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Introduction: The integration of pathology and radiology through artificial

intelligence (AI) represents a groundbreaking advancement in medical imaging,

providing a powerful tool for accurate diagnostics and the optimization of clinical

workflows. Traditional image classification methods encounter substantial

challenges due to the inherent complexity and heterogeneity of medical

imaging datasets, which include multi-modal data sources, imbalanced class

distributions, and the critical need for interpretability in clinical decision-making.

Methods: Addressing these limitations, this study introduces an innovative

deep learning-based framework tailored for AI-assisted medical imaging

tasks. It incorporates two novel components: the Adaptive Multi-Resolution

Imaging Network (AMRI-Net) and the Explainable Domain-Adaptive Learning

(EDAL) strategy. AMRI-Net enhances diagnostic accuracy by leveraging multi-

resolution feature extraction, attention-guided fusion mechanisms, and task-

specific decoders, allowing the model to accurately identify both detailed and

overarching patterns across various imaging techniques, such as X-rays, CT,

and MRI scans. EDAL significantly improves domain generalizability through

advanced domain alignment techniques while integrating uncertainty-aware

learning to prioritize high-confidence predictions. It employs attention-based

interpretability tools to highlight critical image regions, improving transparency

and clinical trust in AI-driven diagnoses.

Results: Experimental results on multi-modal medical imaging datasets

underscore the framework’s superior performance, with classification accuracies

reaching up to 94.95% and F1-Scores up to 94.85%, thereby enhancing

transparency and clinical trust in AI-driven diagnoses.

Discussion: This research bridges the gap between pathology and radiology,

o�ering a comprehensive AI-driven solution that aligns with the evolving

demands of modern healthcare by ensuring precision, reliability, and

interpretability in medical imaging.

KEYWORDS

medical imaging, deep learning, multi-modal integration, domain adaptation,

interpretability

1 Introduction

The integration of pathology and radiology through AI-assisted medical imaging

marks a pivotal shift in healthcare, driven by the need for faster, more precise diagnostics

(1). While pathology offers microscopic insights into cellular abnormalities, and radiology

provides macroscopic anatomical views, the traditional separation of these disciplines

has often led to diagnostic inefficiencies and inconsistent interpretations (2). Bridging
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this gap through advanced deep learning offers a compelling

solution to one of modern medicine’s most pressing challenges (3).

Deep learning-based image classification dramatically transforms

how multi-modal medical data are analyzed, enabling automated,

scalable, and accurate integration of diverse imaging sources

(4). However, despite notable advancements, existing methods

struggle with key issues: the heterogeneity of imaging modalities,

variability in acquisition protocols, and the limited interpretability

of black-box models in clinical contexts. These limitations

hinder their adoption and effectiveness in real-world healthcare

environments (5).

Early attempts at integrating pathology and radiology through

image classification depended heavily on traditional AI techniques

rooted in symbolic reasoning and handcrafted features (6).

Approaches such as texture analysis, edge detection, and statistical

modeling were widely employed to extract diagnostic patterns

from medical images (7). In pathology, wavelet transforms and

morphological operations were used to identify malignant tissue

in histopathological slides, while radiology favored methods like

thresholding and region-growing for segmenting lesions in CT

or MRI scans (8). Although these methods were interpretable

and aligned with established medical practices, they proved labor-

intensive, highly reliant on expert-driven feature engineering, and

struggled to generalize across diverse datasets (9). Most critically,

they lacked the ability to effectively integrate data from different

modalities, significantly limiting their relevance in interdisciplinary

clinical workflows (10).

The rise of data-driven machine learning brought measurable

improvements. Algorithms such as support vector machines,

k-nearest neighbors (11), and random forests began learning

directly from imaging data, reducing dependence on manual

feature crafting (12). These models enabled detection of key visual

cues—such as mitotic figures in pathology or nodules in CT

scans—across large datasets with varying resolution and format

(13). Nevertheless, such models faced intrinsic limitations. They

often required substantial preprocessing, struggled with the high

dimensionality and variability of medical images (14), and could

not capture complex hierarchical structures. Consequently, their

performance plateaued, particularly on datasets with significant

domain shifts or class imbalance (15).

Deep learning, especially convolutional neural networks

(CNNs), transformed medical image classification by addressing

these foundational issues (16). CNNs are capable of automatically

learning spatial hierarchies from raw image data, which has

enabled breakthroughs in both radiology and pathology (17).

Applications have ranged from detecting tumor subtypes in

whole-slide pathology images to classifying lung nodules and

segmenting anatomical structures in CT, MRI, and X-rays (18).

More recently, deep learning models have evolved into multi-

modal systems capable of fusing features across imaging domains.

Transformer-based architectures and attention mechanisms now

support end-to-end predictions that combine the strengths of

both microscopic and macroscopic views (19). However, these

powerful models still face significant hurdles: high-resolution

images demand considerable computational resources, annotated

datasets remain scarce, and the opaque nature of model decisions

continues to raise concerns about interpretability and clinical

trust (20).

To address these challenges, we propose a novel deep learning

framework that unifies pathology and radiology data analysis

through two primary innovations. The first is the Adaptive

Multi-Resolution Imaging Network (AMRI-Net), which captures

both fine-grained and global features across imaging modalities

using multi-resolution encoding and attention-guided fusion. The

second is the Explainable Domain-Adaptive Learning (EDAL)

strategy, which enhances cross-domain generalization through

domain alignment, uncertainty-aware learning, and interpretable

prediction mechanisms.

Our main contributions are as follows:

• We introduce AMRI-Net, a novel architecture tailored for

multi-scale medical imaging tasks across modalities including

X-ray, CT, and MRI.

• We develop EDAL to address domain shifts and improve

model transparency through attention-based interpretability.

• We conduct extensive experiments on benchmark datasets

(ISIC, HAM10000, OCT2017, and Brain MRI), demonstrating

significant improvements over state-of-the-art methods in

both accuracy and robustness.

2 Related work

2.1 Deep learning in medical image
classification

Deep learning has revolutionized medical image classification

by providing highly accurate and automated systems capable

of identifying patterns in complex datasets (21). Convolutional

Neural Networks (CNNs) have been the cornerstone of this

progress, as they excel in feature extraction from image data

(22). In radiology, CNNs have been employed to classify images

for tasks such as tumor detection, fracture diagnosis, and

organ segmentation (23). In pathology, deep learning models

are used to analyze high-resolution histopathological images for

cancer grading, cell segmentation, and identifying biomarkers

(24). Recent advancements, such as Vision Transformers (ViTs),

have enhanced the performance of deep learning models by

leveraging Employing attention mechanisms to capture both broad

and specific characteristics within images (25). Transfer learning

techniques, where pre-trained models are fine-tuned on specific

medical datasets, have significantly reduced the need for large

annotated datasets, which are often scarce in medical applications

(26). ensemble methods that combine multiple deep learning

architectures have demonstrated improved classification accuracy

and robustness. The application of these methods to both radiology

and pathology enables integrated analysis of imaging data from

different modalities, creating opportunities for a unified approach

to diagnosis.

2.2 Multimodal integration of pathology
and radiology

The integration of pathology and radiology has become an

emerging area of interest, aiming to provide a comprehensive
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understanding of disease processes by combining complementary

information from different imaging modalities (27). Deep learning

models have been instrumental in achieving this integration

by processing and correlating data from radiological scans,

such as CT and MRI, with histopathological images (28).

Multimodal deep learning architectures, including early, late, and

hybrid fusion methods, have been developed to combine these

heterogeneous data sources (29). Early fusion involves combining

raw input data before feature extraction, whereas late fusion

merges features extracted independently from each modality

(30). Hybrid methods leverage the strengths of both approaches

to achieve optimal performance. For example, joint attention

mechanisms and cross-modal embeddings have been proposed to

align radiological and pathological features, enablingmore accurate

diagnosis and prognosis prediction (31). Generative models, such

as Generative Adversarial Networks (GANs), have also been

used to synthesize missing modality data, thereby enhancing

the robustness of multimodal integration. This integration is

particularly valuable in oncological applications, where radiological

imaging provides anatomical and functional insights, while

pathology offers cellular and molecular-level information. Deep

learning models that unify these perspectives can facilitate

early detection, personalized treatment planning, and improved

patient outcomes.

2.3 Interpretability and clinical integration

The deployment of deep learning models for AI-assisted

integration of pathology and radiology requires addressing

challenges related to interpretability and clinical adoption (32).

