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Objective: To improve and validate a convolutional neural network (CNN)-based 
model for the automated scoring of nail psoriasis severity using the modified 
Nail Psoriasis Severity Index (mNAPSI) with adequate accuracy across all severity 
classes and without dependency on standardized conditions.

Methods: Patients with psoriasis (PsO), psoriatic arthritis (PsA), and non-psoriatic 
controls including healthy individuals and patients with rheumatoid arthritis were 
included for training, while validation utilized an independent cohort of psoriatic 
patients. Nail photographs were pre-processed and segmented and mNAPSI 
scores were annotated by five expert readers. A CNN based on Bidirectional 
Encoder representation from Image Transformers (BEiT) architecture and pre-
trained on ImageNet-22k was fine-tuned for mNAPSI classification. Model 
performance was compared with human annotations by using area under the 
receiver operating characteristic curve (AUROC) and other metrics. A reader 
study was performed to assess inter-rater variability.

Results: In total, 460 patients providing 4,400 nail photographs were included 
in the training dataset. The independent validation dataset included 118 
further patients who provided 929 nail photographs. The CNN demonstrated 
high classification performance on the training dataset, achieving mean (SD) 
AUROC of 86% ± 7% across mNAPSI classes. Performance remained robust on 
the independent validation dataset, with a mean AUROC of 80% ± 9%, despite 

OPEN ACCESS

EDITED BY

Giusto Trevisan,  
University of Trieste, Italy

REVIEWED BY

Serena Bergamo,  
ULSS2 Marca Trevigiana, Italy
Arthur Kavanaugh,  
University of California, San Diego, 
United States

*CORRESPONDENCE

Filippo Fagni  
 filippo.fagni@uk-erlangen.de

RECEIVED 10 February 2025
ACCEPTED 18 March 2025
PUBLISHED 02 April 2025

CITATION

Kemenes S, Chang L, Schlereth M, Noversa de 
Sousa R, Minopoulou I, Fenzl P, Corte G, 
Yalcin Mutlu M, Höner MW, Sagonas I, 
Coppers B, Liphart A-M, Simon D, Kleyer A, 
Folle L, Sticherling M, Schett G, Maier A and 
Fagni F (2025) Advancement and independent 
validation of a deep learning-based tool for 
automated scoring of nail psoriasis severity 
using the modified nail psoriasis severity 
index.
Front. Med. 12:1574413.
doi: 10.3389/fmed.2025.1574413

COPYRIGHT

© 2025 Kemenes, Chang, Schlereth, Noversa 
de Sousa, Minopoulou, Fenzl, Corte, Yalcin 
Mutlu, Höner, Sagonas, Coppers, Liphart, 
Simon, Kleyer, Folle, Sticherling, Schett, Maier 
and Fagni. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 02 April 2025
DOI 10.3389/fmed.2025.1574413

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1574413&domain=pdf&date_stamp=2025-04-02
https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1574413/full
mailto:filippo.fagni@uk-erlangen.de
https://doi.org/10.3389/fmed.2025.1574413
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1574413


Kemenes et al. 10.3389/fmed.2025.1574413

Frontiers in Medicine 02 frontiersin.org

variability in imaging conditions. Compared with human annotation, the CNN 
achieved a Pearson correlation of 0.94 on a patient-level, which remained 
consistent in the validation dataset.

Conclusion: We developed and validated a CNN that enables the automated, 
objective scoring of nail psoriasis severity based on mNAPSI with high reliability 
and without need of image standardization. This approach has potential clinical 
utility for enabling a standardized time-efficient assessment of nail involvement 
in the psoriatic disease and possibly as a self-reporting tool.

