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Objective: To construct a venous thromboembolism (VTE) risk prediction model 
for orthopedic inpatients using machine learning modeling techniques, identify 
high-risk patients, and optimize clinical interventions.

Methods: This study involved a retrospective analysis of 286 orthopedic inpatients 
from Nanxishan Hospital of Guangxi Zhuang Autonomous Region (The Second 
People’s Hospital of Guangxi Zhuang Autonomous Region) from January 1, 2022 
to December 31, 2022. To ensure patient information security, all data were fully 
anonymized before access. The collected data included basic information such 
as gender, age, ethnicity, and body mass index (BMI), lifestyle factors and medical 
history (including smoking, alcohol use, diabetes, hypertension, and personal and 
family history of VTE), clinical test results (such as thrombin time, plasma D-dimer, 
total bilirubin, and urinary protein via dry chemistry), as well as genetic test results 
related to VTE risk. Feature analysis and data mining were conducted, and eight 
different machine learning algorithms were used to build the prediction model. 
The SHapley Additive exPlanation (SHAP) method was used to rank the feature 
importance and explain the final model.

Results: Through a comprehensive evaluation and comparison of eight different 
machine learning models, the results clearly indicate that the XGBoost model 
outperforms the others across all performance metrics, achieving the highest 
accuracy of 0.828 and AUROC of 0.931, significantly surpassing the other 
models, particularly in prediction accuracy and discriminative ability. Compared 
to the traditional Caprini scoring model, XGBoost not only shows improvements 
in accuracy and specificity but also demonstrates a significant increase in Area 
Under the Curve (AUC), further validating its superior performance in VTE risk 
prediction.

Conclusion: This model can be effectively used for early risk prediction of VTE, 
helping to reduce the incidence of venous thromboembolism in orthopedic 
patients. Given its promising results, further validation and wider application of 
the model in clinical settings are warranted to enhance patient outcomes and 
improve preventive strategies.
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Introduction

Venous thromboembolism (VTE), which includes deep vein 
thrombosis and pulmonary embolism, is the third most common 
cardiovascular disease worldwide, following myocardial infarction 
and stroke (1, 2). VTE is especially prevalent among hospitalized 
patients. In China, studies show that as many as 45.2% of hospitalized 
patients are at high risk for VTE, with 53.4% of surgical patients facing 
elevated risk (3). Orthopedic patients, in particular, are at significantly 
higher risk due to factors such as surgery, prolonged immobility, and 
common comorbidities (4–6). This puts them at a higher incidence 
and mortality rate for VTE, placing a considerable physical and 
economic burden on both patients and their families. Despite the 
availability of effective preventive measures, including anticoagulation 
therapy and mechanical prevention, the incidence of VTE remains 
high (7, 8). Given its high mortality rate and severe complications, 
early identification and accurate assessment of VTE risk, followed by 
personalized prevention strategies, is a critical clinical challenge. 
Therefore, research on VTE risk prediction for orthopedic inpatients 
is of urgent importance.

Currently, VTE risk assessment primarily relies on clinical 
experience and standardized scoring tools such as the Caprini, 
Padua, and Khorana scores (9–11). These scales evaluate risk based 
on a range of known factors, including age, gender, body mass 
index (BMI), and comorbidities. The Caprini score, in particular, 
is widely used for assessing VTE risk in surgical patients, especially 
in orthopedic inpatients (12–14). However, despite their 
widespread use, these scoring systems have limited value in guiding 
specific preventive measures and often fail to fully account for 
individual patient differences and the complexity of 
clinical situations.

In recent years, with the rapid development of artificial 
intelligence, machine learning has made significant progress in 
various fields (15) such as disease risk prediction (16), drug dosage 
individualization (17), and treatment outcome evaluation (18). 
Machine learning can handle complex nonlinear relationships and 
extract potential key factors from vast amounts of data, thereby 
improving prediction accuracy. At the same time, the widespread use 
of Electronic Medical Record (EMR) systems in hospitals has made 
the collection of clinical data more precise and convenient, providing 
reliable data support for machine learning modeling. As a result, 
machine learning methods based on EMRs have gradually gained the 
attention and recognition of clinicians (19, 20).