Interpretability is critical in medical imaging, as clinicians need

to trust and understand model predictions to make informed

decisions (33). Techniques such as Class Activation Mapping

(CAM), Grad-CAM, and attention visualization have been

employed to provide visual explanations of how models classify

medical images (34). These techniques highlight the regions in

the input images that contribute most to the predictions, offering

insights into the model’s decision-making process (35). Another

important area of research is the development of interpretable

multimodal models that explain relationships between radiological

and pathological features. Beyond interpretability, the clinical

integration of deep learning systems requires robust validation

on diverse datasets, addressing issues of generalizability and bias

(36). Federated learning has emerged as a promising approach to

train models across multiple institutions without sharing patient

data, ensuring data privacy and enhancing model robustness.

regulatory approvals, such as those from the FDA, require

demonstrating model safety and efficacy in real-world scenarios.

Research efforts have also focused on designing user-friendly

interfaces and workflow integration tools that facilitate seamless

adoption of AI systems in clinical settings, enabling radiologists

and pathologists to collaboratively utilize these technologies for

improved diagnostic accuracy.

Despite these advancements, deep learning models often

operate as black boxes, raising concerns about their interpretability

and trustworthiness in clinical settings. For example, in radiology,

convolutional neural networks (CNNs) trained to detect

pulmonary nodules in chest CT scans may highlight regions

that do not align with radiologists’ visual assessments, making it

difficult to validate the decision-making process. In pathology,

whole-slide image classification models may yield high-confidence

predictions without clearly indicating the relevant cellular or

structural features, leading to skepticism among pathologists

regarding model reliability.

3 Method

3.1 Overview

Artificial intelligence (AI) has emerged as a transformative

technology in medical imaging, significantly enhancing diagnostic

accuracy, accelerating workflows, and enabling advanced image

interpretation. By leveraging machine learning (ML) and deep

learning (DL) algorithms, AI systems can analyze complex

medical images, uncover subtle patterns, and support clinicians

in decision-making. This subsection introduces our proposed AI-

driven framework for medical imaging and provides an outline

of the subsequent methodological contributions. Medical imaging

presents unique challenges and opportunities. While datasets such

as X-rays, CT scans, MRIs, and ultrasound images offer detailed

visual information, the inherent complexity, variability, and high-

dimensional nature of these datasets pose significant obstacles.

medical imaging often involves imbalanced data distributions,

where pathological cases are rare relative to normal findings.

Conventional image processing and analysis techniques frequently

fail to address these challenges adequately, necessitating the

development of innovative AI-based approaches.

In this work, we propose a robust and efficient framework that

builds on recent advancements in deep neural networks (DNNs)

and domain-specific learning strategies. The core methodology

is structured into the following key components, detailed in

the subsequent sections: In Section 3.2, we formalize the

medical imaging problem, introducing the mathematical and

computational foundations of our approach. This section defines

the imaging modalities under consideration, describes their

unique characteristics, and introduces key notations and problem

formulations. In Section 3.3 presents our novel model, termed

Adaptive Multi-Resolution Imaging Network (AMRI-Net). AMRI-

Net is a deep neural architecture specifically designed to

capture multi-scale features in medical images, enabling the

detection of subtle anomalies while preserving global contextual

information. The model employs attentionmechanisms and hybrid

convolutional layers to integrate spatial and semantic information

effectively. In Section 3.4, we introduce a new strategy for domain

adaptation and interpretability, referred to as the Explainable

Domain-Adaptive Learning (EDAL) framework. This strategy

enhances the robustness and generalizability of AMRI-Net across

diverse imaging datasets and clinical environments. EDAL provides

interpretability tools that highlight critical regions in the images,

aiding clinicians in understanding the model’s predictions.

3.2 Preliminaries

Medical imaging is the cornerstone of modern diagnostics,

offering insights into the body through various technologies
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such as X-rays, CT scans, MRIs, and ultrasounds. Each imaging

modality captures different types of information—like seeing the

skeleton with X-rays or soft tissue details with MRI—so combining

them promises more accurate diagnoses. However, analyzing these

diverse images is complex: they vary in scale, format, and structure,

and often come with significant noise or missing annotations.

Think of medical images like languages—X-rays might be like

English, MRIs like Chinese, and CT scans like Arabic. Building a

model to understand all these “languages” simultaneously requires

a system that can translate and integrate them into a unified

representation, while still preserving the nuances of each. In

this section, we formalize this problem setup and present the

mathematical foundation used to train our system across such

diverse inputs.

Let X = {xi}
N
i=1 denote a dataset consisting of N medical

images, where each xi ∈ R
H×W×C represents an image with height

H, width W, and C channels. Associated with each image is a

corresponding label yi, which can represent a binary classification

label yi ∈ {0, 1} for the presence or absence of a pathology, a multi-

class label yi ∈ {1, 2, . . . ,K} for identifying the specific type of

pathology, or a segmentation mask yi ∈ {0, 1}H×W for pixel-wise

annotations such as tumor localization.

The objective is to develop a mapping function fθ :X → Y ,

parameterized by θ , that predicts the labels ŷi = fθ (xi) as accurately

as possible. This can be achieved through supervised, semi-

supervised, or unsupervised learning, depending on the availability

of annotated data.

Different imaging modalities exhibit unique characteristics

that influence model design. X-ray provides 2D projections

of internal structures and is commonly used for detecting

fractures, pneumonia, and other conditions. These images are

characterized by low resolution and high noise, necessitating

robust pre-processing techniques. CT produces 3D volumetric

data by combining multiple 2D slices, offering detailed anatomical

information, but often involves high dimensionality, requiring

techniques for dimensionality reduction or slice-wise analysis.

MRI utilizes magnetic fields to generate high-contrast images of

soft tissues, where different sequences capture complementary

information. Ultrasound provides real-time imaging using sound

waves and is widely applied in obstetrics and cardiology,

but its images are highly susceptible to speckle noise and

operator variability.

Let M denote the set of modalities under consideration. For

each modality m ∈ M, the data distribution pm(x) can vary

significantly, posing challenges for cross-modal generalization. Our

methodology is designed to accommodate these variations through

adaptive modeling.

Each medical image xi is represented as a high-dimensional

tensor in R
H×W×C. To facilitate analysis, hierarchical features z

(l)
i

are extracted at different levels of abstraction:

z
(l)
i = f

(l)
θ (xi), l = 1, 2, . . . , L, (1)

where f
(l)
θ represents the l-th layer of a neural network. These

features capture progressively higher-level representations,

from low-level texture and edge features to high-level

semantic information.

The extracted features are used for downstream tasks, such as

classification and segmentation. For classification, probabilities are

assigned to different labels using a softmax function:

p(y = k|xi) =
exp(w⊤

k
z
(L)
i )

∑K
j=1 exp(w

⊤
j z

(L)
i )

, (2)

wherewk are learnable weights for the k-th class. For segmentation,

a pixel-wise label map ŷi is predicted using a decoder network:

ŷi = σ (f decθ (z
(L)
i )), (3)

where σ (·) is the sigmoid function for binary segmentation or

softmax for multi-class segmentation.

Several challenges arise in developing AI models for medical

imaging. Data imbalance is a significant issue, as pathological cases

are often underrepresented in datasets, leading to skewed learning.

Let p(y = 1)≪p(y = 0) denote the class imbalance, which requires

techniques such as weighted loss functions or data augmentation.

High dimensionality poses another challenge, especially for

volumetric data such as 3D CT scans, which require substantial

computational resources. A 3D image can be represented as xi ∈

R
H×W×D×C, where D is the depth, often necessitating slice-wise or

patch-based approaches for efficient processing.

Medical images are also prone to noise, artifacts, and variability

in acquisition protocols. Let ǫ ∼ N (0, σ 2) represent additive

noise, which can degrade model performance. Explainability is a

critical factor for clinical adoption, as black-box models hinder

interpretability. It is crucial to provide interpretable predictions by

highlighting critical regions in the image. The importance map is

defined as:

Ii = Grad-CAM(xi) = ReLU

(

∑

k

αkAk

)

, (4)

where Ak are activation maps, and αk are weights computed using

backpropagation.

The learning objective for fθ is to minimize a task-specific loss

L, which may include classification and segmentation losses. The

classification loss is given by:

Lcls = −
1

N

N
∑

i=1

K
∑

k=1

yi,k log p(y = k|xi), (5)

while the segmentation loss is defined as:

Lseg =
1

N

N
∑

i=1

[

Ldice(yi, ŷi)+ Lce(yi, ŷi)
]

, (6)

where Ldice is the Dice loss, and Lce is the cross-entropy loss.

To ensure clarity and accessibility of the proposed

mathematical framework, all key notations and symbols used

throughout the methodology have been systematically defined. A

summary table of these notations is provided in Table 1, offering

concise descriptions.
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TABLE 1 Summary of symbols and notations used throughout the

methodology.