KEYWORDS

psoriasis, psoriatic arthritis, nail disease, NAPSI, MNAPSI, artificial intelligence, 
machine learning, outcome measures

Introduction

Psoriasis is a chronic inflammatory disease with highly 
heterogeneous clinical manifestations predominantly affecting the 
skin and nails in case of cutaneous psoriasis (PsO), as well as joints, 
entheses and tendons when Psoriatic Arthritis (PsA) is present (1, 2). 
Nail involvement is present in approximately 50% of PsO patients (3) 
and bears substantial prognostic significance. Particulary, its presence 
has been shown to correlate with disease severity, impaired quality of 
life, and with the risk of progression to PsA (4, 5). For these reasons, 
clinical indices measuring the presence and severity of nail psoriasis 
are commonly used as endpoints in drug trials for PsO and PSA. Thus, 
an early and accurate assessment of nail psoriasis is of great 
importance to improve patient management and help guide treatment 
decisions. Objectively quantifying nail psoriasis requires an assessment 
of various features of nail disease, including pitting, onycholysis, 
subungual hyperkeratosis, and nail bed discoloration (3). To do so, 
comprehensive clinical scores such as the Nail Psoriasis Severity Index 
(NAPSI) and the modified NAPSI (mNAPSI) have been developed (6, 
7). The NAPSI score is the gold standard for assessing nail psoriasis 
severity by evaluating nail matrix (i.e.: pitting, leukonychia, red spots 
in the lunula, crumbling) and nail bed changes (i.e.: oil-drop 
discoloration, onycholysis, hyperkeratosis, splinter hemorrhages). To 
calculate NAPSI, nails are divided into four quadrants and for each 
quadrant 1 point can be assigned for each matrix and nail bed changes, 
resulting in a maximum of 8 points per nail, totaling a range of 0–80 
points for 10 nails (6). The mNAPSI is a simplified version of the 
NAPSI score in which pitting, crumbling, and onycholysis are scored 
on a semiquantitative 0–3 scale depending on the severity or 
percentage of nail involved (i.e.: 0 = none, 1 = mild, 2 = moderate, 
3 = severe), while splinter hemorrhages, leukonychia, red spots in the 
lunula, and hyperkeratosis are scored in a binary manner (i.e.: 
0 = absent; 1 = present), resulting in a score of up to 13 per nail with 
a range of 0–130 for 10 nails (7) (Supplementary Figure 1). These 
scores provide a detailed assessment of all fingernails and are used in 
clinical trials to assess the effects of treatments and other interventions 
(8, 9). However, performing such detailed assessment is highly time 
consuming, which has substantially limited their application outside 
of clinical trials so far.

In recent years, an increasing number of artificial intelligence 
(AI) tools have been developed to assist clinical decision making by 
improving time- and cost-efficiency of various tasks such as the 
interpretation of imaging and risk stratifications. The first AI-based 
model for the automatic scoring of NAPSI was developed by Hsieh 

et  al. involved developing an AI system based on nails from 45 
patients, using single-nail photos taken in a reflection-free box (10). 
Similarly, a later model by Paik et al. was based on 7,054 nails and 
utilized a deep learning algorithm to evaluate NAPSI (11). However, 
AI models so far have relied on high degrees of standardization for 
image acquisition and were based on the annotations of a 
single reader.

In previous work, we  addressed some of these limitations by 
incorporating a multi-reader approach and using mNAPSI (12). This 
work, which served as the precursor to our current model, improved 
scoring accuracy but the need for highly standardized, reflection-free 
photos and the lack of an external validation remained major 
limitations, reducing its applicability in everyday use. Furthermore, 
the relatively low number of severely affected nails limited its accuracy 
on higher mNAPSI classes. Building on this, in this study we aimed to 
train and validate a new convolutional neural network (CNN)-based 
model with the objective of improving accuracy throughout all classes 
of NAPSI severity as well as of decreasing the need of picture 
standardization. To do so, we  employed a larger dataset of hand 
photographs including more patients with severe disease and acquired 
without standardized conditions. Additionally, we  validated our 
findings on an independent external cohort.