In this study, we  aimed to develop and validate explainable 
machine learning models for early and accurate prediction of VTE in 
orthopedic inpatients by analyzing their clinical characteristics, 
medical history, laboratory results, and genetic testing data. Based on 
this risk assessment, appropriate interventions will be implemented 
according to different risk stratifications to reduce the incidence of 
VTE-related complications. Through predictive analysis using 
machine learning, we aim to improve clinical outcomes, optimize 
healthcare resource utilization, enhance patient safety, and improve 
the quality of care.

In conclusion, personalized VTE risk assessment tools 
represent a significant advancement in the management of 
surgical patients. By integrating modern machine learning 
technologies, we aim to bridge the gap between traditional risk 
assessment methods and the needs of high-risk patients, 

supporting precision medicine and individualized care. The 
findings of this study have the potential to transform current VTE 
management practices, making them more aligned with patients’ 
specific needs, and driving the medical field toward a more precise 
and efficient future.

Methods

Study population

This is a single-center retrospective cohort study, with subjects 
consisting of 286 orthopedic inpatients at Nanxishan Hospital of 
Guangxi Zhuang Autonomous Region (The Second People’s Hospital 
of Guangxi Zhuang Autonomous Region) from January 1, 2022 to 
December 31, 2022. The inclusion criteria included the following: (1) 
aged 18 years or older; (2) orthopedic inpatients with a hospital stay 
> 3 days; (3) completed VTE risk gene polymorphism assessment; (4) 
no contraindications to anticoagulation; (5) voluntarily agreed to 
participate in the study and signed an informed consent form. The 
exclusion criteria were as following: (1) patients who were bedridden 
or had restricted mobility (e.g., hemiplegia) prior to admission; (2) 
patients with renal or hepatic dysfunction; (3) patients with 
hematologic disorders or coagulation dysfunction; (4) pregnant or 
breastfeeding women; (5) patients with severely missing gene or 
clinical phenotype data. After applying these criteria, the final study 
cohort was selected, ensuring the representativeness and scientific 
rigor of the research findings.

Data collection and processing

We collected demographic information (such as gender, age, race, 
BMI), lifestyle factors and medical history (including smoking, 
alcohol consumption, diabetes, hypertension, VTE history, family 
history of VTE), laboratory test results (such as thrombin time, plasma 
D-dimer, total bilirubin, urinary protein by dry chemistry, etc.), as 
well as genetic polymorphism data to identify and select features 
associated with VTE and construct a risk prediction model. All data 
were obtained from the EMR system.

Firstly, features with more than 40% missing values were excluded 
from subsequent analyses to minimize potential bias. A total of 34 
features, including age, body mass index (BMI), sex, and others, were 
ultimately retained and missing data were addressed using median 
imputation. Outliers for each feature were identified using the IQR 
(Interquartile Range) method and replaced with the corresponding 
feature’s median value. Finally, Min-Max scaling was applied to 
normalize the data, rescaling it to a range of 0 to 1.

Feature selection

Selecting the most relevant and impactful features from the 
original dataset not only improves model performance and 
interpretability but also reduces storage and computational 
resource requirements.

Firstly, this study identified the optimal feature subset using 
Recursive Feature Elimination (RFE), based on Random Forest model 
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and XGBoost model, to reduce dimensionality and improve model 
performance. Subsequently, by comparing the differences in each 
feature between the VTE group and the non-VTE group, features 
without significant differences (p < 0.1) were excluded.

Additionally, due to the potential impact of multicollinearity 
among features on prediction accuracy, when two features were highly 
correlated (correlation coefficient > 0.9) in Spearman’s correlation 
analysis, the feature less correlated with the outcome was eliminated 
from the subset, as shown in Figure 1. Finally, combining insights 
from VTE-related literature, the final features used to construct the 
model were determined.

Model construction and selection

To develop a VTE risk prediction model, this study randomly 
selected 80% of the dataset as the training set for model training, while 

the remaining 20% was used as the test set for model performance 
evaluation (internal validation). To ensure class balance between 
positive and negative samples in the training set, Synthetic Minority 
Oversampling Technique (SMOTE) was applied to the training data.

