularly in early diagnosis, predicting disease

progression, evaluating treatment responses, and developing personalized

treatment strategies. The application of machine learning not only enhances the

understanding of the pathological mechanism of glaucoma and optimizes the

diagnostic process but also provides patients with accurate medical services.

Methods: This study aimed to describe the current state of research,

highlight directions for further development, and identify potential trends for

improvement. This review was conducted following the scoping review of the

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

extension to showcase advancements in the application of machine learning in

glaucoma research and treatment.

Results: We employed a comprehensive search strategy to retrieve literature

from the Web of Science Core Collection database, ultimately including 3,581

articles in the analysis. Through data analysis, we identified current research

hotspots, noted di�erences in researchers’ attitudes and opinions, and predicted

potential future development trends.

Discussion: We divided the research topics into six categories, clearly identifying

“eye diseases”, “retinal fundus imaging” and “risk factors” as the key terms for

the development of this field. These findings signify the promising prospects of

machine learning, particularly when integrated with multimodal technologies

and large language models, to enhance the diagnosis and treatment of

glaucoma.

KEYWORDS

machine learning, glaucoma diagnosis, deep learning, multimodal imaging, ophthalmic

research

1 Introduction

Glaucoma, characterized by retinal nerve fiber layer defects and concomitant visual

field (VF) damage, is considered one of the leading causes of irreversible visual impairment

worldwide (1). Glaucoma is estimated to affect more than 110 million individuals over

the next two decades (2, 3). Therefore, adopting novel diagnostic techniques to explore

glaucoma pathogenesis and facilitate early detection protocols is of significant clinical

relevance (4, 5).
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In 2016, a significant shift occurred in the application of

machine learning in the realm of ophthalmology with the

publication of articles focusing on its applications in diabetic

retinopathy (DR) screening (6, 7). Subsequently, the integration

of medical imaging with machine learning technology has been

applied to disease diagnosis, and researchers have developed

numerous automated ophthalmic diagnostic systems (8–11). Deep

learning (DL) algorithms, which extract features from images

and represent them in layers, have shown considerable promise

in distinguishing between glaucomatous and non-glaucomatous

patterns (12, 13). Moreover, the DL model performed well in the

fundus image analysis of glaucoma, with a diagnostic accuracy of

95.59% (14). These algorithms are critical for screening, diagnostic

decision-making, and disease prognosis (15). The emergence of

machine learning-basedmultimodal imaging technologies is poised

to have a transformative impact on medical management and

therapeutic strategies for glaucoma in the coming years (16).

In recent years, the growing body of literature on machine

learning applications in glaucoma research has attracted significant

scholarly interest, reflecting the dynamic evolution of the field and

the imperative for systematic evaluation. During this period, a

comprehensive assessment and review of existing knowledge can be

performed using methods such as statistical analysis of publication

volume, collaboration across countries, regions, or institutions,

analysis of the sources and characteristics of cited publications, and

identification of high-frequency and emerging keywords. These

approaches can clarify the current research hotspots in advancing

glaucoma diagnosis and treatment with machine learning and

predict future development directions. Currently, advancements

in machine learning within the field of glaucoma are mostly

fragmented, with a lack of comprehensive and forward-looking

reviews. Therefore, we conducted an assessment and scoping

review of relevant articles to assess and summarize the existing

knowledge about the application of machine learning in glaucoma

research. We aimed to clarify the role of machine learning in

advancing glaucoma research and identify key research directions

through a visual approach, considering the development trends

in this field (17, 18). Our report may provide some references

for ophthalmologists and medical engineering researchers to

comprehensively explore this field and embrace machine learning

applications in glaucoma.

2 Methods

2.1 Scoping review

For this scoping review, we selected the Web of Science Core

Collection database, as it offers comprehensive subject coverage

and high-quality literature, providing a wide range of influential,

representative, and accurate literature on the research topic. We

developed a search strategy that covers a wide range of themes,

which, unlike systematic reviews, does not rely solely on the

quality of evidence as the only measure. This approach allows for

better acquisition of researchers’ perspectives and attitudes within

the broad scope of the study. We also extracted and identified

multiple characteristics of the retrieved literature, including

country, institution, references, journals, subject categories, and

keywords. This enables our research to gain a more comprehensive

understanding of the development status within the field, thereby

making more accurate predictions about development trends.

2.2 Data retrieval

We developed an accurate and comprehensive search query

using the following search terms: (TS= ((“Machine Learning” OR

“Artificial Intelligence” OR “Deep Learning” OR “Support Vector

Machine∗” OR “Linear Regression” OR “Logistic Regression” OR

“decision tree” OR “random forest” OR “K-Nearest Neighbors” OR”

Naive Bayes” OR “Naive Bayes Model” OR “Convolutional Neural

Network∗” OR “Recurrent Neural Network∗” OR “XGBoost”

OR “Fully Convolutional Network∗” OR “Generative Adversarial

Network” OR “Reinforcement Learning” OR “Back Propagation”

OR “Fully Neural Network” OR “Recursive Neural Network”

OR “Auto encoder” OR “Deep Belief Network” OR “Restricted

Boltzmann machine” OR “Transformers” OR “Graph Convolution

Networks” OR “k-means” OR “Ada boost” OR “Markov chain”

OR “Natural Language Processing” OR “Generative Pre-trained

Transformer” OR “Bidirectional Encoder Representations from

Transformers” OR “LLM”) AND (“Glaucoma”))), the literature

type= “Article”. A literature search was conducted from 2000

to 2024.

2.3 Inclusion and exclusion verification

In terms of publication time, to study the latest advancements

in machine learning within the field of glaucoma, we focused

on relatively recent literature, excluding studies published before

2000. Regarding article types, we selected “articles” to ascertain

the perspectives and attitudes of relevant researchers, as these

formats are less influenced by external opinions during the writing

process and can clearly express personal viewpoints. We excluded

evidence types such as “conferences”, “article reviews”, “letters”,

and “news”. For search topics, we extracted keywords from the

research questions and, based on these, obtained clusters of related

words, which were used as search terms to ensure a comprehensive

and objective search of the topic keywords. To ensure that the

articles found aligned with our research theme, two researchers

independently verified the retrieved data.

2.4 Data feature recognition

We extracted various metadata from the retrieved publications,

including article titles, abstracts, authorship, institution,

country/region, journal, keywords, and cited references, to

create a connected network of 3,581 articles with 80,657 references.

2.5 Data classification analysis

Data analysis was performed from multiple perspectives,

including publication year, country/region, institution, journal,
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cited literature, high-frequency keywords, and emerging keywords.

This approach allowed us to study the characteristics of researchers

in terms of changes in word preference, selection of publication

journals, and shifts in word frequency, thereby identifying current

research hotspots and variations in researchers’ attitudes and

viewpoints (19).

2.6 Summary and visualization
presentation

We converted the data into easily recognizable charts or images

and conducted predictive research on the development direction of

researchers’ views and attitudes toward the subject. Based on the

knowledge obtained from data classification analysis, we predicted

future trends and potential research directions in this field.

2.7 Patient consent

This study was a scoping review, and the clinical data used were

derived from public databases; therefore, informed consent from

patients could not be obtained.

3 Results

3.1 Distribution of articles by publication
years

We retrieved a total of 3,581 published articles. As shown in

Figure 1A, the bars represent the total annual number of published

studies, illustrating the publication trend from 2000 to 2024.

Notably, the number of published articles has steadily increased,

at a slow pace from 2000 to 2016, followed by a significant rise

in recent years. Over the last 4 years, this number has accounted

for more than 11% of the total number of published articles.