Methods

Patient selection

All participants to this study were recruited at outpatient 
clinics of the Department of Internal Medicine 3, Rheumatology 
and the Department of Dermatology of the University Hospital of 
Erlangen between January 2022 and December 2023. Only adult 
participants were included. To be  suitable for inclusion in the 
study (i.e., for both training and validation cohort), patients with 
PsO had to have a biopsy-proven or dermatologist-confirmed 
diagnosis of psoriasis. PsA patients had to fulfill the ClASsification 
for Psoriatic ARthritis (CASPAR) criteria for PsA (13). Patients 
with rheumatoid arthritis (RA) were included as controls and had 
to fulfill the ACR/EULAR 2010 classification criteria (14). Healthy 
controls (HC) were recruited from the local community. 
Individuals suffering from health conditions that affect the nails 
other than PsO and PsA (e.g., untreated hypothyroidism, 
traumatic nail dystrophy) were excluded from participation. The 
cohort used for the training of the model was recruited at the 
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outpatient clinic of the Department of Rheumatology and 
Immunology and included patients with PsO, PsA, RA, as well as 
HC. This cohort comprised part of the participants included in 
our previous study (12). The validation cohort only included 
patients with PsO with or without nail psoriasis recruited at the 
outpatient clinic of the dermatology department. All participants 
signed a written informed consent for participation. This study 
was conducted according to the principles of the Declaration of 
Helsinki and was approved by the Ethics Committee of the 
University Hospital of Erlangen (#21-422-B). All participants 
provided written informed consent for the scientific use and 
publication of their photographs.

Photograph acquisition, segmentation, 
and processing

Hand photographs for the dataset were collected in a three-
stage process. Images from the first two stages were used for 
training, while images from the third stage were obtained by an 
external cohort at our dermatology department and were used for 
validation. In the first stage photographs were scored by three 
rheumatologists (FF, PF, AK), in the second stage by a fourth 
rheumatologist (RNS), and finally the third stage used for 
validation was annotated by a trained dermatologist (SK). In the 
first and second stage, all hand photographs were captured using 
the same iPad Pro (iOS 14, Apple, USA) device under standardized 
lighting and background using a custom photo box, as described 
elsewhere (12) (Supplementary Figure  2). In the third stage, 
photographs were taken without any standardization in terms of 
background, lighting, distance, angle, and focus using either the 
iPad Pro or an iPhone device (iOS 14, Apple, USA).

To prepare the nail photos for the training of the neural 
network, all hand photographs are pre-processed to extract only 
the nail region of the hand photograph, which is the only one 
relevant for mNAPSI classification. To do so, we  used the 
MediaPipe framework’s hand key point detection algorithm (15) 
(Google, USA), which identifies the nails by localizing the key 
points on each finger and selecting the most distal ones. The 
orientation of the extracted nail picture was standardized by 
rotating it based on the angle determine by the most distal and 
second most distal key point of the finger. After this, images are 
resized to fit uniform size. This process results in a set of ten 
normalized nail images per patient, as show in Figure 1. Further 
details to this process have been described elsewhere (12).

Clinical evaluation of nail disease with 
mNAPSI

To evaluate nail psoriasis severity, mNAPSI was used. 
Accordingly, changes in the nail were scored semi-quantitatively 
on a 0–3 scale: pitting (0 = 0, 0–10 = 1, 11–49 = 2, 50+ =3), 
crumbling (0% = 0, 1–25% =1, 26–50% =2, 51–100% = 3), 
onycholysis (0% = 0, 1–10% = 1, 11–30% = 2, 31–100% = 3). 
Ultimately, this results in a score ranging from 0 to 9 for each nail, 
totaling a maximum of 90 for both hands. In addition, the 
annotators are asked to evaluate the diagnosability of each nail 

image on a 1–3 scale including “good diagnosability” (=1), 
“acceptable diagnosability” (=2), and “non diagnosable” (=3).

For our analysis, a total of five physicians trained in 
performing the mNAPSI score were asked to score each nail 
independently. Picture of all nails were randomly assorted and 
presented to the readers in no particular order to minimize the 
risk of assigning lower or higher scores on a patient-by-patient 
basis. The readers were blinded to diagnosis, sex, age, and clinical 
history of all patients. Regarding the external cohort used for 
validation, nail photographs were presented in an analogous 
manner to a trained dermatologist who was also blinded to sex, 
age, and clinical history of the patients but not to diagnosis, as all 
patients had either PsO or PsA with or without nail involvement.

