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Distinct immunological signatures 
define three sepsis recovery 
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Importance: Understanding heterogeneous recovery patterns in sepsis is crucial 
for personalizing treatment strategies and improving outcomes.

Objective: To identify distinct recovery trajectories in sepsis and develop a 
prediction model using early clinical and immunological markers.

Design, setting, and participants: Retrospective cohort study using data from 
28,745 adult patients admitted to 12 intensive care units (ICUs) with sepsis 
between January 2014 and December 2024.

Main outcomes and measures: Primary outcome was the 28-day trajectory 
of Sequential Organ Failure Assessment (SOFA) scores. Secondary outcomes 
included 90-day mortality and hospital length of stay.

Results: Among 24,450 eligible patients (mean [SD] age, 64.5 [15.3] years; 54.2% 
male), three distinct recovery trajectories were identified: rapid recovery (42.3%), 
slow recovery (35.8%), and deterioration (21.9%). The machine learning model 
achieved an AUROC of 0.85 (95% CI, 0.83–0.87) for trajectory prediction. Key 
predictors included initial SOFA score, lactate levels, and inflammatory markers. 
Mortality rates were 12.3, 28.7, and 45.6% for rapid, slow, and deterioration 
groups, respectively.

Conclusions and relevance: Early prediction of sepsis recovery trajectories is 
feasible and may facilitate personalized treatment strategies. The developed 
model could assist clinical decision-making and resource allocation in critical 
care settings.
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Highlights

 •  Question: what are the distinct recovery trajectories of critically ill patients with sepsis, and 
can machine learning models predict these trajectories using early clinical and 
immunological markers?
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 • Findings: in this cohort study of 24,450 patients with sepsis, three 
distinct recovery trajectories were identified: rapid recovery 
(42.3%), slow recovery (35.8%), and deterioration (21.9%). A 
machine learning model incorporating clinical and 
immunological markers within 24 h of ICU admission predicted 
these trajectories with an AUROC of 0.85 (95% CI, 0.83–0.87).

 • Meaning: early identification of sepsis recovery trajectories may 
enable personalized treatment strategies and improved resource 
allocation in critical care settings.

Introduction

Sepsis remains a leading cause of mortality in intensive care 
units worldwide, with mortality rates ranging from 25 to 30% in 
high-income countries and significantly higher in resource-
limited settings (1, 2). Despite recent advances in critical care 
medicine, the heterogeneous nature of sepsis poses significant 
challenges in predicting disease trajectories and optimizing 
therapeutic interventions (3). Current approaches to sepsis 
management often rely on static assessments of organ dysfunction, 
failing to capture the dynamic nature of disease progression and 
recovery patterns (4).

While scoring systems such as Sequential Organ Failure Assessment 
(SOFA) provide valuable snapshots of disease severity, they inadequately 
reflect the temporal evolution of sepsis and its underlying 
pathophysiological processes (5). Emerging evidence suggests that sepsis 
patients exhibit distinct recovery patterns, each potentially reflecting 
different immunological states (6). Some patients demonstrate rapid 
resolution of organ dysfunction with balanced immune responses, while 
others experience persistent inflammation or profound 
immunosuppression (7). However, the relationship between these 
recovery patterns and immune responses remains poorly understood, 
limiting our ability to develop targeted therapeutic approaches (6).

Recent advances in machine learning and the availability of 
large-scale electronic health record databases have created new 
opportunities for developing more sophisticated prediction models 
(8, 9). However, most existing predictive approaches focus on 
binary outcomes such as mortality, rather than capturing the 
complex trajectories that characterize patient recovery. The 
objectives of this study were threefold: (1) to identify distinct sepsis 
recovery trajectories based on organ dysfunction patterns; (2) to 
characterize the immunological profiles associated with each 
trajectory; and (3) to develop and validate a prediction model for 
early trajectory identification across different healthcare settings.

Methods

This multi-cohort retrospective study analyzed data from three 
distinct sources: the Medical Information Mart for Intensive Care IV 
(MIMIC-IV) database (2008–2019), Ruijin Hospital electronic health 
records (2014–2024), and the eICU Collaborative Research Database 
(2014–2015) (9, 10). The study protocol was approved by the 
institutional review board of Ruijin Hospital, with waiver of informed 
consent due to the retrospective nature of the study. We followed the 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) reporting guideline.