Symbol Description

xi Input medical image i, of shape H ×W × C

yi Ground truth label associated with image xi

ŷi Predicted label for input xi

fθ Deep learning model parameterized by θ

f
(l)
θ Feature extraction function at layer l

z
(l)
i Feature map of xi at the l-th layer

zfusion Multi-resolution fused feature representation

σ (·) Activation function (Sigmoid or Softmax)

W(l) , b(l) Weight and bias at the l-th convolutional layer

αk Grad-CAM importance weight for activation map k

Ak Activation map for the k-th feature channel

Ii Importance heatmap from Grad-CAM for input xi

Lcls Classification loss (cross-entropy)

Lseg Segmentation loss (Dice+ cross-entropy)

Lrecon Reconstruction loss for anomaly detection

Ladv Adversarial loss for domain adaptation

MMD(·) Maximummean discrepancy function

Dφ Domain discriminator in adversarial training

x̂i Reconstructed image corresponding to xi

s(x) Anomaly score calculated from reconstruction error

3.3 Adaptive multi-resolution imaging
network

In this subsection, we introduce Adaptive Multi-Resolution

Imaging Network (AMRI-Net), a novel deep learning architecture

tailored for medical imaging tasks. Detecting abnormalities in

medical images often requires understanding both the big picture

and the fine details—like spotting a large tumor in a brain MRI,

or tiny microcalcifications in a mammogram. Relying on a single

resolution is like trying to read a city map where you can either

see the whole city or zoom in on one block, but not both. AMRI-

Net addresses this by processing images at multiple resolutions

simultaneously, allowing it to capture both local patterns and global

context. At the heart of AMRI-Net is a multi-resolution encoder

that mimics how radiologists interpret scans—from overview to

detail. It extracts features from the image at various scales and

then uses attention mechanisms to determine which features

are most informative for the diagnostic task at hand. These

features are then fused together and decoded into predictions,

whether that be a disease classification, lesion segmentation,

or anomaly detection. AMRI-Net is designed to address the

unique challenges of medical imaging, includingmulti-scale feature

extraction, high-dimensional data, and the need for interpretable

predictions. The model integrates adaptive feature hierarchies,

attention mechanisms, and multi-resolution processing to enhance

diagnostic performance across imaging modalities such as X-rays,

CT, MRI, and ultrasound (As shown in Figure 1).

3.3.1 Multi-resolution feature extraction
Medical images are inherently diverse, presenting

abnormalities at various scales, such as microcalcifications in

mammograms or large tumors in CT scans. These features, which

can be of different sizes and complexities, necessitate a flexible

approach to capture their multi-scale nature. To achieve this, the

encoder f encθ performs feature extraction at multiple resolutions,

ensuring that fine details as well as more abstract, large-scale

features are both captured. The encoder employs a hierarchical

architecture of convolutional layers that vary in receptive field size,

enabling it to extract features across various spatial scales.

At the l-th layer of the encoder, the feature map z(l) is updated

as follows:

z(l) = σ

(

W(l) ∗ z(l−1) + b(l)
)

, l = 1, 2, . . . , L, (7)

where z(l) represents the feature map at layer l, W(l) is the filter

(or kernel) for that layer, b(l) is the bias vector, and ∗ denotes

the convolution operation. The function σ (·) Acts as a non-linear

activation function, like ReLU, which introduces non-linearity into

the network and allows it tomodel complex relationships within the

data. The convolution operation applies the filter W(l) to the input

feature map z(l−1), followed by adding a bias term b(l) to adjust

the output.

To further capture multi-resolution information,

downsampling operations such as max pooling or strided

convolutions are interleaved with convolutional layers. Max

pooling, for example, reduces the spatial resolution of the

feature maps while retaining the most prominent features,

thus achieving a form of spatial abstraction. The combination

of convolution and downsampling at each layer ensures that

the encoder extracts hierarchical features at progressively

coarser resolutions.

z
(l)
downsampled

= Pooling(z(l)), (8)

where Pooling represents a max pooling operation that reduces

the size of the feature map z(l) by a fixed factor, typically 2x in

both spatial dimensions. This downsampling process enables the

network to focus on more global, high-level features in deeper

layers of the architecture.

The encoder’s output is a set of feature maps {z(l)}L
l=1

, each

corresponding to a different resolution. These multi-resolution

feature maps, representing varying levels of detail and abstraction,

serve as the input to subsequent stages of the model, such as an

attention-guided fusion module. By intelligently unifying multi-

resolution features, the fusion module creates a more detailed,

more comprehensive representation of the medical image, which

is critical for accurately identifying and classifying abnormalities of

varying sizes and complexities.

The use of multi-resolution representations ensures that

both fine-grained, local features and larger, more abstract

features are appropriately captured, enabling the model to
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FIGURE 1

Architecture of the adaptive multi-resolution imaging network (AMRI-Net). The input signal undergoes multi-resolution feature extraction through

convolutional layers with di�erent kernel sizes, capturing both fine and coarse patterns. An attention-guided fusion module then adaptively

integrates these features to emphasize diagnostically relevant regions. The fused representation is encoded by a transformer module to model

long-range dependencies. A task-specific decoder follows, producing outputs for classification, segmentation, or anomaly detection, with

corresponding loss functions applied during training.

make more robust predictions across a wide range of medical

imaging tasks.

zfusion = ffusion

(

{z(l)}Ll=1

)

, (9)

where ffusion represents the attention-guided fusion mechanism

that selectively combines the feature maps from different layers,

allowing the model to prioritize important features while

discarding irrelevant ones.

3.3.2 Attention-guided fusion
Integratingmulti-scale information is crucial for medical image

analysis, as abnormalities often span multiple resolutions. Multi-

scale feature fusion can significantly enhance model robustness

and discriminative ability. The attention-guided fusion module

adaptively selects the most important features and combines

fine-grained details with global contextual information, thereby

improving the model’s perception of abnormal regions.

Let the multi-scale feature representations be denoted as

{z(l)}L
l=1

, where l indicates the scale index, and there are L different

scales. We employ a self-attention mechanism to adaptively

aggregate features across different scales. First, we compute the

query, key, and value matrices:

Q(l) = W
(l)
Q z(l), K(l) = W

(l)
K z(l), V(l) = W

(l)
V z(l), (10)

where W
(l)
Q ,W

(l)
K ,W

(l)
V are learnable projection matrices that map

the original features into the attention space.

Then, we compute the fusion weights α(l) across scales:

α(l) =
exp(w⊤a(l))

∑L
j=1 exp(w

⊤a(j))
, (11)

wherew is a learnable parameter vector. The softmax normalization

ensures that the sum of all scale weights α(l) is equal to 1.

The fused feature representation zfusion is obtained by a

weighted sum of the multi-scale features:

zfusion =

L
∑

l=1

α(l)z(l). (12)

This fusion mechanism effectively retains high-resolution fine

details while leveraging low-resolution global context, thereby

enhancing the representational power of the model. this method
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adaptively adjusts the weights of different scales, enabling themodel

to focus more on critical regions and improve its perception of

abnormal tissues.

3.3.3 Task-specific decoding
The decoder f decθ transforms the fused representation zfusion

into task-specific outputs, with the structure varying depending

on the application. Different tasks require specialized decoding

mechanisms to ensure optimal performance.

For classification tasks, such as disease detection, the decoder

applies global average pooling followed by a fully connected layer

to obtain class probabilities. The probability of assigning an input x

to class k is given by the softmax function:

p(y = k|x) =
exp(w⊤

k
zfusion)

∑K
j=1 exp(w

⊤
j z

fusion)
, (13)

where wk are the learnable weight parameters corresponding to

the k-th class, and K represents the total number of classes. This

formulation ensures that the predicted probabilities sum to one

across all possible classes.

For pixel-wise labeling tasks such as segmentation, the decoder

employs a series of upsampling and convolutional layers to generate

a segmentation map ŷ ∈ R
H×W×Cout :

ŷ = σ

(

f
up
θ (zfusion)

)

, (14)

where f
up
θ represents the upsampling operation, which can involve

transposed convolutions, bilinear interpolation, or a combination

of both. The function σ represents an activation function, typically

chosen as the softmax function for multi-class segmentation or the

sigmoid function for binary segmentation.

For unsupervised anomaly detection, the decoder reconstructs

the input image using a generative network:

x̂ = gφ(z
fusion), (15)

where gφ is the reconstruction network, often implemented using a

deep autoencoder or a generative adversarial network (GAN). The

anomaly score is derived from the reconstruction error:

s(x) = ‖x− x̂‖22. (16)

A high reconstruction error indicates a higher likelihood of

the input being anomalous, as the model struggles to reconstruct

out-of-distribution samples effectively.

3.3.4 Loss functions
The AMRI-Net model is trained end-to-end using a composite

loss function L tailored to the specific task (As shown in Figure 2).

For classification tasks, a categorical cross-entropy loss function

is used:

Lcls = −
1

N

N
∑

i=1

K
∑

k=1

yi,k log p(y = k|xi). (17)

Here, yi,k denotes the ground truth label for the i-th sample

belonging to class k, and N represents the batch size.