These findings demonstrate that the boom in machine learning

technology and its application in glaucoma is gradually becoming

the focus of attention and entering a stage of rapid development.

The number of publications in 2024 was significantly lower than

in 2023. This is because the information we retrieved on 1 April

2024, only included literature published before that date and did

not encompass publications released after 1 April 2024.

3.2 Analysis of countries/regions,
institutions, and journals

We analyzed the literature within the reference range, which

included publications from 102 countries and 3,343 institutes. The

country that has contributed the most to the literature is the

United States, followed by China, South Korea, England, and India,

which rank second to fifth, respectively. Most of the influential

research institutions are located in the United States and the

United Kingdom, indicating that these countries and institutions

have invested more research efforts in this field and should be given

attention. However, it is worth mentioning that the research center

with the highest number of published articles is the University of

California system (300 articles), highlighting its prominent role

and significant impact in the field of machine learning applications

for glaucoma.

As shown in Figure 1B made by the bibliometrix package in

R software shows how articles were distributed in the various

contributing countries and areas. Collaboration between countries

is a strong incentive for progress in scientific studies. The lines refer

to the work between different countries. The broader lines indicate

more collaboration and communication.

3.3 References analyses

References are key indicators, as frequently cited documents

can significantly influence their research areas. Table 1 lists the top

10 most-cited articles in this field, which were cited more than 470

times out of 80,657 articles. The paper published in the Journal of

the American Medical Association by Ting, DSW,Wong, TY, et al.,

which has been cited 1,369 times, ranks first (20). This article is the

most frequently cited within this field of research.

FIGURE 1

Numbers of published articles from 2000 to 2024 (A). The cooperation of countries or regions that contributed to publications (B). Collaboration

between countries provides a strong incentive for progress in scientific studies. The lines represent the collaboration between di�erent countries,

with broader lines indicating more collaboration and communication.
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TABLE 1 Top 10 most-cited references on machine learning for glaucoma applied.

Rank Title of the cited document DOI Times cited Interpretation of findings

1 Development and Validation of a Deep

Learning System for Diabetic

Retinopathy and Related Eye Diseases

Using Retinal Images FromMultiethnic

Populations With Diabetes (20).

10.1001/jama.

2017.18152

1,369 This study demonstrated that DL systems exhibit high true positive

rates and true negative rates in detecting DR and related eye diseases

among multiethnic populations with diabetes. However, further

research is required to assess their applicability in healthcare settings

and their effectiveness in improving visual outcomes.

2 Pivotal trial of an autonomous AI-based

diagnostic system for detection of

diabetic retinopathy in primary care

offices (69).

10.1038/s41746-01

8-0040-6

793 This study marked the first Food and Drug Administration

(FDA)-approved autonomous AI diagnostic system, which

demonstrated high sensitivity and specificity in detecting DR,

potentially helping thousands of diabetic patients prevent vision loss

each year.

3 Joint Optic Disc and Cup Segmentation

Based on Multi-Label Deep Network

and Polar Transformation (70).

10.1109/TMI.

2018.2791488

619 The multilayer network (M-Net), a DL architecture, effectively

segments the optic disc and optic cup in fundus images through a

one-stage multi-label system, improving the accuracy of glaucoma

screening and diagnosis by calculating the cup-to-disc ratio.

4 Optical Coherence Tomography

Angiography of Optic Disc Perfusion in

Glaucoma (71).

10.1016/j.ophtha.

2014.01.021

582 Optical coherence tomography (OCT) angiography, using the

split-spectrum amplitude-decorrelation angiography algorithm, reliably

measures optic disc perfusion and reveals reduced perfusion in patients

with glaucoma, highlighting its potential as a tool for assessing

glaucoma and monitoring its progression.

5 Predictive factors for glaucomatous

visual field progression in the advanced

glaucoma intervention study (72).

10.1016/j.ophtha.

2004.02.017

561 The Advanced Glaucoma Intervention Study found that older age and

greater intraocular pressure fluctuation are significant risk factors for

VF progression in glaucoma, increasing the odds by 30% for each 5-year

increase in age and 1-mmHg rise in intraocular pressure fluctuation,

respectively.

6 Determinants of normal retinal nerve

fiber layer thickness measured by stratus

OCT (73).

10.1016/j.ophtha.

2006.08.046

515 Retinal nerve fiber layer thickness, as measured by Stratus OCT, is

significantly influenced by age, ethnicity, axial length, and optic disc

area. These factors should be considered in the diagnosis and

monitoring of glaucoma.

7 Optical Coherence Tomography

Angiography of the Peripapillary Retina

in Glaucoma (74).

10.1001/jamaophtha

lmol.2015.2225

514 OCT angiography can visualize and quantify reduced peripapillary

retinal perfusion in glaucomatous eyes, which is strongly correlated

with VF defects, highlighting its potential as a valuable tool for

glaucoma evaluation.

8 Efficacy of a Deep Learning System for

Detecting Glaucomatous Optic

Neuropathy Based on Color Fundus

Photographs (75)

10.1001/10.1016/j.

ophtha.2018.01.023

495 This study demonstrates that the deep learning system achieved

exceptional diagnostic accuracy (AUC 0.986) in detecting referable

glaucoma-related optic nerve damage using fundus photographs, with

high sensitivity (95.6%) and specificity (92%).

9 Prevalence of ocular surface disease in

glaucoma patients (76).

10.1097/IJG.0b

013e31815c5f4f

480 The study revealed a high prevalence of ocular surface disease in

patients with glaucoma, with benzalkonium chloride-containing eye

drops being significantly associated with increased odds of abnormal

clinical test results.

10 Comparing Adherence and Persistence

Across six Chronic Medication Classes

(77).

10.18553/jmcp.

2009.15.9.728

477 The study revealed suboptimal medication adherence across chronic

therapies, with the lowest rates for prostaglandin eye drops and

overactive bladder medications.

3.4 High-frequency keyword analyses

We conducted a systematic extraction of keywords from 3,581

articles, and the top 25 with highest occurrences are listed (Table 2).

While identifying thematic areas in fields of investigation, a closer

examination of these keywords used in the papers revealed that 25

keywords occurred at least 125 times.

We used the VOSviewer to analyze the relationships between

high-frequency keywords in the literature and performed visual

processing. From the perspective of high-frequency keywords, six

popular research topics were summarized: (1) correlation between

optic disc morphology development in glaucoma and age; (2)

relationship between risk factors, such as elevated intraocular

pressure and open-angle glaucoma; (3) association and variations

in the prevalence and risk of eye diseases across different

populations; (4) differentiation of ocular injuries using optical

coherence tomography (OCT); (5) progression of normal-tension

glaucoma; and (6) research on the diagnosis, classification, and

image segmentation of DR (Figure 2).

3.5 Burst keywords analyses

Keywords reflect current research interests, whereas burst

keywords highlight emerging trends and leading edges in research.

We used CiteSpace to analyze trends over time in hotspot shifts,

making use of the most common keywords showing the most

robust citation bursts (17). Among these were eye diseases (2021–

2024), retinal fundus images (2022–2024), and risk factors (2022–

2024). The most concentrated studies in these hotspots began in
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2016 and continue to the present. These burst keywords emerged

around 2020 or 2021 and continued to be a research hotspot until

2024. The shift in keywords reflects the change in the research

focus of researchers in the field and the development process

of the field. As shown in Figure 3, in the field of glaucoma

TABLE 2 Top 25 occurrence keywords.