Deep learning architecture and model 
training

An overview of the pipeline of building up the dataset as well 
as the model training is depicted in Figure 1. Briefly, after the 
annotation of all mNAPSI scores through the readers, the deep 
learning model is trained using images from the training dataset 
to predict the grouped mNAPSI score between 0 and 4. Since the 
number of nail images with mNAPSI scores higher than 4 are 
limited compared with those with lower scores, images with a 
score of 4 or higher were aggregated into the same class (i.e., 
mNAPSI class 5) to mitigate the imbalance of the dataset. Nail 
images with diagnosability scored as “non diagnosable” were 
eliminated. We based our CNN on the transformer-based BEiT 
(Bidirectional Encoder representation from Image Transformers) 
(16). The network architecture is the same as the original vision 
transformer, with image tokenization and patch embedding to 
elaborate the global information in images. Next, we tested the 
pre-trained BEiT to carry out the nail classification task. The 
pre-trained model underwent a combined process of self-
supervised learning and training on the large-scale ImageNet-22 k 
dataset to ensure its generalizability, allowing it to be fine-tuned 
for new vision tasks. The fine-tuning of the hyper-parameter on a 
subset of the dataset resulted in the following configurations: 
Adam optimizer, a learning rate of 9e-6, and a weight decay of 
1e-3. Training was terminated when the validation AUROC did 
not further improve for 100 training epochs. All the models were 
trained on one Nvidia A100 (40G). To further enhance the model’s 
performance, five networks were trained on the same dataset with 
different initialization. The ensemble of the five models was then 
used to perform the final score prediction.

Experiments

To enhance the robustness of the neural network against the high 
variability expected in our dataset, we applied a data augmentation 
process. This included random flipping along both vertical and 
horizontal axes, random rotations within ±10 degrees, random 
translations of up to 10% in each direction, random scaling within 
±10%, and random shearing up to 2 degrees.

For model evaluation, the dataset was divided into three stages. 
The first two stages were split into training and test sets, while the 
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third stage, captured using a different device, was used exclusively for 
evaluation. To assess the impact of dataset size, we compared a model 
trained using only the first stage’s training data with a model trained 
using data from both the first and second stages. Additionally, the 
generalizability of the model was evaluated by comparing its 
performance on the test data from the first two stages with its 
performance on the third stage.

Reader study

A reader study was conducted to assess the interrater variability 
among the five expert readers using a subset of 100 nail 
photographs. Inter-rater reliability for the mNAPSI scores, 
aggregated at the patient level, was evaluated using Cronbach’s 
alpha. The correlation between the expert readers’ mNAPSI ratings 
and the network-based predictions was assessed using the Pearson 
correlation coefficient (Supplementary Figure 3).

Statistical methods

Patient characteristics were represented as summary statistics 
for continuous and categorical data. We  utilized Pearson 
correlation and the least-squares fit analyses to assess correlation 
between human annotation and predicted mNAPSI. To compare 
the accuracy of the classification performed by the algorithm 
against a reference value expected in case of a random 
classification, we used the macro area under the receiver operating 
characteristics curve (AUROC). The macro-AUROC measures 
how well a model distinguishes between positive and negative 
cases based on various thresholding settings for each class 
separately, avoiding strong influence from the dominant class. The 
reference value for the AUROC in case of a random classification 
is AUOC ≤0.5. The F1 score represents the harmonic mean 
between precision and recall while the mean average error (MAE) 
is the average of all absolute errors. Sensitivity, Specificity, 
Precision, and Accuracy were calculated for the prediction of each 

FIGURE 1

Pipeline of the data collection (a) and of the model training process (b). (c) Shows visual examples of nail changes throughout the different mNAPSI 
classes 1–5.
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mNAPSI class. Lastly, the weighted precision-recall (PR)-AUC 
was calculated, which summarizes the area under the Precision-
Recall curve, i.e., the trade-off between positive predictions and 
true positive rate depending on the class frequency.