A total of eight binary classification machine learning models 
were constructed to predict the VTE risk in orthopedic inpatients, 
including Naive Bayes (NB), K-Nearest Neighbors (KNN), Support 
Vector Machines (SVM), Logistic Regression (LR), Decision Tree 
(DT), Adaptive Boosting (AdaBoost), eXtreme Gradient Boosting 
(XGBoost), and Random Forest (RF).

To enhance model robustness and reduce the risk of overfitting, 
five-fold cross-validation was employed for training. Model 
performance was comprehensively evaluated using various metrics, 
including Accuracy, Sensitivity, Specificity, Precision, F1 Score, and 
AUC. The XGBoost model and Random Forest model, recognized as 
the two best-performing predictive model, is utilized for further 
model optimization.

FIGURE 1

Feature correlation heatmap. VTE, venous thromboembolism; BMI, body mass index; GOT, glutamic-oxaloacetic transaminase; APTT, activated partial 
thromboplastin time.
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Hyperparameter tuning and internal 
validation

Hyperparameter tuning can optimize the performance and 
generalization ability of the model. A combination of random 
search and manual fine-tuning was employed to optimize 
hyperparameters, ensuring the model achieved its 
best performance.

An internal data set consisting of 58 samples, including 41 
negative cases and 17 positive cases was employed for the 
internal validation.

Model explanation

To enhance the transparency and reliability of the risk assessment 
model, this study uses SHAP (SHapley Additive exPlanations) to 
interpret the model’s predictions. SHAP is effective because it provides 
both a broad overview of feature importance and a detailed 
explanation of individual predictions. At the global level, SHAP 
evaluates the contribution of each feature across all samples, 
highlighting the most influential factors driving the model’s decisions. 
This insight aids in model optimization and identifying key features. 
At the local level, SHAP shows how each feature influences a specific 
prediction. This helps clarify how particular factors impact an 
individual patient’s risk score, providing valuable guidance for 
targeted interventions.

Statistical analysis

Continuous variables are presented as mean (standard deviation), 
while categorical variables are shown as counts and percentages. For 
the comparative analysis between negative and positive subgroups, 
continuous variables were assessed using the Mann–Whitney U test 
or T-test, and categorical variables were analyzed using the 
Chi-square test. Spearman correlation analysis was used to evaluate 
the relationships between continuous variables. The predictive power 
was assessed using the Area Under the Curve (AUC). All data 
analyses were conducted using Python 3.8.3 and the scikit-learn 
library (version 1.3.2). The corresponding source code is publicly 
available on GitHub at https://github.com/LDjiu/VTE_predict.

Results

Patient characteristics

This retrospective study included 286 patients, comprising 86 
patients who developed VTE during hospitalization and 200 patients 
who did not. Among 973 patients admitted to the orthopedic 
department of Nanxishan Hospital from January 1, 2022 to 
December 31, 2022, 687 patients were excluded, including 15 patients 
who were under 18 years old, 43 patients whose hospital stay of less 
than 3 days, and 629 patients who did not undergo genetic testing for 
VTE risk. The 286 patients were divided into independent training 
and testing sets. The detailed design of the study was shown in 
Figure 2.

Demographic characteristics, lifestyle habits, medical history, 
and laboratory test results were collected. Features with more than 
40% missing values were removed, leaving 34 features. A comparison 
of these 34 features between VTE and non-VTE patients is detailed 
in Table  1. Continuous variables were described using mean 
(standard deviation), and categorical variables were described using 
frequencies. Significant differences (p < 0.05) were observed 
between VTE and non-VTE patients in terms of VTE history, 
comorbidities, total protein, albumin, D-dimer, and erythrocyte 
sedimentation rate.

Feature selection

After removing features with more than 40% missing values, 34 
features remained, including: polygenic risk, gender, race, age, BMI, 
smoking history, alcohol consumption history, VTE history, 
comorbidities, urine protein, urine leukocytes, urine specific 
gravity, glutamic-oxaloacetic transaminase (GOT), glutamic 
pyruvic transaminase, gamma-glutamyl transferase, alkaline 
phosphatase, total bilirubin, total protein, albumin, serum 
creatinine, blood urea nitrogen, serum uric acid, globulin, blood 
glucose, activated partial thromboplastin time (APTT), D-dimer, 
fibrinogen, thrombin time, prothrombin activity, prothrombin time, 
international normalized ratio, erythrocyte sedimentation rate, 
surgery, bed rest duration.