Keywords Count Keywords Count

glaucoma 699 diagnosis 196

open-angle glaucoma 658 classification 191

prevalence 578 ocular hypertension 181

intraocular-pressure 398 damage 179

optical coherence

tomography

352 risk 175

risk factors 352 normal-tension

glaucoma

146

progression 322 images 145

eyes 320 optic disc 141

population 285 eye 131

nerve-fiber layer 255 age 128

thickness 241 visual field 128

association 201 segmentation 126

diabetic retinopathy 199

research facilitated by machine learning technology, the keywords

published in the literature have transitioned from terms such as

linear regression model, glaucomatous eyes, multivariate analysis,

axial length, spherical equivalent, and normal eyes, to eye diseases

(2021–2024), retinal fundus images (2022–2024), and risk factors

(2022–2024). This indicates that retinal fundus imaging technology

is becoming popular, and the study of risk factors for eye diseases is

becoming increasingly important (Figure 3).

4 Discussion

4.1 General data

By examining the selected articles, a total of 3,581 Science

Citation Index Expanded (SCIE) papers on the application of

machine learning in glaucoma were published from 2000 to 2024,

demonstrating a rapid growth trend. The US contributed the

largest number of articles, 1,141 (32.1 %), followed by China,

664 (18.5%). Among the top 10 leading institutions, four were

based in the US and three in the UK, highlighting the significant

role of researchers from these countries in advancing the field.

Ophthalmology, which was the published journal most referred to

(16,334 times), thereby greatly promoting the study of machine

learning in glaucoma. Additionally, we looked into the 10 most-

cited published articles, and the top paper was by Ting et al. (20)

and published in the Journal of the American Medical Association,

which had 1,369 citations. This may indicate that the paper could

be a foundational or pivotal work in the field, providing essential

FIGURE 2

Dendrogram shows the thematic areas in research of machine learning in glaucoma.
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FIGURE 3

Keywords with the strongest citation bursts of publications from 2000 to 2024.

evidence for ongoing research. These frequently acknowledged

studies may provide valuable insight into this field of research.

4.2 The current research characteristics

The intricate and multidimensional interplay within the

knowledge domain of machine learning in glaucoma warrants

further examination to elucidate its conceptual structure. By

analyzing the frequency and co-occurrence of high-frequency

keywords, we can identify the thematic composition of research

patterns and provide insights into future developments within the

industry. We have summarized the research hotspots of machine

learning in the field of glaucoma, which can be divided into six

different perspectives.

4.2.1 Correlation between the development of
optic disc morphology in glaucoma and age

Machine learning technology has made significant progress

in exploring the relationship between optic disc morphology and

age in glaucoma. Initially, Omodaka et al. used “machine learning

based on quantified eye parameters” to classify the shape of the

optic disc in glaucoma, using age as one of the most important

distinguishing features (21). With advancements in DL technology,

researchers have discovered a positive correlation between aging

and optic disc parameters, particularly an increase in the vertical

cup-to-plate ratio, which is a key risk factor for glaucoma (22).

By integrating machine learning with genomic data, models

have identified genetic loci linked to the vertical cup-to-plate

ratio, underscoring aging’s pivotal role in glaucoma pathogenesis,

while demonstrating robust predictive performance for glaucoma

subtypes (AUCs: 0.74 for POAG, 0.73 for HTG, and 0.76 for

NTG) in independent validation cohorts (23). These studies not

only deepen the understanding of the pathological mechanisms of

glaucoma but also provide valuable insights for early diagnosis and

personalized treatment.

4.2.2 Relationship between risk factors, such as
elevated intraocular pressure and open-angle
glaucoma

In the study of open-angle glaucoma (OAG), the application

of machine learning techniques identified multiple risk factors
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associated with disease progression. These include the rate of

optic nerve fiber layer thinning, the association between smoking

and disease progression, and the association between intraocular

pressure and OAG risk (24–26). Additionally, machine learning

technology identified abnormal cardiac contractile potential in

patients with OAG, providing a new perspective on the systemic

effects of OAG (27). Moreover, machine learning demonstrated the

potential for the early prediction of OAG through the analysis of

electronic health records, identifying ocular hypertension as a key

indicator. This highlighted the crucial role of machine learning in

early diagnosis (28). Machine learning models can utilize clinical

characteristics to predict the risk of ocular hypertension following

silicone oil tamponade (29), achieving a highest accuracy of 0.7944

with the gradient-boosted decision trees model. These findings

underscore the key role of machine learning technology in the early

diagnosis and management of glaucoma.

4.2.3 Association and di�erences in the risk and
prevalence of eye diseases among di�erent
populations

Machine learning technology has significantly contributed

to the diagnosis, genetic research, screening, management, and

epidemiology of glaucoma. The application of DL technology has

facilitated the early identification of metabolic risk factors, which

may aid in the early detection of glaucoma risk (27). Machine

learning has made significant advancements in automatically

evaluating optic disc parameters, greatly improving diagnostic

efficiency and accuracy through convolutional neural network

(CNN) models. Additionally, machine learning-assisted genome-

wide association studies have revealed a large number of

genetic loci associated with glaucoma, offering new insights

into the disease’s genetic background (30). Machine learning

technology has improved screening and detection capabilities

for primary angle-closure glaucoma (31, 32). In patients with

Parkinson’s disease, machine learning technology has been utilized

to assess visual dysfunction, further expanding its application in

the medical field (33). These advancements not only improve

research efficiency and accuracy but also provide new tools and

methods for the early detection, intervention, and treatment

of glaucoma.

4.2.4 Di�erentiation of ocular injuries using OCT
The combination of machine learning techniques with OCT

has revolutionized the study of the thickness assessment of the

nerve fiber layer and its correlation with damage in the VF.

Research has progressed from simple correlation analyses to the

use of neural networks and DL algorithms to improve diagnostic

accuracy (34, 35). Following the unsupervised AI for identifying

the pattern of nerve fiber layer thickness associated with VF

loss from OCT images, the weakly supervised DL enabled the

automatic segmentation of single retinal ganglion cells in adaptive

optical OCT images (36, 37). These advancements not only

improve the accuracy of glaucoma diagnosis but also provide

powerful tools for the early detection and personalized treatment

of eye diseases.

4.2.5 Progression of normal-tension glaucoma
Machine learning techniques are playing an increasingly vital

role in the diagnosis, classification, progression prediction, and risk

assessment of normal-tension glaucoma (NTG). With DL systems,

researchers have utilized pre-trained models such as EfficientNet-

b0 to achieve high accuracy (AUC = 0.98) and specificity (0.94)

in NTG screening and classification (38). By integrating retinal

images with clinical data, DL models have effectively predicted

both the likelihood and timing of NTG conversion in normotensive

glaucoma suspects, demonstrating exceptional performance (AUC

= 0.994) (39). Additionally, machine learning classifiers showed

superior capability in predicting NTG progression (AUC = 0.881)

among young myopic patients using baseline clinical parameters

alone (40). Furthermore, the combination of machine-learning

algorithms with OCT angiography has provided a new perspective

for NTG diagnosis and severity classification (41). A prospective

cohort study on retinal vascular caliber, utilizing DL analysis, has

provided a novel approach to assess factors associated with NTG

progression risk (42).

4.2.6 Research on the diagnosis, classification,
and image segmentation of DR

The integration of DL and image processing technologies

significantly improves the accuracy and efficiency of DR diagnosis.