Results

Patient characteristics

We included 638 patients providing a total of 5,357 nail 
images. In the first stage we included 177 patients with 1770 nail 
images, 283 patients with 2,630 nail images in the second stage, 
and 118 patients with 929 nail images in the third phase. In the 
first phase 1,227 nail images were scored good in diagnosability, 
while 412 as acceptable and 138 were not evaluable due to lacking 
image quality. In the second phase, 1883 nails are marked as good, 
366 as acceptable and 374 as not diagnosable. In the third phase, 
391 nails are marked as good, 433 as acceptable and 105 as 
not diagnosable.

Patients recruited in the first two stages were included in the 
training dataset. The training population had a female 
preponderance (60.0%) and a mean (standard deviation (SD)) age 
of 53.7 (14.2) years. All patients were of Caucasian ethnicity with 
low skin phototype (Fitzpatrick I-III). Most patients had PsA 
(n = 155, 35.8%) or cutaneous PsO (n = 49, 11.3%) without 
arthritis. Non-psoriatic controls included RA (n = 176, 40.6%) 
and HC (n = 53, 12.2%). The mean (SD) mNAPSI score in the 
training dataset was 8.3 (6.8). An exact overview of the mNAPSI 
classes for the training dataset is provided in Figure 2. Patients 
from the third stage constituted the external validation dataset. 
Sex distribution and age were comparable to the training dataset, 
with females slightly overrepresented (55.1%) and a mean age of 
50.1 (10.3) years (differences not significant). All patients from 
the validation cohort had a diagnosis of PsO (n = 178, 100%) and 
the mean (SD) mNAPSI was 10.02 (5.9), which was significantly 
higher than the training cohort (p < 0.001), likely due to the 
absence of non-psoriatic controls.

Performance of the algorithm on the 
training dataset

The model’s performance on the training dataset is presented in 
Table 1 and reports metrics for each mNAPSI class as well as the 
overall average. We observed a high correlation of 0.94 (p < 0.001) for 
mNAPSI scoring between human annotation and CNN, indicating a 
strong agreement on a single nail level. The least-squares fit analyses 
resulted in a slope of 0.95 and an intersection of −0.54, indicating 
that the predictive capability for mNAPSI is very high, with a slight 
underestimation of lower scores (Figure 3, left panel).

Accordingly, the CNN achieved a high classification 
performance throughout all classes, with an average (±SD) 
AUROC of 0.862 (0.236) and average accuracy of 0. 636 (±0.282) 
throughout classes. The CNN reached the best performance in 
classifying the lowest and highest mNAPSI scores, for which high 
AUROC and accuracy were obtained. Good AUROC was also 
achieved for mNAPSI classes 3 and 4 despite a drop in accuracy. 
Class 1 mNAPSI was identified with an AUROC of 0.898 and 
accuracy of 0.807, Class 2 mNAPSI with an AUROC of 0.785 and 
accuracy of 0.641, Class 3 mNAPSI with an AUROC of 0.794 and 
an accuracy of 0.283, Class 4 mNAPSI with an AUROC of 0.887 
and accuracy of 0.136, and Class 5 mNAPSI with an AUROC of 
0.945 and accuracy of 0.656. These performances are further 
reflected in the ROC and PRC curves (Figure  4A), where the 
performance of class 1, 4, and 5 stand out. Figure 5 (left panel) 
shows a confusion matrix of the training dataset providing detailed 
insight into correct and false predictions. The main weight of the 
matrix is distributed among the diagonal axis, which corresponds 
to correctly predicted mNAPSI scores.