Based on Random Forest model and XGBoost model, Recursive 
Feature Elimination (RFE) was applied to select the optimal feature 
subset, as shown in Figure  3. Among the two models, a feature 
subset with 11 features achieved the optimal performance on the 
XGBoost model. The 11-feature subset consisted of D-dimer, 
erythrocyte sedimentation rate, blood glucose, urine specific gravity, 
serum creatinine, urine leukocytes, VTE history, activated partial 
thromboplastin time (APTT), bed rest duration, gender and age. 
Due to without differences (p < 0.1) between VTE and non-VTE 
patients, five features, including bed rest duration, blood glucose, 
urine specific gravity, serum creatinine and urine leukocytes, were 
eliminated, as shown in Table 1. We also substituted gender with 
comorbidities that showed stronger association with the outcome, 
as shown in Figure 1. Given that previous literature has indicated 
that the genetic polymorphisms MTHFR (C677T) and PAI-1(4G/5G) 
are associated with an increased risk of VTE (21–23), the polygenic 
risk based on these two polymorphic sites were included as features 
in the model construction. Although statistical analysis did not show 
a significant difference between the VTE and non-VTE groups, these 
genetic characteristics still hold important value in VTE risk 
assessment. Additionally, according to the literature, bed rest 
duration is also a critical factor influencing the occurrence of VTE.

Finally, 8 features were selected to construct the model: age, VTE 
history, comorbidities, APTT, D-dimer, erythrocyte sedimentation 
rate, bed rest duration, and polygenic risk.

Model construction and performance 
comparison

Based on the training dataset, eight machine learning prediction 
models were constructed, including SVM, LR, KNN, XGBoost, 
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AdaBoost, RF, DT, and NB. Table 2 shows the average performance of 
these models under five-fold cross-validation, and the ROC curves are 
presented in Figure 4.

Among the eight models, Random Forest (RF) and XGBoost 
outperformed the others, achieving the best predictive performance 
with AUROCs of 0.873 and 0.869, respectively, making them the two 
best-performing predictive models selected for further 
hyperparameter tuning.

Additionally, when comparing the eight machine learning 
models with the traditional Caprini score, seven of the models 
(except Decision Tree) achieved higher AUROCs than the Caprini 
score. Moreover, the accuracy, specificity, and precision of all 
eight machine learning models exceeded those of the 
Caprini score.

Hyperparameter tuning and validation of 
the models

The combination of different parameters can directly impact 
the predictive ability, generalization performance, and practical 
applicability of a model. In this study, the optimal hyperparameter 
combination was obtained through random search and manual 
fine-tuning, resulting in the following settings of the XGBoost 
model: subsample of 0.72, n_estimators of 50, min_child_weight of 
1, max_depth of 6, learning_rate of 0.074, gamma of 0.25, and 
colsample_bytree of 0.5, and the following settings of the Random 
Forest model: n_estimators of 300, min_samples_split of 2, max_
features of 3, max_depth of 5, and bootstrap of True. The 
discriminative ability of the two model on the test set was shown 

FIGURE 2

Flow diagram for patients screening, data processing, model development and model explanation.
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in Figure  5, revealing that the XGBoost model had the best 
predictive performance. So, the XGBoost model was selectd as the 
final model.

The test set consisted of 58 samples, including 41 negative cases 
and 17 positive cases. The final model performed well on the test set, 
as shown in Figures 5, 6A. The final model achieved an accuracy of 

TABLE 1 Comparison of demographic and clinical characteristics and outcomes between non-VTE and VTE patients.