For segmentation tasks, a combined loss function

incorporating Dice loss and cross-entropy loss is used to

enhance segmentation performance:

Lseg =
1

N

N
∑

i=1

[

Ldice(yi, ŷi)+ Lce(yi, ŷi)
]

. (18)

The Dice loss is defined as:

Ldice(y, ŷ) = 1−
2
∑

yŷ+ ǫ
∑

y+
∑

ŷ+ ǫ
, (19)

where ǫ is a small constant added for numerical stability. The

cross-entropy loss Lce is given by:

Lce(y, ŷ) = −

Cout∑

c=1

yc log ŷc. (20)

For anomaly detection, the reconstruction loss is computed

as the mean squared error (MSE) between the input and

reconstructed image:

Lrecon =
1

N

N
∑

i=1

‖xi − x̂i‖
2
2. (21)

In some cases, an adversarial loss Ladv can be incorporated

to improve the quality of reconstructed images when using GAN-

based anomaly detection:

Ladv = E[logD(x)]+ E[log(1− D(x̂))], (22)

where D represents a discriminator network trained to distinguish

between real and reconstructed images. The final loss for anomaly

detection can be a weighted sum:

Lanom = λreconLrecon + λadvLadv, (23)

where λrecon and λadv are weighting factors controlling the relative

contribution of each term.

This multi-resolution design is particularly well-suited to

medical imaging tasks due to the inherent variability in the size,

shape, and texture of pathological features. For instance, small

lesions like microaneurysms may be only a few pixels in size,

while large tumors can span significant portions of an image. A

fixed-resolution approach may miss critical details at one end of

the scale or fail to contextualize them within broader anatomical

structures. By extracting features at multiple resolutions, AMRI-

Net ensures that subtle details and large-scale patterns are both

captured, providing a more comprehensive understanding of the

image. The attention-guided fusion mechanism allows the network

to dynamically weigh features from different resolutions based on

their relevance to the task. This is crucial in medical contexts,

where not all image regions contribute equally to a diagnosis.

For example, radiological scans may include both diseased and
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FIGURE 2

The diagram illustrates the Loss Functions, where global pooling extracts channel-wise features, concatenation merges them, convolution refines

the representation, and sigmoid activation generates an attention map to enhance classification, segmentation, and anomaly detection tasks.

healthy tissue, and indiscriminately fusing features may dilute

important signals. Attention-guided fusion helps the model

prioritize diagnostically salient features—such as irregular textures,

abrupt boundaries, or abnormal densities—while suppressing less

informative background noise. These components make AMRI-

Net highly adaptable to the heterogeneous nature of clinical data,

improving both accuracy and interpretability across a wide range

of medical imaging scenarios.

In addition to the primary loss functions adopted in our

framework, we conducted a comparative analysis of alternative

loss formulations during preliminary experiments to assess their

suitability for various medical imaging tasks. For classification

tasks, we compared categorical cross-entropy (CE) loss with focal

loss, especially under class imbalance conditions. While focal loss

offered improvements in recall for minority classes, cross-entropy

yielded more stable convergence and better overall F1-score across

balanced and moderately imbalanced datasets such as HAM10000.

For segmentation tasks, we evaluated the Dice loss and Jaccard

loss in combination with standard pixel-wise cross-entropy. Dice

loss consistently outperformed Jaccard in capturing fine-grained

lesion boundaries, particularly in datasets with sparse foreground

pixels, while being more computationally efficient. Furthermore,

we tested Tversky loss as a variant of Dice to manage false

positives/negatives in small tumor detection, but observed only

marginal gains relative to the added complexity. These empirical

findings supported our choice of the combined Dice and cross-

entropy loss for segmentation, and categorical cross-entropy for

classification, as they provided the best trade-off between accuracy,

training stability, and computational cost across diverse modalities

and data distributions.

3.4 Explainable Domain-Adaptive Learning

In this subsection, we propose Explainable Domain-Adaptive

Learning (EDAL), a novel strategy designed to enhance the

robustness, generalizability, and interpretability of AI models in

medical imaging. Medical images can vary widely depending on the

equipment, settings, or even the institution they’re from. A model

trained on one hospital’s data might perform poorly on another’s.

Additionally, in clinical use, doctors need to understand why an

AI made a decision—not just the output. EDAL is our solution

to both these challenges. Imagine teaching a student who needs

to apply knowledge not just in their textbook but also in the real

world. EDAL does something similar: it helps the model adapt to

new domains (like new hospitals or modalities) without retraining

from scratch, while also showing its “work” by highlighting the

regions that led to its decisions. This makes the model both robust

and interpretable, two critical features for clinical deployment.

EDAL addresses critical challenges such as domain shifts between

imaging modalities, the variability of acquisition protocols, and the

need for interpretable predictions in clinical practice. By leveraging

domain adaptation, self-supervised learning, and explainability

mechanisms, EDAL complements the Adaptive Multi-Resolution

Imaging Network (AMRI-Net) to create a holistic solution for

medical imaging tasks (As shown in Figure 3).

3.4.1 Domain alignment
In medical imaging, data often come from different

sources—such as different hospitals, imaging devices, or patient

populations—which can cause noticeable differences in image

quality, structure, or intensity. This mismatch between training

(source) and deployment (target) data is known as a domain

shift, and it can significantly reduce model performance on

unseen datasets.

To overcome this, EDAL includes a domain alignment module

that helps the model learn features that are common across both

domains. The goal is to make the internal representations (feature

embeddings) of source and target images look similar, even if the

images themselves appear different.

We achieve this alignment using two common strategies. First,

the Maximum Mean Discrepancy (MMD) method compares the

statistical distributions of features from the source and target

domains, and minimizes the difference between them. It helps

bring both feature spaces closer together without needing target

labels. Second, in adversarial learning, we introduce a domain

discriminator—a small neural network that tries to tell whether a

feature comes from the source or the target domain. Meanwhile,

the main model is trained to confuse this discriminator, thereby
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FIGURE 3

Overview of the Explainable Domain-Adaptive Learning (EDAL) framework, showcasing key modules such as Domain Alignment, Uncertainty

Estimation, Interpretability via Attention, and Decoder Adaptation with prompt. Each module integrates techniques like multi-head attention, MLP,

and adapters to enhance the robustness, adaptability, and interpretability of medical imaging models.

learning domain-invariant features. A gradient reversal layer is

used to flip the gradient signal during training, enabling this

adversarial behavior.

The overall objective combines standard classification loss

on the labeled source data with the adversarial loss for domain

alignment, balanced by a trade-off parameter λ:

Ltotal = Lsource + λLadv (24)

This process allows EDAL to maintain high performance

when applied to new datasets, even without additional fine-tuning

or retraining.

3.4.2 Uncertainty estimation
Medical imaging data often contains noise, artifacts,

or ambiguous cases, which can negatively impact model

performance and reliability. To address this challenge,

EDAL incorporates uncertainty estimation to improve

robustness and prioritize high-confidence predictions.

The uncertainty of a prediction ŷ is decomposed into two

main components:

Uncertainty(ŷ) = Var[ŷ|x]
︸ ︷︷ ︸

Aleatoric Uncertainty

+ Var[ŷ|θ]
︸ ︷︷ ︸

Epistemic Uncertainty

, (25)

where aleatoric uncertainty captures the inherent noise in the

data, such as sensor noise, annotation variability, or image

degradation. Epistemic uncertainty, on the other hand, stems from

model uncertainty due to limited training data or insufficient

generalization. These two sources of uncertainty must be explicitly

modeled to ensure robust and reliable predictions in medical

imaging tasks.

To quantify uncertainty, EDAL leverages Monte Carlo (MC)

Dropout, which approximates Bayesian inference by performing

multiple stochastic forward passes through the network with

dropout enabled. The uncertainty is estimated as:

Uncertainty(ŷ) ≈
1

T

T
∑

t=1

[

ŷt − ŷ
]2

, (26)

where ŷt is the prediction from the t-th stochastic forward pass, and

ŷ is the mean prediction across T passes:

ŷ =
1

T

T
∑

t=1

ŷt . (27)

A higher variance across stochastic predictions indicates greater

uncertainty in the model’s output. This enables the identification of

unreliable predictions, which can be flagged for manual review or

prioritized for further refinement.