For example, a model combining pre-processing techniques and

CNN demonstrated excellent performance in identifying DR,

achieving an accuracy of up to 98.56% (43, 44). Further research

on the depth of the preliminary training CNN model, such as

EfficientNet-B7, has enabled effective multi-class classification of

DR, achieving an accuracy of over 96% (45). Additionally, multi-

scale residual attention networks have outperformed traditional

models in retinal vascular segmentation, improving segmentation

accuracy (46). Feature fusion technology, integrating wavelet

packet transforms and intensity-hue-saturation features, has used

a Support Vector Machine for classification to further enhance the

classification performance for eye diseases (47). These studies not

only promote the early diagnosis of the DR but also provide new

perspectives and methods for treatment.

4.3 Hotspots and frontiers in research

Keywords focus on contemporary research concepts or issues

while representing emerging trends and the leading edge of

research. This shift in keywords reflects the evolution of the

research topics. In this study, we identified hot keywords that cover

the research frontiers of the subject of interest. These include eye

diseases (2021–2024), retinal fundus images (2022–2024), and risk

factors (2022–2024).

4.3.1 Eye diseases (2021–2024)
The application of machine learning in the field of eye disease

diagnosis is gradually revolutionizing traditional medical methods,

not only improving the speed and accuracy of diagnosis but also

providing new perspectives on disease management and treatment.

Frontiers inMedicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2025.1573329
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1573329

DL techniques, particularly CNN, have demonstrated high

efficiency in identifying eye diseases, such as glaucoma and DR,

by analyzing medical images (48). Furthermore, by integrating

multimodal data, including retinal images with OCT, machine

learning can provide a more comprehensive analysis of the disease

and enhance diagnostic accuracy (49).

The advantages of machine learning technology are also

reflected in the processing of unbalanced datasets. By modifying

the loss functions, the machine learning model can effectively

improve eye disease detection performance, even in unbalanced

data or in the presence of outliers (50). The CNN model optimized

using the pollen optimization algorithm has improved the accuracy

of diagnosing diseases, such as glaucoma and cataracts in the

classification of eye diseases, thereby facilitating the early detection

of ophthalmic conditions (51). Furthermore, its combination with

a long short-term memory network has effectively reduced errors

in functional VF tests (52).

In the context of explaining the database used for training and

the automated training of machine learning models, the use of

generative adversarial networks for the synthesis of fundus images

can meet the current limitations of the shortage of medical images

and the high costs of image annotation for the rapid training

of relevant machine learning diagnostic models. Integrating this

with the transparency and systematization of machine learning

diagnostic attention mechanisms can enhance the credibility of

machine learning diagnostics, particularly in the field of ophthalmic

imaging and diagnostics, where these advancements have broad

applications (53). Another key application of machine learning

is predicting disease progression and evaluating treatment effects,

enabling personalized medical recommendations to patients. The

DLmodel utilizes segmented OCT images to extract parameters for

predicting functional VF test values. The integration of multimodal

inputs can predict the progression of glaucoma. Amachine learning

model can also simulate glaucoma progression based on historical

patient data, revealing the disease development patterns in different

patients (52).

4.3.2 Retinal fundus image (2022–2024)
The value of retinal fundus imaging as a core tool in the

diagnosis of eye diseases has been significantly enhanced by DL

technology. DL models, particularly CNNs, have been widely

applied to the automated analysis of retinal fundus images, thereby

improving the detection and diagnosis of major retinal diseases,

such as glaucoma and DR. For example, a study integrating CNN

with a visual converter significantly improved the performance of

the classification of retinopathy (54). Additionally, using transfer

learning and fine-tuning techniques, these models can be further

optimized for specific retinal fundus image classification tasks

after pre-training on public datasets such as ImageNet, achieving

superior diagnostic accuracy.

Innovations in DL models continue to advance. For

example, an attention-based fully CNN has been proposed

for the precise segmentation of retinal blood vessels (55).

This demonstrates that DL techniques can not only accelerate

diagnosis but also enhance the accuracy of diagnosis by focusing

on key regions within the image. Some studies have focused

on image enhancement and pre-processing techniques to

improve the quality of retinal fundus images, further improving

model performance.

Despite the significant potential of DL in the diagnosis of

eye diseases, researchers have highlighted several challenges that

must be addressed. The diversity and representativeness of datasets,

the ability to generalize models, and the requirement for clinical

validation are current research priorities. For instance, one study

combined 22 publicly available datasets to address the issue of

unbalanced classes and improve the medical effectiveness of a

model (56). Additionally, methods of multimodal data fusion are

also being explored, integrating retinal fundus images with other

imagingmodalities, such as OCT, to provide a more comprehensive

assessment of the disease.

4.3.3 Risk factors (2022–2024)
Machine learning is playing an increasingly vital role in

glaucoma risk factor analysis, early diagnosis, disease progression

prediction, and patient adherence to treatment. Machine learning

models are of great significance in the field of disease risk

alerts, owing to their outstanding data processing and image

recognition capabilities.

Through DL and multimodal recognition, machine learning

can process complex medical data and identify key risk factors,

such as video disc images (57). Furthermore, machine learning

models can analyze surgical data to predict surgical outcomes,

aiding clinical decision-making (5, 58).

The predictive power of machine learning is particularly

prominent in the early detection and monitoring of glaucoma.

For example, the DL model automatically evaluates the ultrasound

images of biological microscopes, identifies relevant biological

risk factors, and assists in the early detection of glaucoma

(59). Simultaneously, by analyzing clinical records through

natural language processing, machine learning can detect disease

progression and predict the requirement for surgical intervention,

thereby avoiding surgical risks (60).

To improve patient treatment adherence, machine learning

analyzes individual differences and provides customized

treatment recommendations to physicians, thereby increasing

the likelihood of patients following their prescribed treatment

plans (61).

The application of machine learning in glaucoma not only

enhances the understanding of risk factors for glaucoma but also

optimizes the diagnostic process and providesmore precisemedical

interventions for patients.

4.4 Future perspectives

The integration of multimodal technology into glaucoma

research offers significant potential for personalized treatment and

enhanced patient outcomes. While single-mode OCT data already

enables high-precision diagnosis, the combination of multimodal

data may further enhance model generalization (15). Li et al.

developed a multimodal DL framework that combines clinical data,

VF measurements, and OCT images of 86 patients with glaucoma.
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This framework prognosticated glaucoma progression in VF at 12

months with an optimal area under the curve of 0.83 (62). Notably,

the integration of multimodal images enabled the model to forecast

vision loss with greater precision and at earlier onset. Another study

introduced a new multimodal neural network designed to create a

comprehensive dataset for glaucoma diagnosis and classification.

To address the shortage of training data, transfer learning has also

been integrated to overcome data scarcity, enabling a more effective

representation of high-dimensional glaucoma-related information

and enhancing model performance in multimodal analysis (52).

Future studies need to further integrate multi-modal data and

expand sample diversity to improve the generalization ability of

the model. Bibliometric research also shows that interdisciplinary

collaboration, such as computer engineering and ophthalmology,

is the key to promoting the implementation of AI diagnostic

systems (63).