Variables Non-VTE (n = 200) VTE (n = 86) P-value

Polygenic risk*, n (%) 0.326

Low risk 25 (12.5) 6 (7.0)

Median risk 118 (59.0) 51 (59.3)

High risk 57 (28.5) 29 (33.7)

Gender, Male, n (%) 105 (52.5) 35 (40.7) 0.089

Race, Han Chinese, n (%) 181 (90.5) 79 (91.9) 0.887

Age, year, mean (SD) 63.9 (14.0) 67.1 (12.9) 0.066

BMI, kg/m2, mean (SD) 23.1 (3.2) 23.7 (3.0) 0.138

Smoking history, n (%) 11 (5.5) 1 (1.2) 0.116

Alcohol consumption history, n (%) 9 (4.5) 2 (2.3) 0.514

VTE history, n (%) 3 (1.5) 35 (40.7) <0.001

Comorbidities, n (%) 12 (6.0) 15 (17.4) 0.005

Urine protein, n (%) 21 (10.5) 12 (14.0) 0.524

Urine leukocytes, n (%) 70 (35.0) 27 (31.4) 0.650

Urine specific gravity, mean (SD) 1.0 (0.0) 1.0 (0.0) 0.463

GOT, U/L, mean (SD) 29.4 (57.5) 25.2 (18.8) 0.356

Glutamic pyruvic transaminase, U/L, mean 

(SD) 25.7 (42.7) 24.2 (24.4) 0.708

Gamma-glutamyl transferase, U/L, mean (SD) 47.2 (66.6) 49.3 (87.8) 0.840

Alkaline phosphatase, U/L, mean (SD) 93.7 (69.4) 92.1 (79.2) 0.870

Total bilirubin, μmol/L, mean (SD) 10.8 (8.0) 11.7 (9.0) 0.396

Total protein, g/L, mean (SD) 69.9 (7.3) 67.8 (7.5) 0.037

Albumin, g/L, mean (SD) 39.2 (5.2) 37.7 (4.9) 0.020

Serum creatinine, μmol/L, mean (SD) 83.0 (64.5) 75.6 (22.9) 0.156

Blood urea nitrogen, mmol/L, mean (SD) 6.6 (5.0) 6.2 (3.0) 0.413

Serum uric acid, μmol/L, mean (SD) 324.0 (129.0) 343.5 (112.0) 0.200

Globulin, g/L, mean (SD) 30.7 (6.1) 30.1 (5.4) 0.481

Blood glucose, mmol/L, mean (SD) 6.0 (2.2) 6.0 (2.1) 0.931

APTT, s, mean (SD) 28.6 (12.7) 26.7 (6.2) 0.095

D-dimer, μg/L, mean (SD) 4218.1 (13590.5) 9973.1 (17662.0) 0.008

Fibrinogen, g/L, mean (SD) 3.6 (1.5) 3.6 (1.3) 0.700

Thrombin time, s, mean (SD) 12.6 (7.8) 12.1 (1.5) 0.348

Prothrombin activity, %, mean (SD) 12.6 (7.8) 12.6 (5.4) 0.982

Prothrombin time, s, mean (SD) 12.6 (7.8) 12.1 (1.6) 0.382

International normalized ratio, mean (SD) 1.1 (0.7) 1.0 (0.1) 0.348

Erythrocyte sedimentation rate, mm/h, mean 

(SD) 26.7 (28.6) 20.3 (18.9) 0.025

Surgery, n (%) 144 (72.0) 67 (77.9) 0.371

Bed rest duration, day, mean (SD) 12.0 (9.1) 15.0 (21.2) 0.210

VTE, venous thromboembolism; BMI, body mass index; GOT, glutamic-oxaloacetic transaminase; APTT, activated partial thromboplastin time.
*Polygenic risk criteria: Low risk: both loci are wild-type (MTHFR C/C and PAI-1 5G/5G); Intermediate risk: one locus is heterozygous mutant (C/T or 4G/5G), and the other remains wild-
type; High risk: both loci are heterozygous mutant (MTHFR C/T and PAI-1 4G/5G), or at least one locus is homozygous mutant (MTHFR T/T or PAI-1 4G/4G), regardless of the status of the 
other locus.
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0.828, sensitivity of 0.824, specificity of 0.829, precision of 0.667, F1 
score of 0.737, and AUROC of 0.931. Among the 41 negative samples, 
34 were correctly predicted, while 14 of the 17 positive samples were 
correctly predicted.