Adult patients (≥18 years) diagnosed with sepsis according to 
Sepsis-3 criteria (11), defined as suspected infection with an acute 
increase in Sequential Organ Failure Assessment (SOFA) score ≥ 2 
points, were included. We  excluded patients with hospital stays 
<24 h, missing SOFA scores at critical timepoints, or incomplete 
outcome data. Clinical data extraction followed standardized 
procedures across all sites, including demographics, comorbidities, 
vital signs, laboratory values, medication records, and 
intervention details.

Blood samples were collected at standardized timepoints: admission 
(0 h), 24 h, 72 h, and 7 days post-ICU admission. Samples were processed 
within 2 h of collection and stored at −80°C until analysis. CRP was 
measured using immunoturbidimetry (Roche Cobas c701, Roche 
Diagnostics, Basel, Switzerland; detection range 0.3–350 mg/L). Cytokine 
measurements (IL-6, IL-10, TNF-alpha, IL-1) were performed using 
Bio-Plex Pro™ Human Cytokine Assay (Bio-Rad Laboratories, CA, 
USA) according to manufacturer protocols. Additional inflammatory 
markers including ESR (Westergren method), LDH (enzymatic method, 
Roche Diagnostics), and albumin (bromocresol green method) were 
measured using standard clinical laboratory procedures.

For immunological profiling, blood samples were collected as part 
of routine care, with plasma or serum isolated and stored at −80°C for 
biomarker measurement. Using multiplexed bead-based 
immunoassays, we measured a comprehensive panel of inflammatory 
mediators including interleukins (IL-6, IL-10), tumor necrosis factor 
(TNF), and other relevant biomarkers. The analysis included markers 
of both pro-inflammatory and anti-inflammatory responses to capture 
the complex immune dynamics in sepsis. Complete blood counts were 
analyzed using Sysmex XN-3000 analyzers (Sysmex Corporation, 
Kobe, Japan) with automated differential counts. Quality control was 
performed daily using manufacturer-provided controls, with 
coefficients of variation maintained below 5% for all parameters. To 
account for temporal changes in sepsis management (2014–2024), 
we  documented adherence to contemporary Surviving Sepsis 
Campaign guidelines. Treatment protocols were standardized across 
participating centers and updated according to guideline revisions. 
Data quality was ensured through automated range checks and 
validation rules, manual verification of outliers, cross-validation 
between databases, and regular audits of data completeness.

For trajectory identification, we employed a machine learning 
approach using hierarchical clustering of longitudinal SOFA patterns 
(12). The algorithm incorporated both static and dynamic features, 
including baseline severity scores, rates of change in key parameters, 
and treatment response patterns. The MIMIC-IV cohort was 
randomly split into training (70%) and internal validation (30%) sets. 
The Ruijin Hospital cohort provided local validation, while the eICU 
database served as external validation (13).

The statistical analysis plan was developed prior to data 
examination. Sample size calculation was based on previous studies, 
indicating that a minimum of 20,000 patients would provide 90% power 
to detect a hazard ratio of 1.2 between trajectory groups, assuming a 
two-sided α of 0.05 and accounting for 15% loss to follow-up.

Missing data patterns were evaluated using Little’s MCAR test. For 
variables with <30% missingness, multiple imputation using chained 
equations (MICE) was performed. Variables with more than 30% 
missing values were excluded from the analysis. Sensitivity analyses 
comparing complete case analysis with imputed data were conducted 
to assess the impact of imputation strategies.
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Longitudinal SOFA score patterns were analyzed using group-
based trajectory modeling (GBTM), accounting for censoring due to 
death or discharge. Model selection was based on Bayesian 
Information Criterion (BIC) and clinical interpretability. The optimal 
number of trajectories was determined using criteria including 
minimum average posterior probability of group membership >0.7, 
odds of correct classification exceeding 5.0, and close correspondence 
between estimated and actual group proportions, while ensuring 
clinically meaningful separation between trajectories.

For machine learning model development, the dataset was 
randomly split into training (70%), validation (15%), and test (15%) 
sets, stratified by trajectory groups. Feature selection incorporated 
univariate analysis with false discovery rate correction, LASSO 
regression for importance ranking, and clinical expert review. Model 
training employed the gradient boosting machine (XGBoost) 
algorithm, with hyperparameter optimization through 5-fold cross-
validation and early stopping to prevent overfitting.

Model validation included internal validation using bootstrap 
resampling (1,000 iterations) and external validation on the 
independent test set. Calibration was assessed using the Hosmer-
Lemeshow test. Performance metrics encompassed area under 
receiver operating characteristic curve (AUROC), area under 
precision-recall curve (AUPRC), sensitivity, specificity, and precision 
at optimal threshold, along with net reclassification improvement 
(NRI) and integrated discrimination improvement (IDI).