The application of large language models (LLMs) in glaucoma

management has progressed significantly, enabling rapid clinical

note analysis and the extraction of critical data, such as family

history, which is essential for predicting the requirement for

surgical intervention. Studies indicate that LLMs achieved over

80% accuracy in predicting the probability of surgery within 1

year, thereby aiding targeted therapeutic planning to preserve

visual acuity. While not infallible, they have demonstrated

greater precision than traditional assessment methods in

certain cases (64). A recent cross-sectional study comparing the

diagnostic efficacy of an LLM chatbot (Generative Pre-trained

Transformer-4) with that of glaucoma and retinal specialists

has demonstrated the superior performance of LLMs in medical

accuracy and response comprehensiveness, as evaluated using a

Likert scale with statistical validation. These findings indicated

that LLMs have the potential to enhance ophthalmological

diagnostics and be integrated into clinical practice, provided they

undergo further refinement and extensive patient testing. The

ongoing development and validation of LLMs are essential to

ensure their reliability and effectiveness in real-world settings,

ultimately aiming to improve glaucoma patient care and

outcomes (65).

Vision transformers (ViTs) are emerging as a breakthrough

in glaucoma diagnosis, addressing challenges such as data

scarcity and subtle feature discrimination. Tohye et al. propose

CA-ViTs, integrating Conditional Variational GAN (CVGAN)

for data augmentation and contour-guided optic disc/cup

extraction, achieving 93% accuracy in multi-class classification

on the SMDC dataset. This framework outperforms CNNs

and vanilla ViTs (p < 0.01), demonstrating ViTs’ potential for

precise severity grading (66). Future studies include leveraging

diffusion models and multi-modal data fusion to enhance

diagnostic robustness.

4.5 Limitation

This study has some limitations. The reliance on SCIE-

indexed publications may exclude relevant studies from

non-indexed regional journals or preprints. Future studies

should incorporate a broader range of databases, including non-

English and regional sources, to provide a more comprehensive

perspective on global research trends. AI, genetics, and

personalized medicine could refine predictive models and

treatment strategies.

This study acknowledges certain limitations in machine

learning applications for glaucoma. First, the interpretability of

complex models, such as deep learning, remains challenging,

potentially hindering clinical trust. Second, the current

generalization of machine learning models in glaucoma research

is still limited by data standardization issues, such as color and

resolution differences between different imaging devices (67).

Third, biases in training data, such as fundus photography studies,

mainly focus on specific populations, so it is especially important

to be avoided (68). Addressing these limitations requires future

efforts in model transparency, diverse dataset curation, and

rigorous cross-validation.

5 Conclusion

A comprehensive, systematic, and impartial study was

conducted on articles published on the application of machine

learning in glaucoma research from 2000 to 1 April 2024, along

with a scope review. Notably, there has been a significant surge

in scholarly output post-2016, with the United States, China,

England, and South Korea emerging as leading contributors to

this evolving field. The thematic categorization of research has

divided the multifaceted focus into six pivotal areas, with “Eye

diseases”, “Retinal fundus image,” and “Risk factors” emerging

as the developing directions in this field. The study’s findings

highlighted the broad prospects of machine learning in improving

the diagnosis and treatment of glaucoma, emphasizing the

requirement for ongoing research, interdisciplinary integration,

and cross-disciplinary collaboration to enhance patient care and

prioritize the prevention of risk factors.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

TF: Conceptualization, Data curation, Funding acquisition,

Methodology, Project administration, Supervision, Writing –

review & editing. JZ: Visualization, Writing – original draft. BT:

Visualization, Writing – original draft. MT: Resources, Software,

Writing – original draft. XS: Investigation, Writing – original draft.

JL: Formal analysis, Writing – original draft.

Frontiers inMedicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2025.1573329
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1573329

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was funded

by “Medical and health big data analysis and decision-making

platform based on artificial intelligence” (2900021010-CMU-010).

Acknowledgments

The authors thank the Web of Science database for its data

support, which enabled us to summarize and analyze the most

cutting-edge scientific research results.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmed.2025.

1573329/full#supplementary-material

References

1. Wu JH, Moghimi S, Nishida T, Mahmoudinezhad G, Zangwill LM, Weinreb
RN. Detection and agreement of event-based OCT and OCTA analysis for glaucoma
progression. Eye. (2024) 38:973–9. doi: 10.1038/s41433-023-02817-0

2. Pesudovs K, Lansingh VC, Kempen JH, Tapply I, Fernandes AG, Cicinelli
MV, et al. Global estimates on the number of people blind or visually
impaired by cataract: a meta-analysis from 2000 to 2020. Eye. (2024) 38:2156–
72. doi: 10.1038/s41433-024-02961-1

3. McLaughlin DE, Semrov A, Munshi H, Patel AJ, Rahi J, Grajewski AL, et al. The
impact of childhood glaucoma on psychosocial functioning and quality of life: a review
of the literature. Eye. (2023) 37:3157–73. doi: 10.1038/s41433-023-02492-1

4. ThamY-C, Li X,Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of
glaucoma and projections of glaucoma burden through 2040: a systematic review and
meta-analysis. Ophthalmology. (2014) 121:2081–90. doi: 10.1016/j.ophtha.2014.05.013

5. Lee SY, Lee DY, Ahn J. Evaluation of machine learning approach for surgical
results of Ahmed valve implantation in patients with glaucoma. BMC Ophthalmol.
(2024) 24:11. doi: 10.1186/s12886-024-03510-w

6. Abràmoff MD, Lou YY, Erginay A, Clarida W, Amelon R, Folk JC, et al.
Improved automated detection of diabetic retinopathy on a publicly available dataset
through integration of deep learning. Invest Ophthalmol Vis Sci. (2016) 57:5200–
6. doi: 10.1167/iovs.16-19964

7. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al.
Development and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. JAMA-J Am Med Assoc. (2016) 316:2402–
10. doi: 10.1001/jama.2016.17216

8. Nuzzi R, Boscia G, Marolo P, Ricardi F. The impact of artificial
intelligence and deep learning in eye diseases: a review. Front Med. (2021)
8:11. doi: 10.3389/fmed.2021.710329

9. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM,
Bogunovic H. Artificial intelligence in retina. Prog Retin Eye Res. (2018)
67:1–29. doi: 10.1016/j.preteyeres.2018.07.004

10. Vujosevic S, Aldington SJ, Silva P, Hernández C, Scanlon P, Peto T,
et al. Screening for diabetic retinopathy: new perspectives and challenges.
Lancet Diabetes Endocrinol. (2020) 8:337–47. doi: 10.1016/S2213-8587(19)3
0411-5

11. Ji YK, Chen N, Liu S, Yan ZP, Qian H, Zhu SJ, et al. Research progress of artificial
intelligence image analysis in systemic disease-related ophthalmopathy. Dis Markers.
(2022) 2022:10. doi: 10.1155/2022/3406890

12. Thomas PBM, Chan T, Nixon T, Muthusamy B, White A. Feasibility
of simple machine learning approaches to support detection of non-
glaucomatous visual fields in future automated glaucoma clinics. Eye. (2019)
33:1133–9. doi: 10.1038/s41433-019-0386-2

13. Andreou PA, Wickremasinghe SS, Asaria RH, Tay E, Franks WA. A comparison
of HRT II and GDx imaging for glaucoma detection in a primary care eye clinic setting.
Eye. (2007) 21:1050–5. doi: 10.1038/sj.eye.6702394

14. Zhu SJ, Lu B, Wang CH, Wu MN, Zheng B, Jiang Q, et al. Screening of common
retinal diseases using six-category models based on efficientnet. Front Med-Lausanne.
(2022) 9:9. doi: 10.3389/fmed.2022.808402

15. Escamez CSF, Giral EM,Martinez SP, Fernandez NT. High interpretable machine
learning classifier for early glaucoma diagnosis. Int J Ophthalmol. (2021) 14:393–
8. doi: 10.18240/ijo.2021.03.10

16. GirardMJA, Schmetterer L. Artificial intelligence and deep learning in glaucoma:
current state and future prospects. In: Bagetta G, Nucci C, editors. Glaucoma: A
Neurodegenerative Disease of the Retina and Beyond - Pt B. Progress in Brain Research.
Amsterdam: Elsevier (2020). p. 37–64.