To disentangle aleatoric and epistemic uncertainty, we

explicitly model each component. Aleatoric uncertainty can be

estimated using a heteroscedastic noise model, where the model

predicts both the mean ŷ and variance σ 2(x):

Aleatoric Uncertainty(ŷ) = E[σ 2(x)]. (28)

Epistemic uncertainty is captured by the variance of predictions

across different stochastic forward passes:

Epistemic Uncertainty(ŷ) ≈
1

T

T
∑

t=1

(ŷt − ŷ)2. (29)

Incorporating uncertainty estimation allows EDAL to make

more informed decisions. Given an uncertainty threshold τ ,

predictions exceeding this threshold are flagged:

I[Uncertainty(ŷ) > τ ] = 1. (30)
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FIGURE 4

The diagram illustrates the process of Interpretability via Attention. It depicts how an input image is processed through a series of projections and

attention mechanisms, generating query (Q), key (K), and value (V) matrices. The model computes attention scores using a softmax function, which

are then used to produce activation maps.

These flagged cases can then be routed for manual review,

iterative refinement, or active learning strategies to improve model

robustness over time.

3.4.3 Interpretability via attention
To promote clinical adoption, EDAL integrates attention-based

interpretability tools that highlight critical regions in medical

images. These tools provide visual explanations for the model’s

decision-making process, thereby increasing trust and enabling

clinicians to verify predictions. One of the most effective methods

for visual interpretability in deep learning models is Gradient-

weighted Class Activation Mapping (Grad-CAM), which assigns

importance scores to different regions in an image based on their

contribution to the model’s prediction (As shown in Figure 4).

For a given prediction ŷ, the importance of each region in

the input image is determined by computing the gradient of the

predicted output with respect to activation maps from the AMRI-

Net encoder. The Grad-CAM heatmap is defined as:

Ii = ReLU

(

∑

k

αkAk

)

, (31)

where Ak represents the activation maps obtained from the final

convolutional layer of the encoder, and αk are the importance

weights computed as:

αk =
1

Z

∑

i,j

∂ ŷ

∂A
i,j

k

. (32)

Here, Z denotes the total number of spatial locations in the

activation map, and the gradient
∂ ŷ

∂A
i,j

k

captures how much a small

change in Ak at position (i, j) would affect the predicted output

ŷ. The ReLU function ensures that only the positive importance

scores are retained, thereby focusing on the most relevant regions

in the image.

To enhance the interpretability of Grad-CAM results, the raw

importance heatmap Ii is often normalized and overlaid onto the

original image:

Inormi =
Ii −min(Ii)

max(Ii)−min(Ii)
, (33)

where Inormi represents the normalized heatmap, ensuring that

values are scaled between 0 and 1 for better visualization.

It is worth noting that while our implementation of Grad-

CAM adheres to the core principles established in the original

formulation—namely the computation of activation importance

via backpropagation gradients and the use of a ReLU function to

isolate positive influences—we introduce slight modifications to

adapt the method for our multi-resolution, attention-integrated

setting. The weight coefficients αk in our framework are computed

using a normalized aggregation strategy over spatial dimensions,

which has been shown to improve heatmap stability when

dealing with high-resolution medical images. The use of layer-

specific attention scores in conjunction with Grad-CAM outputs is

designed to provide clinicians with more focused and interpretable

saliency maps. While these adjustments deviate from the canonical,

they are empirically validated to enhance visual coherence and

clinical relevance in our experiments.

Attention-based transformer models can generate self-

attention maps that highlight regions of interest. Given an input

image x, the self-attention scores in a transformer-based encoder

are computed as:

Attention(Q,K,V) = softmax

(

QK⊤

√

dk

)

V, (34)
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where Q,K,V are the query, key, and value matrices derived from

the encoded representations, and dk is the dimensionality of the

key vectors. The resulting attention map assigns higher scores to

more relevant regions in the image, offering another pathway for

visual interpretability.

For multi-class classification tasks, class-specific attentionmaps

can be computed by averaging the attention weights across multiple

layers and heads:

Iatt =
1

HL

H
∑

h=1

L
∑

ℓ=1

Ah,ℓ, (35)

whereH and L are the total number of attention heads and layers in

the transformer encoder, andAh,ℓ represents the attentionmatrix at

head h and layer ℓ.

While the proposed AMRI-Net and EDAL framework

demonstrates superior diagnostic performance and strong

generalization across diverse datasets, we acknowledge that its

computational demands may present challenges for deployment

in resource-limited environments. The use of transformer-based

architectures and multi-resolution feature extraction, while critical

for accuracy and interpretability, inevitably increases model

complexity and inference time. To mitigate this, we incorporated

several architectural optimizations, such as adaptive pooling

layers, lightweight attention modules, and distributed training

strategies. In practice, the framework can be tailored to specific

deployment needs. For example, inference can be accelerated

through model pruning, quantization, or distillation techniques,

which are compatible with our architecture due to its modular

design. The Explainable Domain-Adaptive Learning (EDAL)

strategy selectively activates attention-based interpretability

modules only when uncertainty exceeds a predefined threshold,

thereby reducing unnecessary computational overhead in high-

confidence scenarios. These design choices collectively ensure

that the framework remains scalable and adaptable across clinical

settings with varying computational resources.

4 Experimental setup

4.1 Dataset

The ISIC Dataset (37) is a large-scale dataset specifically

designed for skin lesion analysis. It contains over 25,000 images

of skin lesions, which are categorized into various types of skin

diseases, including melanoma, keratosis, and benign nevi. The

dataset is highly diverse, with images sourced frommultiple clinical

sources and featuring a wide range of lesion types, sizes, and

color variations. The ISIC dataset is widely used for training

and evaluating deep learning models for skin cancer detection

and segmentation tasks. The HAM10000 Dataset (38) is another

comprehensive collection of dermatological images, focusing on

a diverse set of skin conditions. It contains 10,015 images of

skin lesions, which are divided into seven different categories,

including melanomas, basal cell carcinomas, and dermatofibromas.

This dataset is particularly valuable for training classification

models aimed at detecting and classifying various types of skin

cancer. The HAM10000 dataset offers a rich diversity of images

that represent different ethnicities, ages, and clinical conditions.

The OCT2017 Dataset (39) is a specialized dataset designed for

optical coherence tomography (OCT) images, often used in retinal

imaging. The dataset includes 84,000 images spanning 13 different

categories, such as normal and pathological conditions like diabetic

retinopathy, glaucoma, and macular degeneration. OCT2017 is

essential for training models that can assist in the diagnosis of

retinal diseases through OCT scans, providing a large and high-

quality annotated resource for retinal image analysis tasks. The

Brain MRI Dataset (40) is a collection of medical images used

for brain tumor detection. It contains 3,064 MRI images, each

annotated with labels indicating the presence or absence of tumors.

The dataset includes various MRI modalities, such as T1-weighted,

T2-weighted, and contrast-enhanced images. It is commonly used

for training deep learning models for brain tumor classification,

segmentation, and detection, offering a rich set of images that cover

different types of tumors, including gliomas, meningiomas, and

pituitary tumors.

4.2 Experimental details

The experiments were conducted on a high-performance

computing environment equipped with NVIDIA A100 GPUs,

utilizing PyTorch as the primary deep learning framework. The

experiments were designed to evaluate the proposed method on

four benchmark datasets: ISIC, HAM10000, OCT2017, and Brain

MRI. The training and evaluation protocols followed standard

practices in image classification, ensuring reproducibility and

fairness in comparisons. For the ISIC dataset, we used the

commonly employed ISIC-1K subset with 1,000 classes. The input

images were resized to 256 × 256 pixels, followed by random

cropping to 224 × 224 pixels during training. Data augmentation

techniques, including random flipping, rotation, and color jittering,

were applied to improve generalization. For HAM10000, a similar

preprocessing pipeline was used, with the dataset split into 60%

training and 40% testing. For OCT2017 and Brain MRI, images

were resized to 224× 224 pixels, and additional data augmentation

strategies, such as random zoom and contrast adjustments, were

employed to handle fine-grained and texture-specific variations.

The backbone of the model was a transformer-based architecture,

initialized with pre-trained weights from ISIC. The optimizer used

was AdamW with an initial learning rate of 1e-4 and a weight

decay of 1e-3. A cosine annealing learning rate scheduler was

employed, and the batch size was set to 64 for ISIC and HAM10000,

while a smaller batch size of 32 was used for OCT2017 and Brain

MRI due to their smaller dataset sizes. Training was conducted

for 100 epochs for ISIC and HAM10000 and 50 epochs for

OCT2017 and Brain MRI, with early stopping based on validation

accuracy. The loss function used was cross-entropy loss for all

classification tasks. For fine-grained classification on OCT2017,

an additional regularization term was added to handle class

imbalance. During testing, center cropping was applied to evaluate

the models, and top-1 and top-5 accuracy metrics were used for

performance evaluation. For Brain MRI, texture-based evaluation

metrics, including mean accuracy across texture classes, were also

computed. The proposed method’s performance was benchmarked

against multiple baselines, including convolutional neural networks
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and transformer-based architectures. The results demonstrated

that our method consistently outperformed these baselines in

accuracy and efficiency across all datasets. All implementation

details, along with the code and pre-trained models, will

be made publicly available to facilitate reproducibility and

further research.