Performance of the algorithm in the 
independent validation dataset

The model’s performance on the validation dataset is presented 
in Table  2. Correlation between human annotation and 
CNN-predicted classification remained high in the validation 

FIGURE 2

Histograms of the mNAPSI annotation of collected nails.
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dataset with r = 0.92 (p < 0.001). Compared to training, the least-
squares fit analysis showed a slightly reduced slope of 0.75 and an 
intersect of −1.09. This suggests that a good correlation with 
human annotation is retained, with underestimation of lower 
mNAPSI scores (Figure 3, left panel).

Class-wise and average metrics showed an expected slight 
performance drop compared to the training dataset, with an average 
AUROC of 0.801 and average accuracy of 0.434. The classification 
performance remained high throughout all classes, with Class 1, 4, 
and 5 remaining the best classified by AUROC and accuracy also in 
the validation dataset. Class 1 mNAPSI was identified with an AUROC 
of 0.820 and accuracy of 0.745, Class 2 mNAPSI with an AUROC of 
0.679 and accuracy of 0.497, Class 3 mNAPSI with an AUROC of 
0.352 and an accuracy of 0.283, Class 4 mNAPSI with an AUROC of 
0.843 and accuracy of 0.250, and Class 5 mNAPSI with an AUROC of 
0.923 and accuracy of 0.394. Notably, while the performance on Class 
2 slightly declined, the classification of Class 3 remained grossly stable, 
and the accuracy of class 4 even increased. Figure 3 shows the ROC 
and PRC curves of the validation dataset in comparison to those of the 
training dataset in the upper panel. A confusion matrix of the 
validation dataset is provided in Figure 5 (right panel).

Impact of training data size on neural 
network performance

A subset analysis was conducted on the image data from the first 
two phases to evaluate the impact of training data size. Random 
subsets comprising 20%, 40%, 60%, and 80 of the training data were 
sampled, and models were trained using the same configuration 
(Figure 6).

The relationship between classification metrics and training 
data size is illustrated in Figure 5. AUROC, F1 score, and MAE all 
improve as the training data size increases. Notably, sensitivity 
improves by 47% when comparing the 20% subset to the full 
dataset, while specificity shows a modest improvement of only 
1.5%. This indicates that the enhanced classification performance 
primarily stems from better detection of psoriatic nails. Overall, 

the subset analysis demonstrates that increasing the training data 
size enhances the robustness of the classification network 
(Table 3).

Reader study

The agreement within the five readers was good and achieved a 
Cronbach’s alpha of 80% (95% CI: 0.71–0.865), which is in line with 
previous reports (12). The pairwise Pearson correlations between 
readers showed r coefficients ranging from 0.32 and 0.76. All but one 
were significant with p values <0.01. Correlation between reader 3 and 
5 was not significant (Supplementary Table 1).

Discussion

In this study, we  successfully trained a CNN-based model to 
automatically predict and score nail disease severity in psoriatic 
disease by mNAPSI. Furthermore, we could successfully validate the 
model on an independent external cohort of nail photographs taken 
without any standardization in light, angle, and exposure.

The clinical interest in developing AI-based tools to automatically 
and objectively determine disease activity parameters in psoriasis, 
PsA, and other forms of arthritis is rising, but the clinical applicability 
of these approaches has remained limited so far. CNNs have already 
been successfully developed and validated to classify different forms 
of arthritis on high-resolution computed tomography (17) and MRI 
(18), as well as to score disease activity based on ultrasound (19, 20), 
X-rays (21), and MRI (18, 22). AI tools addressed at other clinical 
disease activity measures of PsA such as skin and nail disease are still 
underresearched, but there have been promising developments so far. 
For instance, Horikawa at al trained a model that slightly 
outperformed dermatologists in rating NAPSI (23), indicating that a 
standardization of nail disease assessment via AI-based tools 
is feasible.

In our photography-based model, the CNN reached high 
AUROC in all mNAPSI classes and correlated strongly with 

TABLE 1 Demographic and clinical characteristics of the cohorts.