17. Wang RY, Zuo GX, Li KK, Li WT, Xuan ZQ, Han YZ, et al. Systematic
bibliometric and visualized analysis of research hotspots and trends on the
application of artificial intelligence in diabetic retinopathy. Front Endocrinol. (2022)
13:13. doi: 10.3389/fendo.2022.1036426

18. Mirzania D, Thompson AC, Muir KW. Applications of deep learning in
detection of glaucoma: a systematic review. Eur J Ophthalmol. (2021) 31:1618–
42. doi: 10.1177/1120672120977346

19. Kokol P. Synthetic knowledge synthesis in hospital libraries. J Hosp Librariansh.
(2024) 24:10–7. doi: 10.1080/15323269.2023.2291282

20. Ting DSW, Cheung CYL, Lim G, Tan GSW, Quang ND, Gan A, et al.
Development and validation of a deep learning system for diabetic retinopathy and
related eye diseases using retinal images from multiethnic populations with diabetes.
JAMA-J AmMed Assoc. (2017) 318:2211–23. doi: 10.1001/jama.2017.18152

21. Omodaka K, An G, Tsuda S, Shiga Y, Takada N, Kikawa T, et al. Classification
of optic disc shape in glaucoma using machine learning based on quantified ocular
parameters. PLoS ONE. (2017) 12:e0190012. doi: 10.1371/journal.pone.0190012

22. Shin J, Kang MS, Park K, Lee JS. Association between metabolic risk factors
and optic disc cupping identified by deep learning method. PLoS One. (2020)
15:11. doi: 10.1371/journal.pone.0239071

23. Alipanahi B, Hormozdiari F, Behsaz B, Cosentino J, McCaw ZR, Schorsch E,
et al. Large-scale machine-learning-based phenotyping significantly improves genomic
discovery for optic nerve head morphology. Am J Hum Genet. (2021) 108:1217–
30. doi: 10.1016/j.ajhg.2021.05.004

24. Lee EJ, KimTW,Weinreb RN, Park KH, Kim SH, KimDM. β-Zone parapapillary
atrophy and the rate of retinal nerve fiber layer thinning in glaucoma. Invest
Ophthalmol Vis Sci. (2011) 52:4422–7. doi: 10.1167/iovs.10-6818

25. Wang DG, Huang YQ, Huang CK, Wu PF, Lin JW, Zheng YQ, et al.
Association analysis of cigarette smoking with onset of primary open-angle

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2025.1573329
https://www.frontiersin.org/articles/10.3389/fmed.2025.1573329/full#supplementary-material
https://doi.org/10.1038/s41433-023-02817-0
https://doi.org/10.1038/s41433-024-02961-1
https://doi.org/10.1038/s41433-023-02492-1
https://doi.org/10.1016/j.ophtha.2014.05.013
https://doi.org/10.1186/s12886-024-03510-w
https://doi.org/10.1167/iovs.16-19964
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.3389/fmed.2021.710329
https://doi.org/10.1016/j.preteyeres.2018.07.004
https://doi.org/10.1016/S2213-8587(19)30411-5
https://doi.org/10.1155/2022/3406890
https://doi.org/10.1038/s41433-019-0386-2
https://doi.org/10.1038/sj.eye.6702394
https://doi.org/10.3389/fmed.2022.808402
https://doi.org/10.18240/ijo.2021.03.10
https://doi.org/10.3389/fendo.2022.1036426
https://doi.org/10.1177/1120672120977346
https://doi.org/10.1080/15323269.2023.2291282
https://doi.org/10.1001/jama.2017.18152
https://doi.org/10.1371/journal.pone.0190012
https://doi.org/10.1371/journal.pone.0239071
https://doi.org/10.1016/j.ajhg.2021.05.004
https://doi.org/10.1167/iovs.10-6818
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1573329

glaucoma and glaucoma-related biometric parameters. BMC Ophthalmol. (2012)
12:5. doi: 10.1186/1471-2415-12-59

26. Topouzis F, Wilson MR, Harris A, Founti P, Yu F, Anastasopoulos E, et al.
Association of open-angle glaucoma with perfusion pressure status in the thessaloniki
eye study. Am J Ophthalmol. (2013) 155:843–51. doi: 10.1016/j.ajo.2012.12.007

27. Suzuki Y, Kiyosawa M. Cardiac hypertrophy may be a risk factor
for the development and severity of glaucoma. Biomedicines. (2022)
10:11. doi: 10.3390/biomedicines10030677

28. Raju M, Shanmugam KP, Shyu CR. Application of machine learning predictive
models for early detection of glaucoma using real world data. Appl Sci-Basel. (2023)
13:12. doi: 10.3390/app13042445

29. Fan W, Zhang CH, Ge LX, Su N, Chen JQ, Song SY, et al. Prediction model
for elevated intraocular pressure risk after silicone oil filling based on clinical features.
Front Med. (2024) 10:9. doi: 10.3389/fmed.2023.1340198

30. Han XK, Steven K, Qassim A, Marshall HN, Bean C, Tremeer M, et al.
Automated Al labeling of optic nerve head enables insights into cross-ancestry
glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. Am
J Hum Genet. (2021) 108:1204–16. doi: 10.1016/j.ajhg.2021.05.005

31. Niu WR, Dong CQ, Zhang X, Feng YF, Yuan F. Ocular biometric
characteristics of chinese with history of acute angle closure. J Ophthalmol. (2018)
2018:6. doi: 10.1155/2018/5835791

32. Chou CC, Shih PJ, Wang CY, Jou TS, Chen JP, Wang IJ. Corvis biomechanical
factor facilitates the detection of primary angle closure glaucoma. Transl Vis Sci
Technol. (2022) 11:8. doi: 10.1167/tvst.11.10.7

33. Hamedani AG,Willis AW. Self-reported visual dysfunction in parkinson disease:
the survey of health, ageing and retirement in Europe. Eur J Neurol. (2020) 27:484–
9. doi: 10.1111/ene.14092

34. El Beltagi TA, Bowd C, Boden C, Amini P, Sample PA, Zangwill LM, et al.
Retinal nerve fiber layer thickness measured with optical coherence tomography is
related to visual function in glaucomatous eyes. Ophthalmology. (2003) 110:2185–
91. doi: 10.1016/S0161-6420(03)00860-1

35. (44)) Park K, Kim J, Lee J. The relationship between bruch’s membrane opening-
minimum rim width and retinal nerve fiber layer thickness and a new index using a
neural network. Transl Vis Sci Technol. (2018) 7:17. doi: 10.1167/tvst.7.4.14

36. Wang MY, Shen LQ, Pasquale LR, Wang H, Li D, Choi EY, et al. An artificial
intelligence approach to assess spatial patterns of retinal nerve fiber layer thickness
maps in glaucoma. Transl Vis Sci Technol. (2020) 9:12. doi: 10.1167/tvst.9.9.41

37. Soltanian-Zadeh S, Kurokawa K, Liu ZL, Zhang FR, Saeedi O, Hammer
DX, et al. Weakly supervised individual ganglion cell segmentation from adaptive
optics OCT images for glaucomatous damage assessment. Optica. (2021) 8:642–
51. doi: 10.1364/OPTICA.418274