To meet the computational demands of high-resolution

pathology images and multi-modal radiology scans, the framework

employs distributed training using NVIDIA A100 GPUs in a

multi-GPU setting facilitated by PyTorch’s DistributedDataParallel

module. Memory optimization is achieved through the use of

patch-based input pipelines, mixed-precision training via the Apex

AMP library, and gradient checkpointing for transformer layers.

These techniques collectively reduce memory consumption and

accelerate training time by approximately 30% without sacrificing

model performance, enabling efficient scaling to large datasets such

as ISIC-1K and OCT2017. Such optimization ensures that the

proposed method remains feasible for deployment in resource-

constrained clinical settings.

In all experiments, training was conducted using a server

equipped with NVIDIA A100 GPUs (80 GB memory), Intel Xeon

Gold 6348 CPUs (32 cores, 2.60 GHz), and 512 GB RAM, with

the software environment built on PyTorch 2.0 and CUDA 12.1.

For deployment scenarios, we evaluated model inference speed and

memory consumption on two types of hardware platforms. On a

high-performance server with NVIDIA A100 or V100 GPUs, the

model achieved an average inference time of approximately 58

milliseconds per image (input size 224× 224). For edge computing

deployment, a lightweight version of the model was optimized and

tested on an NVIDIA Jetson AGX Orin (32 GB memory), yielding

an inference time of approximately 125 milliseconds per image,

with an averagememory usage of 7.4 GB. These results demonstrate

the scalability of the proposed framework, supporting both server-

grade and resource-constrained environments, and highlight its

potential for real-world clinical applications.

4.3 Comparison with SOTA methods

In this section, we present a comparative analysis of our

proposed method against state-of-the-art (SOTA) models on four

benchmark datasets: ISIC, HAM10000, OCT2017, and Brain MRI.

The results, shown in Tables 2, 3, highlight the effectiveness of our

approach in achieving superior performance across diverse datasets

and tasks.

In Figure 5, on the ISIC and HAM10000 datasets, our method

outperforms all baselines in terms of Accuracy, Recall, F1 Score,

and AUC. On ISIC, our model achieves an Accuracy of 94.95%,

surpassing the next best-performing model, BLIP, which achieves

93.54%. the Recall and F1 Score of our method (87.67% and

94.85%, respectively) are significantly higher than those of other

methods. The AUC score of 94.08% further highlights the superior

classification confidence of our model. On HAM10000, our model

achieves the highest Accuracy (87.91%) and F1 Score (90.89%),

significantly outperforming ViT and I3D, which achieve 83.38%

and 83.77% Accuracy, respectively. These improvements can be

attributed to our model’s ability to capture both global and T
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fine-grained patterns effectively, which are critical for diverse

object categories. In Figure 6, for the OCT2017 and Brain MRI

datasets, our method again demonstrates superior performance.

On OCT2017, our model achieves the best Accuracy (89.29%),

Recall (95.99%), and F1 Score (87.22%), outperforming CLIP and

ViT, which struggle with fine-grained flower species classification.

The AUC of 93.12% further emphasizes the robustness of our

approach in distinguishing subtle differences in floral features. On

BrainMRI, ourmethod achieves the highest Accuracy (84.62%) and

F1 Score (86.12%), outperforming Wav2Vec 2.0 and BLIP, which

achieve significantly lower scores. The AUC of 85.27% highlights

the superior ability of our model to recognize complex texture

patterns. The consistent outperformance of our model across

datasets can be attributed to several key factors. Our transformer-

driven architecture efficiently models long-range dependencies

and contextual associations within images, which is crucial for

datasets like ISIC and HAM10000. the multi-modal training

strategy enhances feature representation, allowing the model to

generalize well across datasets with varying characteristics, such

as the fine-grained OCT2017 and texture-focused Brain MRI

datasets. compared to SOTAmodels like CLIP and ViT, which often

suffer from overfitting or struggle with domain-specific challenges,

our model incorporates advanced regularization techniques and a

tailored loss function, ensuring superior performance across both

general and fine-grained classification tasks.

This performance can be further understood by examining

how the proposed architecture capitalizes on the complementary

strengths of its key components. The multi-resolution strategy

allows the model to extract both fine-grained and global contextual

features, which is particularly effective for identifying subtle

variations in OCT images and diffuse patterns in MRI data. The

transformer-based backbone, enhanced by attention-guided fusion,

ensures that critical features are not diluted across layers but are

instead selectively amplified based on their diagnostic relevance.

The domain alignment mechanism within EDAL not only reduces

distributional shifts across different modalities and institutions but

also enhances the model’s stability in real-world deployment. These

synergies contribute to a consistent improvement across diverse

benchmarks, highlighting the practical robustness and clinical

potential of the proposed framework.

To provide a more rigorous evaluation of model performance,

we report the mean and 95% confidence intervals for each key

metric, including Accuracy, Recall, F1 Score, and AUC. The

confidence intervals were estimated based on five independent

experimental runs, each initialized with different random seeds

and data splits. For each metric, we computed the mean and

standard error, and derived the 95% confidence intervals under

the assumption of normal distribution using the formula mean ±

1.96 × standard error. The results are now presented in Tables 2,

3 in the format of mean (lower bound, upper bound), providing a

clearer quantification of the variability in model performance. This

approach allows a clearer quantification of the variability across

different runs and provides a statistically robust basis for comparing

the performance of different models.

To provide a comprehensive assessment of the framework’s

generalizability across imaging modalities, we present a breakdown

of classification performance by modality. As shown in Table 4,

the framework was evaluated on four distinct imaging types:
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FIGURE 5

Performance comparison of SOTA methods on ISIC and HAM10000 datasets.

FIGURE 6

Performance comparison of SOTA methods on OCT2017 and brain MRI datasets.

dermoscopic images (ISIC, HAM10000), retinal optical coherence

tomography (OCT2017), and brain magnetic resonance imaging

(Brain MRI). The results confirm the model’s ability to maintain

high accuracy, recall, and F1-score across heterogeneous visual

domains, from low-resolution dermoscopic images to volumetric

MRI slices. This demonstrates the robustness and versatility of our

method in both fine-grained and texture-focused diagnostic tasks.

To further support our evaluation metrics and provide a more

comprehensive view of classification performance, we include the

Receiver Operating Characteristic (ROC) curves and Precision-

Recall (PR) curves for each dataset. As shown in Figure 7,

the proposed model achieves consistently higher true positive

rates across all false positive rates, with Area Under the Curve

(AUC) values exceeding 93% on ISIC and OCT2017. The PR

curves also demonstrate the model’s robustness, particularly in

handling class imbalance, with high average precision (AP)

values across all datasets. These visualizations confirm that the

proposed framework maintains strong discriminative ability while

minimizing false positives—an essential requirement in clinical

diagnostic applications.

4.4 Ablation study

To evaluate the contributions of individual components in

our proposed model, we conducted an ablation study on ISIC,

HAM10000, OCT2017, and Brain MRI. The results of these

experiments are summarized in Tables 5, 6, where we systematically
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TABLE 4 Classification performance by imaging modality using the proposed framework.

Imaging modality Dataset Accuracy (%) Recall (%) F1-Score (%) AUC (%)

Dermoscopy ISIC 94.95 87.67 94.85 94.08

Dermoscopy HAM10000 87.91 88.63 90.89 89.22

OCT (Retina) OCT2017 89.29 95.99 87.22 93.12

MRI (Brain) Brain MRI 84.62 85.13 86.12 85.27

Bold values represent the best values.

FIGURE 7

ROC and Precision-Recall curves for four benchmark datasets. AUC and AP values are shown in the legend.

remove key components and compare their performance against

the full model. The assessment metrics comprise Accuracy,

Recall, F1 Score, and AUC, offering a thorough analysis of each

component’s impact.