Additionally, the final model outperformed the Caprini score on 
the test set, as detailed in Figures 5, 6. The Caprini score achieved an 
AUROC of 0.737, correctly predicting 9 out of 41 negative samples 
and 17 out of 17 positive samples. The Caprini score tended to 
overestimate low-risk cases as high risk for VTE.

Model explanation

Since clinicians often find it difficult to accept predictive models 
that are not directly interpretable or understandable, the SHAP 
method was employed to explain the output of the final model by 
quantifying each feature’s contribution to the prediction. The main 
advantage of SHAP lies in its ability to provide both global and local 
interpretability. Global interpretation highlights the most influential 
features in the model’s decision-making process. Figures 7A,B present 
SHAP summary plots, where the SHAP mean value represents each 
feature’s contribution to the model predictions, ranked in descending 
order of importance. The order of importance is as follows: D-dimer, 

VTE history, erythrocyte sedimentation rate, APTT, bed rest duration, 
polygenic risk, age, and comorbidities.

The model predicts outcomes for specific individuals by assigning 
a SHAP value to each feature. As shown in Figures 8A,B, predictions 
for negative and positive individuals are visualized. The length of the 
bars represents the magnitude of the feature’s impact on the final 
prediction, with red bars indicating a positive contribution and blue 
bars indicating a negative contribution. For positive individuals, 
APTT, bed rest duration, and D-dimer drive the model to predict 
VTE; for negative individuals, erythrocyte sedimentation rate, VTE 
history, and D-dimer drive the model to predict non-VTE.

Discussion

In this study, we  extracted data from the electronic medical 
record system of orthopedic inpatients and applied eight machine 
learning algorithms to build predictive models for the risk of 
VTE. The goal was to identify the optimal model for predicting the 
occurrence of VTE. Additionally, to validate the performance 
advantages of machine learning methods, we also used the traditional 
Caprini score to predict VTE risk in the same group of patients. A 
comparative analysis of the results revealed that the performance of 
the Caprini score model was significantly lower than the optimal 
XGBoost model. Specifically, the Caprini score model has high 
sensitivity but very low specificity, meaning a significant number of 
patients are misclassified as having a VTE risk, resulting in a high 
false positive rate. Even though the final AUROC is 0.737, the Caprini 
score performs poorly in predicting negative results. In contrast, the 
evaluation metrics of the XGBoost model were as follows: sensitivity 
of 0.824, specificity of 0.829, and an AUROC of 0.931, indicating that 
the XGBoost model demonstrated superior performance in 
identifying VTE risk, providing more accurate and effective support 
for clinical decision-making.

In addition, the innovation of this study lies in incorporating 
genetic factors related to VTE in the Chinese population into the 
predictive model, combined with clinical phenotype data to 
construct a comprehensive risk prediction model. Previous studies 
have shown that Factor V Leiden (rs6025) and prothrombin 
G20210A mutations are typical genetic risk factors for VTE (24, 
25); however, these mutations are relatively rare in the Chinese 

FIGURE 3

The performance of the models during recursive feature elimination. 
XGboost, eXtreme gradient boosting.

TABLE 2 Performance of eight machine learning models and caprini score on the training set.

Model Accuracy Sensitivity Specificity Precision F1 Score AUROC

NB 0.719 0.464 0.83 0.53 0.484 0.728

KNN 0.675 0.623 0.698 0.472 0.535 0.734

SVM 0.763 0.448 0.898 0.696 0.517 0.782

LR 0.794 0.434 0.95 0.785 0.552 0.765

DT 0.719 0.636 0.755 0.533 0.576 0.696

AdaBoost 0.776 0.693 0.811 0.619 0.65 0.789

XGBoost 0.785 0.724 0.811 0.621 0.668 0.869

RF 0.777 0.697 0.812 0.607 0.643 0.873

Caprini 0.447 0.942 0.233 0.348 0.508 0.718

NB, naive bayes; KNN, k-nearest neighbors; SVM, support vector machines; LR, logistic regression; DT, decision tree; AdaBoost, adaptive boosting; XGboost, eXtreme gradient boosting; RF, 
Random Forest.
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FIGURE 6