38. Hung KH, Kao YC, Tang YH, Chen YT, Wang CH, Wang YC, et al.
Application of a deep learning system in glaucoma screening and further classification
with colour fundus photographs: a case control study. BMC Ophthalmol. (2022)
22:12. doi: 10.1186/s12886-022-02730-2

39. Ha A, Sun S, Kim YK, Jeoung JW, Kim HC, Park KH. Deep-learning-
based prediction of glaucoma conversion in normotensive glaucoma suspects. Br J
Ophthalmol. (2024) 108:927–32. doi: 10.1136/bjo-2022-323167

40. Lee J, Kim YK, Jeoung JW, Ha A, Kim YW, Park KH. Machine learning
classifiers-based prediction of normal-tension glaucoma progression in young myopic
patients. Jpn J Ophthalmol. (2020) 64:68–76. doi: 10.1007/s10384-019-00706-2

41. De Jesus DA, Brea LS, Breda JB, Fokkinga E, Ederveen V, Borren N, et al.
Octa multilayer and multisector peripapillary microvascular modeling for diagnosing
and staging of glaucoma. Transl Vis Sci Technol. (2020) 9:22. doi: 10.1167/tvs
t.9.2.58

42. Lin TPH, Hui HYH, Ling AN, Chan PP, Shen RY, Wong MOM, et al. Risk
of normal tension glaucoma progression from automated baseline retinal-vessel
caliber analysis: a prospective cohort study. Am J Ophthalmol. (2023) 247:111–
20. doi: 10.1016/j.ajo.2022.09.015

43. Mayya V, Kamath SS, Kulkarni U, Surya DK, Acharya UR. An empirical
study of preprocessing techniques with convolutional neural networks for accurate
detection of chronic ocular diseases using fundus images. Appl Intell. (2023) 53:1548–
66. doi: 10.1007/s10489-022-03490-8

44. Murugan R, Roy P, Singh U. An abnormality detection of retinal fundus images
by deep convolutional neural networks. Multimed Tools Appl. (2020) 79:24949–
67. doi: 10.1007/s11042-020-09217-6

45. Vadduri M, Kuppusamy P. Enhancing ocular healthcare: deep learning-based
multi-class diabetic eye disease segmentation and classification. IEEE Access. (2023)
11:137881–98. doi: 10.1109/ACCESS.2023.3339574

46. Jiang Y, Yao HX, Wu C, Liu WH. A multi-scale residual attention network
for retinal vessel segmentation. Symmetry-Basel. (2021) 13:16. doi: 10.3390/sym131
01820

47. Keerthiveena B, Esakkirajan S, Selvakumar K, Yogesh T. Computer-aided
diagnosis of retinal diseases using multidomain feature fusion. Int J Imaging Syst
Technol. (2020) 30:367–79. doi: 10.1002/ima.22379

48. Bali A, Mansotra V. Analysis of deep learning techniques for prediction
of eye diseases: a systematic review. Arch Comput Method Eng. (2024) 31:487–
520. doi: 10.1007/s11831-023-09989-8

49. Thakoor KA, Koorathota SC, Hood DC, Sajda P. Robust and interpretable
convolutional neural networks to detect glaucoma in optical coherence tomography
images. IEEE Trans Biomed Eng. (2021) 68:2456–66. doi: 10.1109/TBME.2020.3043215

50. Luo X, Li JY, Chen MJ, Yang X, Li XJ. Ophthalmic disease detection via deep
learning with a novel mixture loss function. IEEE J Biomed Health Inform. (2021)
25:3332–9. doi: 10.1109/JBHI.2021.3083605

51. Rathakrishnan N, Raja D. Optimized convolutional neural network-based
comprehensive early diagnosis method for multiple eye disease recognition. J Electron
Imaging. (2022) 31:21. doi: 10.1117/1.JEI.31.4.043016

52. Hussain S, Chua J, Wong D, Lo J, Kadziauskiene A, Asoklis R, et al. Predicting
glaucoma progression using deep learning framework guided by generative algorithm.
Sci Rep. (2023) 13:14. doi: 10.1038/s41598-023-46253-2

53. Li T, Bo W, Hu CY, Kang H, Liu HR, Wang K, et al. Applications
of deep learning in fundus images: a review. Med Image Anal. (2021)
69:32. doi: 10.1016/j.media.2021.101971

54. Lian J, Liu TY. Lesion identification in fundus images via convolutional
neural network-vision transformer. Biomed Signal Process Control. (2024)
88:9. doi: 10.1016/j.bspc.2023.105607

55. Gobinath C, Gopinath MP. Attention aware fully convolutional deep learning
model for retinal blood vessel segmentation. J Intell Fuzzy Syst. (2023) 44:6413–
23. doi: 10.3233/JIFS-224229

56. Chlopowiec AR, Karanowski K, Skrzypczak T, Grzesiuk M, Chlopowiec
AB, Tabakov M. Counteracting data bias and class imbalance-towards a
useful and reliable retinal disease recognition system. Diagnostics. (2023)
13:16. doi: 10.21203/rs.3.rs-2391402/v1

57. Kamal MS, Dey N, Chowdhury L, Hasan SI, Santosh KC. Explainable AI for
glaucoma prediction analysis to understand risk factors in treatment planning. IEEE
Trans Instrum Meas. (2022) 71:9. doi: 10.1109/TIM.2022.3171613

58. Ul Banna H, Zanabli A, McMillan B, Lehmann M, Gupta S, Gerbo M, et al.
Evaluation of machine learning algorithms for trabeculectomy outcome prediction in
patients with glaucoma. Sci Rep. (2022) 12:11. doi: 10.1038/s41598-022-06438-7

59. Jiang WY, Yan YL, Cheng SM, Wan SS, Huang LY, Zheng HM,
et al. Deep learning-based model for automatic assessment of anterior
angle chamber in ultrasound biomicroscopy. Ultrasound Med Biol. (2023)
49:2497–509. doi: 10.1016/j.ultrasmedbio.2023.08.013

60. Hu W, Wang SY. Predicting glaucoma progression requiring surgery using
clinical free-text notes and transfer learning with transformers. Transl Vis Sci Technol.
(2022) 11:10. doi: 10.1167/tvst.11.3.37

61. Karimi A, Stanik A, Kozitza C, Chen AY. Integrating deep learning
with electronic health records for early glaucoma detection: a multi-
dimensional machine learning approach. Bioengineering-Basel. (2024)
11:20. doi: 10.3390/bioengineering11060577

62. Li Y, Han YJ Li ZH, Zhong Y, Guo ZF. A Transfer learning-based multimodal
neural network combining metadata and multiple medical images for glaucoma type
diagnosis. Sci Rep. (2023) 13:13. doi: 10.1038/s41598-022-27045-6

63. Zhao JQ, Lu Y, Zhu SJ, Li KR, Jiang Q, Yang WH. Systematic bibliometric
and visualized analysis of research hotspots and trends on the application of
artificial intelligence in ophthalmic disease diagnosis. Front Pharmacol. (2022)
13:12. doi: 10.3389/fphar.2022.930520

64. Jin K, Yuan L, Wu HK, Grzybowski A, Ye J. Exploring large language model
for next generation of artificial intelligence in ophthalmology. Front Med. (2023)
10:9. doi: 10.3389/fmed.2023.1291404

65. Huang AS, Hirabayashi K, Barna L, Parikh D, Pasquale LR.
Assessment of a large language model’s responses to questions and cases
about glaucoma and retina management. JAMA Ophthalmol. (2024)
142:371–5. doi: 10.1001/jamaophthalmol.2023.6917