In Figure 8, on ISIC and HAM10000 datasets, it is evident that

the removal of any component significantly affects the model’s

performance on both ISIC and HAM10000. On ISIC, the absence

of Feature Extraction leads to a substantial drop in Accuracy

from 94.95% to 82.59% and a decline in F1 Score from 94.85%

to 79.09%. Feature Extraction, which is responsible for global

feature extraction, plays a critical role in handling the diverse and

large-scale nature of ISIC. on HAM10000, the absence of Feature

Extraction reduces Accuracy from 87.91% to 70.55%, indicating

its importance for capturing coarse-grained features. The removal

of Attention-Guided, which enhances local feature representation,

also results in notable performance degradation. For example,

the Recall on ISIC decreases from 87.67% to 88.02%, and the

AUC on HAM10000 drops from 89.22% to 84.72%. Domain

Alignment, responsible for integrating multi-scale features, has

a significant impact on fine-grained tasks, as evident from the

decrease in F1 Score on HAM10000 from 90.89% to 71.19%

when it is removed. In Figure 9, on OCT2017 and Brain MRI

datasets, similar trends are observed. For OCT2017, the absence

of Feature Extraction results in a sharp decline in Recall, from

95.99% to 69.07%, indicating that Feature Extraction is essential

for recognizing subtle differences between fine-grained categories.

removing Attention-Guided reduces Accuracy from 89.29% to

88.74%, highlighting its role in refining local features for detailed

object categories. Domain Alignment, which integrates hierarchical

features, is particularly critical for texture-based datasets like Brain

MRI. Eliminating it results in a substantial decrease in F1 Score

from 86.12% to 68.30%, and the AUC decreases from 85.27%

to 65.47%. The superior performance of the full model across

all datasets demonstrates the complementary nature of Feature

Extraction, Attention-Guided, and Domain Alignment. Feature

Extraction contributes to extracting global contextual information,

which is crucial for large-scale and fine-grained datasets. Attention-

Guided focuses on local feature refinement, enabling the model

to capture intricate details in complex scenes. Domain Alignment

integrates multi-scale features, ensuring robust performance across

diverse datasets, particularly those with texture-based or fine-

grained characteristics.

To further validate the robustness and clinical applicability

of our proposed framework, in Table 7, we extended our

experimental evaluation to include two widely-used real-world

medical imaging datasets: NIH ChestX-ray14 and CAMELYON16.

These datasets provide comprehensive benchmarks from both

radiological and pathological imaging domains, allowing us to

assess the model’s generalization capability under practical clinical

conditions. On the NIH ChestX-ray14 dataset, our model achieved

an accuracy of 0.892 and an F1 score of 0.881 under in-

domain conditions, demonstrating strong diagnostic ability for
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TABLE 5 Ablation study results on ISIC and HAM10000 datasets for image classification.

Model ISIC dataset HAM10000 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 score AUC

w./o. Feature Extraction 82.59 (82.53, 82.65) 83.91 (83.85, 83.97) 79.09 (79.05, 79.13) 82.55 (82.49, 82.61) 70.55 (70.49, 70.61) 68.76 (68.70, 68.82) 74.27 (74.21, 74.33) 72.07 (72.01, 72.13)

w./o. Attention-Guided 81.69 (81.63, 81.75) 88.02 (87.98, 88.06) 70.91 (70.85, 70.97) 75.62 (75.56, 75.68) 76.67 (76.61, 76.73) 66.55 (66.51, 66.59) 84.49 (84.45, 84.53) 84.72 (84.66, 84.78)

w./o. Domain Alignment 89.01 (88.97, 89.05) 87.81 (87.77, 87.85) 79.11 (79.07, 79.15) 82.40 (82.36, 82.44) 78.96 (78.92, 79.00) 75.72 (75.70, 75.74) 71.19 (71.15, 71.23) 81.28 (81.24, 81.32)

Ours 94.95 (94.91, 94.99) 87.67 (87.63, 87.71) 94.85 (94.79, 94.91) 94.08 (94.02, 94.14) 87.91 (87.85, 87.97) 88.63 (88.59, 88.67) 90.89 (90.83, 90.95) 89.22 (89.18, 89.26)

TABLE 6 Ablation study results on OCT2017 and brain MRI datasets for image classification.

Model OCT2017 dataset Brain MRI dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Feature Extraction 82.12 (82.06, 82.18) 69.07 (69.01, 69.13) 87.77 (87.73, 87.81) 85.56 (85.50, 85.62) 67.53 (67.47, 67.59) 76.21 (76.15, 76.27) 79.75 (79.69, 79.81) 63.01 (62.95, 63.07)

w./o. Attention-Guided 88.74 (88.68, 88.80) 83.14 (83.10, 83.18) 80.34 (80.28, 80.40) 75.46 (75.40, 75.52) 71.88 (71.82, 71.94) 67.62 (67.58, 67.66) 79.40 (79.36, 79.44) 76.84 (76.78, 76.90)

w./o. Domain Alignment 88.32 (88.28, 88.36) 86.65 (86.61, 86.69) 66.13 (66.09, 66.17) 65.66 (65.62, 65.70) 76.77 (76.73, 76.81) 69.37 (69.35, 69.39) 68.30 (68.26, 68.34) 65.47 (65.43, 65.51)

Ours 89.29 (89.25, 89.33) 95.99 (95.95, 96.03) 87.22 (87.16, 87.28) 93.12 (93.06, 93.18) 84.62 (84.56, 84.68) 85.13 (85.09, 85.17) 86.12 (86.06, 86.18) 85.27 (85.23, 85.31)
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FIGURE 8

Ablation study of our method on ISIC and HAM10000 datasets.

FIGURE 9

Ablation study of our method on OCT2017 and brain MRI datasets.

thoracic disease detection. Under cross-domain evaluation, where

there is a distribution shift between training and testing samples,

the model retained solid performance with 0.867 accuracy and

0.856 F1 score, indicating resilience to domain variability. Similarly,

on the CAMELYON16 dataset, which comprises high-resolution

whole-slide pathology images from two independent medical

centers, we adopted a cross-institutional validation strategy. The

model achieved 0.934 accuracy and 0.921 F1 score under in-

domain conditions. Even when trained on data from one center

and tested on another (cross-institutional), the model maintained

high performance with 0.902 accuracy and 0.894 F1 score. These

results confirm that our approach not only excels on standardized

benchmarks but also adapts effectively to heterogeneous clinical

scenarios. These experiments underscore the generalizability of our

AMRI-Net and EDAL framework, validating its potential for real-

world deployment in integrated radiology-pathology workflows.

The component-wise performance comparison on the ISIC

dataset provides clear empirical evidence of the individual

and combined contributions of the proposed AMRI-Net

and EDAL modules. In Table 8, starting from a standard

convolutional baseline, the addition of AMRI-Net yields a

notable improvement across all metrics, with accuracy rising

from 90.12% to 92.87%, and F1 score from 89.48% to 92.11%.

This suggests that the multi-resolution feature extraction and

attention-guided fusion mechanisms integrated within AMRI-Net

play a vital role in capturing both fine-grained local structures

and global contextual patterns, which are critical for precise

lesion classification in dermatological images. When EDAL
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TABLE 7 Evaluation results on real-world clinical datasets: NIH ChestX-ray14 and CAMELYON16.

Dataset Setting Evaluation metrics

Accuracy F1 score AUC Recall

NIH ChestX-ray14 In-domain 0.892 0.881 0.915 0.887

NIH ChestX-ray14 Cross-domain 0.867 0.856 0.892 0.861

CAMELYON16 In-domain 0.934 0.921 0.942 0.930

CAMELYON16 Cross-institution 0.902 0.894 0.918 0.902

Bold values represent the best values.

TABLE 8 Component-wise performance comparison on the ISIC dataset.

Model
variant

Accuracy (%) F1 score (%) AUC (%)

Baseline-CNN 90.12± 0.23 89.48± 0.41 87.63± 0.38

+AMRI-Net 92.87± 0.19 92.11± 0.35 90.22± 0.31

+EDAL 91.45± 0.26 90.39± 0.47 88.74± 0.42

Full model 94.95 ± 0.22 94.85 ± 0.29 94.08 ± 0.33

is incorporated independently, the model also demonstrates

enhanced performance, particularly in terms of robustness, with

improvements in both F1 score (from 89.48% to 90.39%) and

AUC (from 87.63% to 88.74%). These gains highlight EDAL’s

effectiveness in mitigating domain shift and handling label

uncertainty through domain alignment and uncertainty-aware

prediction. Most significantly, the full model, which integrates

both AMRI-Net and EDAL, achieves the highest results across all

metrics: an accuracy of 94.95%, F1 score of 94.85%, and AUC of

94.08%. These findings confirm the complementary nature of the

two components, indicating that the joint optimization of spatial-

semantic resolution and domain-level adaptation produces a

synergistic effect that substantially boosts diagnostic performance.

This comprehensive evaluation underlines the robustness and

clinical relevance of the proposed architecture. The model not only

surpasses conventional baselines but also demonstrates consistent

performance with low variance, indicating stability across multiple

training runs. Such consistency is essential in clinical applications,

where reliability and interpretability are paramount for adoption

in real-world diagnostic workflows.