The performance of the final model and caprini score on internal validation set. (A) Confusion matrix of the final model on internal validation set. 
(B) Confusion matrix of caprini score on internal validation set.

population (26). Therefore, this study selected the MTHFR (C677T) 
and PAI-1(4G/5G) variants, which are more common in the 
Chinese population, for investigation (21–23). Mutations in the 
MTHFR gene can lead to hyperhomocysteinemia, which in turn 
causes endothelial injury, increasing the risk of VTE (27, 28). 
Variations in the PAI-1 gene inhibit the fibrinolytic system, 
resulting in fibrinolysis dysfunction, which becomes an important 
trigger for thrombosis (29, 30). By incorporating the genetic 
variations of MTHFR and PAI-1 into the model, this study aims to 
further improve the accuracy and clinical applicability of the VTE 
risk prediction model.

However, this study has several limitations. First, the relatively 
small sample size may not fully capture the diverse risk 
characteristics of all orthopedic inpatients, which limits the 
broader applicability of the findings. Second, the study was 
conducted at a single center and lacks multi-center validation, 
which could affect the model’s generalizability across different 
clinical settings. Third, due to substantial missing data for some 
variables, these features could not be  included in the analysis, 
which may restrict the model’s ability to fully elucidate the 
complex biological mechanisms underlying venous 
thromboembolism (VTE). As such, while the findings of this 
study show promising clinical potential, caution is necessary 
when interpreting the results. Future research should focus on 

FIGURE 4

Receiver operating characteristic curves of eight machine learning 
models and caprini score on the training set. NB, naive bayes; KNN, 
k-nearest neighbors; SVM, support vector machines; LR, logistic 
regression; DT, decision tree; AdaBoost, adaptive boosting; XGboost, 
eXtreme gradient boosting; RF, Random Forest; AUC, area under the 
curve.

FIGURE 5

Receiver operating characteristic curves of the two best-performing 
machine learning models and caprini score on internal validation set.
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larger, multi-center cohort studies and integrate additional 
biomarkers to address these limitations and enhance the 
robustness of the model. The ultimate goal is to integrate the 
model into clinical decision support systems, enabling real-time 
prediction and intelligent warning of VTE risk based on dynamic 
clinical data.

In conclusion, this study successfully developed a machine 
learning-based VTE risk prediction model for orthopedic 
inpatients. The model demonstrated strong predictive performance 
on both the training and testing datasets, highlighting its potential 

for early identification of high-risk patients in clinical practice. 
These findings underscore the importance of integrating advanced 
analytical methods into clinical risk assessment, laying the 
foundation for personalized preventive strategies in VTE 
management. Future research should focus on validating the model 
in larger, more heterogeneous populations and exploring the 
integration of additional clinical and molecular data to further 
enhance prediction accuracy and utility, improve model 
generalizability, and ultimately benefit patients, advancing the 
development of personalized medicine.

FIGURE 7

Global interpretability for the final model prediction by SHAP method. (A) SHAP summary plot of 8 features included in the final prediction model for 
VTE. The horizontal axis represents the SHAP values, and the vertical axis represents the features. Each point corresponds to a sample, with the color of 
the points indicating the magnitude of the feature values: red represents higher feature values, while blue represents lower feature values. A positive 
SHAP value indicates an increased risk of VTE. Additionally, a positive correlation is shown when higher feature values result in larger SHAP values. 
(B) SHAP summary plot of 8 features ranked by the mean absolute SHAP values across all samples, representing the average impact of each feature on 
the prediction of VTE. VTE, venous thromboembolism; APTT, activated partial thromboplastin time.

FIGURE 8

Local interpretability for the final prediction model by SHAP method. (A) Force plot of a patient with VTE, APTT, bed rest duration and D-dimer are 
major features contributing to a higher predicted risk of VTE. (B) Force plot of a patient without VTE, D-dimer, erythrocyte sedimentation rate and VTE 
history are major features contributing to a lower predicted risk of VTE. APTT, activated partial thromboplastin time; VTE, venous thromboembolis.
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