66. Tohye TG, Qin Z. Al-antari MA, Ukwuoma CC, Lonseko ZM,
Gu YH. Ca-ViT: contour-guided and augmented vision transformers to
enhance glaucoma classification using fundus images. Bioengineering. (2024)
11:23. doi: 10.3390/bioengineering11090887

67. Liu YH, Li LY, Liu SJ, Gao LX, Tang Y, Li ZH, et al. Artificial intelligence
in the anterior segment of eye diseases. Int J Ophthalmol. (2024) 17:1743–
51. doi: 10.18240/ijo.2024.09.23

68. Murtagh P, Greene G, O’Brien C. Current applications of machine learning in
the screening and diagnosis of glaucoma: a systematic review and meta-analysis. Int J
Ophthalmol-Chi. (2020) 13:149–62. doi: 10.18240/ijo.2020.01.22

69. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an
autonomous AI-based diagnostic system for detection of diabetic retinopathy in
primary care offices. NPJ Digit Med. (2018) 1:8. doi: 10.1038/s41746-018-0040-6

70. Fu HZ, Cheng J, Xu YW, Wong DWK, Liu J, Cao XC. Joint optic disc and cup
segmentation based onmulti-label deep network and polar transformation. IEEE Trans
Med Imaging. (2018) 37:1597–605. doi: 10.1109/TMI.2018.2791488

Frontiers inMedicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2025.1573329
https://doi.org/10.1186/1471-2415-12-59
https://doi.org/10.1016/j.ajo.2012.12.007
https://doi.org/10.3390/biomedicines10030677
https://doi.org/10.3390/app13042445
https://doi.org/10.3389/fmed.2023.1340198
https://doi.org/10.1016/j.ajhg.2021.05.005
https://doi.org/10.1155/2018/5835791
https://doi.org/10.1167/tvst.11.10.7
https://doi.org/10.1111/ene.14092
https://doi.org/10.1016/S0161-6420(03)00860-1
https://doi.org/10.1167/tvst.7.4.14
https://doi.org/10.1167/tvst.9.9.41
https://doi.org/10.1364/OPTICA.418274
https://doi.org/10.1186/s12886-022-02730-2
https://doi.org/10.1136/bjo-2022-323167
https://doi.org/10.1007/s10384-019-00706-2
https://doi.org/10.1167/tvst.9.2.58
https://doi.org/10.1016/j.ajo.2022.09.015
https://doi.org/10.1007/s10489-022-03490-8
https://doi.org/10.1007/s11042-020-09217-6
https://doi.org/10.1109/ACCESS.2023.3339574
https://doi.org/10.3390/sym13101820
https://doi.org/10.1002/ima.22379
https://doi.org/10.1007/s11831-023-09989-8
https://doi.org/10.1109/TBME.2020.3043215
https://doi.org/10.1109/JBHI.2021.3083605
https://doi.org/10.1117/1.JEI.31.4.043016
https://doi.org/10.1038/s41598-023-46253-2
https://doi.org/10.1016/j.media.2021.101971
https://doi.org/10.1016/j.bspc.2023.105607
https://doi.org/10.3233/JIFS-224229
https://doi.org/10.21203/rs.3.rs-2391402/v1
https://doi.org/10.1109/TIM.2022.3171613
https://doi.org/10.1038/s41598-022-06438-7
https://doi.org/10.1016/j.ultrasmedbio.2023.08.013
https://doi.org/10.1167/tvst.11.3.37
https://doi.org/10.3390/bioengineering11060577
https://doi.org/10.1038/s41598-022-27045-6
https://doi.org/10.3389/fphar.2022.930520
https://doi.org/10.3389/fmed.2023.1291404
https://doi.org/10.1001/jamaophthalmol.2023.6917
https://doi.org/10.3390/bioengineering11090887
https://doi.org/10.18240/ijo.2024.09.23
https://doi.org/10.18240/ijo.2020.01.22
https://doi.org/10.1038/s41746-018-0040-6
https://doi.org/10.1109/TMI.2018.2791488
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1573329

71. Jia YL, Wei E, Wang XG, Zhang XB, Morrison JC, Parikh M, et al.
Optical coherence tomography angiography of optic disc perfusion in glaucoma.
Ophthalmology. (2014) 121:1322–32. doi: 10.1016/j.ophtha.2014.01.021

72. Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland
D, et al. Predictive factors for glaucomatous visual field progression
in the advanced glaucoma intervention study. Ophthalmology. (2004)
111:1627–35. doi: 10.1016/j.ophtha.2004.02.017

73. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J,
et al. Determinants of normal retinal nerve fiber layer thickness measured
by stratus OCT. Ophthalmology. (2007) 114:1046–52. doi: 10.1016/j.ophtha.2006.
08.046

74. Liu L, Jia YL, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, et al.
Optical coherence tomography angiography of the peripapillary retina in glaucoma.
JAMA Ophthalmol. (2015) 133:1045–52. doi: 10.1001/jamaophthalmol.2015.2225

75. Li ZX, He YF, Keel S, Meng W, Chang RT, He MG. Efficacy of a deep
learning system for detecting glaucomatous optic neuropathy based on color fundus
photographs. Ophthalmology. (2018) 125:1199–206. doi: 10.1016/j.ophtha.2018.01.023

76. Leung EW, Medeiros FA, Weinreb RN. Prevalence of ocular surface disease in
glaucoma patients. J Glaucoma. (2008) 17:350–5. doi: 10.1097/IJG.0b013e31815c5f4f

77. Yeaw J, Benner JS, Walt JG, Sian S, Smith DB. Comparing adherence and
persistence across 6 chronic medication classes. J Manag Care Pharm. (2009) 15:728–
40. doi: 10.18553/jmcp.2009.15.9.728

Frontiers inMedicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2025.1573329
https://doi.org/10.1016/j.ophtha.2014.01.021
https://doi.org/10.1016/j.ophtha.2004.02.017
https://doi.org/10.1016/j.ophtha.2006.08.046
https://doi.org/10.1001/jamaophthalmol.2015.2225
https://doi.org/10.1016/j.ophtha.2018.01.023
https://doi.org/10.1097/IJG.0b013e31815c5f4f
https://doi.org/10.18553/jmcp.2009.15.9.728
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	A scoping review of advancements in machine learning for glaucoma: current trends and future direction
	1 Introduction
	2 Methods
	2.1 Scoping review
	2.2 Data retrieval
	2.3 Inclusion and exclusion verification
	2.4 Data feature recognition
	2.5 Data classification analysis
	2.6 Summary and visualization presentation
	2.7 Patient consent

	3 Results
	3.1 Distribution of articles by publication years
	3.2 Analysis of countries/regions, institutions, and journals
	3.3 References analyses
	3.4 High-frequency keyword analyses
	3.5 Burst keywords analyses

	4 Discussion
	4.1 General data
	4.2 The current research characteristics
	4.2.1 Correlation between the development of optic disc morphology in glaucoma and age
	4.2.2 Relationship between risk factors, such as elevated intraocular pressure and open-angle glaucoma
	4.2.3 Association and differences in the risk and prevalence of eye diseases among different populations
	4.2.4 Differentiation of ocular injuries using OCT
	4.2.5 Progression of normal-tension glaucoma
	4.2.6 Research on the diagnosis, classification, and image segmentation of DR

	4.3 Hotspots and frontiers in research
	4.3.1 Eye diseases (2021–2024)
	4.3.2 Retinal fundus image (2022–2024)
	4.3.3 Risk factors (2022–2024)

	4.4 Future perspectives
	4.5 Limitation

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