The results of the interpretability evaluation, summarized in

Table 9, highlight the effectiveness of the proposed AMRI-Net

+ EDAL framework in generating clinically meaningful visual

explanations. Our method achieved an Intersection over Union

(IoU) of 0.64 and a Pointing Game Accuracy of 81.3% on the

ISIC dataset, both of which outperform the baseline methods by a

significant margin. In comparison, ResNet-CAM yielded an IoU of

0.49 and accuracy of 65.7%, while the ViT attention map achieved

an IoU of 0.53 and accuracy of 72.4%. These results suggest that our

model’s attention-based interpretability mechanism more precisely

localizes regions of diagnostic relevance as annotated by clinical

experts. The improved alignment betweenmodel saliencymaps and

expert-labeled lesion regions can be attributed to two key design

choices: the integration of multi-resolution feature extraction

through AMRI-Net and the attention-based decoding pipeline

TABLE 9 Interpretability evaluation on the ISIC dataset using IoU and

pointing game accuracy.

Method IoU (Intersection
over Union)

Pointing game
accuracy (%)

ResNet-CAM 0.49± 0.05 65.7± 1.9

ViT Attention 0.53± 0.04 72.4± 1.6

Ours (AMRI-Net+

EDAL)

0.64 ± 0.03 81.3 ± 1.4

Results are averaged over 500 annotated test samples.

that preserves spatial-semantic correspondence. By incorporating

domain-aligned learning and uncertainty estimation in EDAL,

the model is encouraged to prioritize more confident and stable

predictions, which in turn sharpens the interpretability outputs.

These findings not only demonstrate the technical advantage of our

approach in visualization fidelity but also underscore its potential

utility in clinical workflows where interpretability and trust are

essential for adoption.

5 Discussion

In addition to outperforming contemporary AI-based

approaches, the proposed framework offers distinct advantages

over traditional diagnostic workflows that rely on manual

interpretation of either radiological or pathological images in

isolation. Conventional diagnostic methods typically involve

separate assessments by radiologists and pathologists, which can

lead to fragmented understanding, inter-specialist communication

delays, and increased diagnostic latency. In contrast, our AI-driven

system provides a unified, end-to-end model that integrates

imaging data across modalities, allowing for simultaneous analysis

of macroscopic and microscopic features. This multimodal fusion

facilitates earlier andmore comprehensive disease characterization,

particularly in oncology and complex systemic conditions. By

automating feature extraction and providing interpretable

predictions through attention-based visualizations, the system

significantly reduces clinician workload and enhances decision

support. For example, the incorporation of uncertainty estimation

enables the model to flag ambiguous cases for expert review,

improving triage efficiency and diagnostic safety. Our approach

redefines the clinical workflow from a sequential, siloed process

into a parallelized, AI-assisted pipeline that supports faster, more

consistent, and more holistic patient evaluation.
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The clinical implications of this study extend beyond

algorithmic performance to real-world impact in hospital and

clinical settings. By enabling integrated analysis of radiology

and pathology data through a unified deep learning framework,

the proposed system has the potential to streamline diagnostic

workflows, particularly in time-sensitive scenarios such as cancer

detection or neurological assessments. In practical terms, the

AMRI-Net and EDAL framework can be embedded into Picture

Archiving and Communication Systems (PACS) or Laboratory

Information Systems (LIS), offering clinicians an AI-powered

second opinion at the point of care. Its explainabilitymechanisms—

via attention heatmaps and uncertainty estimation—allow

physicians to validate model predictions visually and confidently,

thus enhancing trust and adoption. From a patient perspective,

this technology offers several compelling benefits. It can accelerate

diagnosis by reducing the manual burden on radiologists and

pathologists, leading to faster clinical decision-making. It improves

diagnostic accuracy through multimodal feature fusion, potentially

catching early-stage abnormalities that might be overlooked in

single-modality assessments. By flagging uncertain or high-risk

cases for additional review, the system serves as a safety net

that may reduce misdiagnosis and improve patient outcomes.

In underserved or resource-limited environments, where access

to subspecialists is constrained, this AI-assisted solution could

democratize high-quality diagnostics, thus contributing to more

equitable healthcare delivery.

To evaluate the practical clinical utility of the proposed

framework, we conducted extensive experiments on two large-

scale, real-world datasets: NIH ChestX-ray14 and CAMELYON16.

These datasets represent clinically significant imaging modalities—

radiology and pathology—and are commonly used in hospital

environments. The framework demonstrated high classification

accuracy and robustness even under domain shift and cross-

institutional validation setups, suggesting its adaptability to real-

world diagnostic workflows. Beyond predictive performance, we

emphasized clinical interpretability and decision support by

integrating attention-based visualization tools and uncertainty

estimation modules. These components help guide clinicians by

highlighting relevant image regions and flagging low-confidence

predictions for review. The explainable outputs and selective

inference logic are especially valuable in high-stakes diagnostic

contexts, enhancing trust and enabling integration into existing

clinical pipelines. Taken together, the framework’s design and

evaluation provide a strong foundation for its deployment in

operational healthcare systems, though we acknowledge that future

prospective studies involving live clinical environments will further

consolidate its clinical relevance.

To systematically address the identified limitations and

enhance real-world applicability, we propose the following

projected timeline, as shown in Table 10.

6 Conclusion and future work

This study tackles the challenge of integrating pathology and

radiology in medical imaging through artificial intelligence (AI),

aiming to enhance diagnostic accuracy and clinical workflows.

Traditional image classification methods often struggle with

TABLE 10 Projected timeline for addressing study limitations.

Timeframe Planned actions

0–12 months Optimize model architecture to reduce computational

complexity and support deployment on low-resource

clinical devices.

12–18 months Conduct external validation with heterogeneous real-world

datasets from multiple healthcare institutions to assess

generalization.

18–24 months Integrate clinician-centered interface designs and enhanced

interpretability modules; initiate pilot deployment in

hospital workflows.

the complexities of medical imaging datasets, which include

multi-modal data, imbalanced distributions, and the demand

for interpretability in clinical contexts. To address these issues,

the paper introduces a deep learning-based framework featuring

the Adaptive Multi-Resolution Imaging Network (AMRI-Net)

and the Explainable Domain-Adaptive Learning (EDAL) strategy.

AMRI-Net is designed to extract multi-resolution features,

leveraging attention-guided fusion and task-specific decoders to

analyze both subtle and global patterns across diverse imaging

modalities, such as X-rays, CT, and MRI. EDAL focuses on

improving domain generalization through domain alignment

techniques, employing uncertainty-aware learning to prioritize

high-confidence predictions and attention-based interpretability

tools to identify critical image regions. Experimental results

on multi-modal medical imaging datasets demonstrate the

framework’s superior classification accuracy, robustness to domain

shifts, and explainability, effectively bridging the gap between

pathology and radiology while meeting clinical demands for

precision and transparency.

Despite its significant contributions, the study has two key

limitations that offer opportunities for further development.

While AMRI-Net excels in handling multi-modal datasets, its

computational complexity may limit scalability for large-scale

or resource-constrained settings, such as small hospitals or

remote clinics. Subsequent work might concentrate on improving

architectural efficiency without sacrificing performance. While

EDAL enhances interpretability through attention mechanisms,

the framework primarily emphasizes technical explanations rather

than user-friendly interfaces for clinicians. Integrating more

intuitive visualizations and tools tailored to medical professionals

could improve the practical adoption of the system in real-world

scenarios. Several data-related challenges should be acknowledged.

The experiments were conducted on publicly available datasets

including dermatoscopic images, OCT scans, and brain MRI,

which, although diverse, may not fully capture the complexity of

clinical practice. These datasets exhibit significant heterogeneity

in terms of acquisition protocols, resolution, and labeling quality.

In particular, annotation inconsistencies—especially in pathology

images—pose a challenge due to inter-observer variability.

Moreover, class imbalance was present in several datasets, and

althoughmitigated with augmentation and weighted loss functions,

it remains a source of potential bias. The domain generalization

capabilities of EDAL have been validated within controlled settings,

but external validation on truly heterogeneous real-world data
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remains to be explored. Future work will focus on optimizing

the framework for lower-resource environments and expanding

evaluation to broader clinical cohorts, ultimately aiming to foster

reliable and interpretable AI integration in everyday medical

imaging workflows.

Future research in this field can proceed along several

promising directions. One immediate extension is to enhance

the scalability and efficiency of the current framework, making

it suitable for deployment in low-resource clinical environments.

This includes developing lightweight model variants and

exploring edge-computing solutions to support real-time

inference without reliance on centralized servers. External

validation on real-world clinical data from diverse healthcare

institutions is essential to assess generalizability and mitigate

biases introduced by dataset-specific characteristics. Another

important avenue is the integration of temporal information

from longitudinal imaging records, which may improve disease

progression modeling and personalized treatment planning.

From a human-computer interaction perspective, future

work should focus on designing clinician-friendly interfaces

that translate AI outputs into actionable insights. Moreover,

incorporating multi-omics data alongside imaging could offer a

more holistic understanding of disease mechanisms. Regulatory,

ethical, and data privacy considerations must be addressed

to facilitate safe and transparent clinical adoption of such AI

technologies.
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