Training cohort Validation cohort

Number of patients n 460 118

Sex Female, n (%) 276 (60%) 98 (55.1)

Male, n (%) 184 (40%) 80 (44.9)

Age Years, mean (SD) 53.7 (14.2) 50.1 (10.3)

Diagnosis Psoriatic Arthritis, n (%) 155 (35.8%) -

Psoriasis, n (%) 49 (11.3%) 178 (100.0%)

Rheumatoid Arthritis, n (%) 176 (40.6%) -

Healthy controls, n (%) 53 (12.2%) -

Nail photographs n 4,400 929

Good diagnosability, n (%) 3,110 (70.7) 391 (42.1)

Acceptable diagnosability, n (%) 778 (17.7) 433 (46.6)

Non-diagnosable, n (%) 512 (16.6) 105 (11.3)

mNAPSI mean (SD) 8.3 (6.8) 10.2 (5.9)
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human annotation. Compared to our previous work, we were able 
to substantially improve the performance of the classification 
model throughout all mNAPSI classes. Notably, the validation of 
the CNN on an independent cohort of hand photographs 
remained consistent with the ones observed during training 
despite the lack of standardization of the photographic conditions. 
The overall class performance of the CNN only slightly dropped 
during validation and showed some improvement in the accuracy 
of the intermediate classes.

Our experiments have some limitations. First, the training and 
validation datasets were derived from two centers at the same 
university. Second, intermediate mNAPSI severity classes (i.e., 
mNAPSI classes 2, 3, and 4) were more often misclassified 
compared to the extremes of the severity spectrum. This may 
be due to the higher abundance of class 1 nails, which resulted in 
better performance for this category, and the aggregation of 
multiple severity levels into class 5, reducing the likelihood of 

misclassification for high mNAPSI scores. Nonetheless, other 
sources of bias such as the influence of reader bias can 
be considered neglectable in our case, as the results of the reader 
study showed overall high agreement between all individual 
human annotators. Additionally, the CNN was not tested on other 
nail pathologies and may yield false positives if conditions other 
than psoriasis are causing the nail changes. As such, this model in 
its current version should only be  used for psoriatic patients. 
Finally, all patients were of Caucasian ethnicity, which might limit 
the performance of the algorithm in patients with darker 
skin tones.

To improve the accuracy and applicability of similar AI-based 
tools on real-life cohorts, CNNs will need to be trained to discern 
between nail conditions (e.g., onychomycosis, nail dystrophy, 
etc.). In general, training the CNN on larger, more diverse datasets 
of unstandardized photographs from multiple centers taken with 
different devices will be  indispensable for improving the 

FIGURE 3

Least-squares fit analyses of human annotation against CNN-predicted mNAPSI at patient-level for training (left panel) and validation datasets (right 
panel).

FIGURE 4

Confusion matrix of the validation dataset (right) and test data from training dataset (left).
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generalizability of the algorithm. Lastly, longitudinal validation in 
prospective cohorts is necessary to test and improve the model’s 
sensitivity to change, such as detecting nail changes in the same 
patient after starting therapy.

In conclusion, our validated CNN enables an automated and 
unbiased scoring of nail disease severity in patients with psoriasis 
and PsA. If successfully developed, our approach can be translated 
into clinical practice and has the potential to be implemented in 

FIGURE 5

ROC (left) and PRC (right) curves of the training (a) and validation (b) dataset.

TABLE 2 Classification performance of the neural network on the training dataset.

AUROC MAE F1 Precision Sensitivity Specificity Accuracy

Class 1 0.898 0.798 0.859 0.807 0.824 0.807

Class 2 0.785 0.580 0.620 0.641 0.744 0.641

Class 3 0.794 0.331 0.375 0.283 0.932 0.283

Class 4 0.887 0.207 0.323 0.136 0.988 0.136

Class 5 0.945 0.618 0.667 0.656 0.978 0.656

Average 

(macro)

0.862

0.507

0.569 0.505 0.893 0.505

Std 0.070 0.236 0.221 0.282 0.106 0.282

Average 

(micro)

0.432

0.636

0.569 0.636 0.909 0.636
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app-based self-reporting tools. To facilitate the diffusion of our 
CNN, we will make its architecture available on request.
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