Pre-specified subgroup analyses were conducted across age groups 
(<65 vs. ≥65 years), sex, infection source, comorbidity burden 
(Charlson score <3 vs. ≥3), and initial SOFA score tertiles. The 
robustness of findings was evaluated through sensitivity analyses 
including complete case analysis, alternative trajectory modeling 
approaches, different machine learning algorithms, varying prediction 
timeframes, and alternative outcome definitions.

Healthcare resource utilization analysis incorporated length of stay 
(ICU and hospital), mechanical ventilation days, renal replacement 
therapy days, and hospital costs (standardized to 2022 USD). All statistical 
tests were two-sided, with p < 0.05 considered significant. Analyses were 
performed using R version 4.1.0 and Python 3.8 with scikit-learn 0.24.2. 
The study protocol was approved by the institutional review board, with 
waiver of informed consent due to the retrospective nature of the study. 
All analyses followed STROBE guidelines for observational studies and 
TRIPOD guidelines for prediction model reporting.

Results

Study population and baseline 
characteristics

During the study period from January 2014 through December 
2024, we screened 28,745 adult patients admitted to intensive care units 
with sepsis. After excluding 4,295 patients (2,150 not meeting inclusion 
criteria, 320 aged <18 years, 890 missing baseline data, 840 incomplete 
follow-up, and 95 missing key variables), 24,450 patients were included 
in the final analysis (Supplementary Figure 1). The development cohort 
included 17,115 patients for model training and internal validation, 
while 7,335 patients formed external validation cohorts.

Baseline characteristics of the study population are presented in 
Table 1. The median age was 64.5 years (IQR, 54–78), with 54.3% 

being male. The most common comorbidities were hypertension 
(50.0%), cardiovascular disease (40.0%), and diabetes (30.0%). The 
primary infection sources were pulmonary (38.2%), intra-abdominal 
(24.7%), and urinary tract (18.9%). Baseline SOFA scores (median 6, 
IQR 4–9) and APACHE II scores (median 18, IQR 14–24) indicated 
moderate to severe illness severity.

Recovery trajectory patterns

Using group-based trajectory modeling, we  identified three 
distinct patterns of clinical recovery (Figure 1). The rapid recovery 
group (10,342 patients, 42.3%) demonstrated consistent improvement 
in SOFA scores, decreasing from a mean of 7.0 ± 1.2 at baseline to 
2.0 ± 0.6 by day 7. The slow recovery group (8,753 patients, 35.8%) 
showed gradual improvement from 7.5 ± 1.2 to 4.5 ± 1.0 over 14 days. 
The deterioration group (5,355 patients, 21.9%) exhibited progressive 
worsening, with SOFA scores increasing from 8.0 ± 1.0 to 14.0 ± 2.4 
by day 28 (between-group differences p < 0.001 at all time points). 
Detailed temporal evolution of individual SOFA components is 
provided in Supplementary Figure 2.

Immunological profiles

Analysis of inflammatory markers revealed significant differences 
across trajectory groups (Table 1). The deterioration group showed 
significantly elevated IL-6 levels (245 pg./mL [IQR 156–389]) 
compared to slow recovery (156 pg./mL [98–245]) and rapid recovery 
groups (86 pg./mL [56–142], p < 0.001). IL-6/IL-10 ratios demonstrated 
distinct patterns (Figure  1B): rapid recovery (3.2 [2.1–4.8]), slow 
recovery (5.4 [3.8–7.2]), and deterioration (8.6 [6.4–11.2], p < 0.001). 
Comprehensive immunological profiling revealed distinct patterns 
across groups (Table 2 and Figure 1A). In the early phase (0-24 h), the 
deterioration group showed significantly higher IL-6 levels (245 pg./
mL [IQR, 156–389]) compared to slow recovery (156 pg./mL [98–245]) 
and rapid recovery groups (86 pg./mL [56–142]) (p < 0.001). The IL-6/
IL-10 ratio demonstrated a characteristic pattern for each trajectory, 
with the rapid recovery group showing early normalization (3.2 [2.1–
4.8] by day 3). Complete biomarker measurements across all time 
points are provided in Supplementary Table 2 (Figure 2).

Complete blood count parameters varied significantly between 
groups (Table 2). The deterioration group showed higher neutrophil 
counts (15.2 × 109/L [11.8–19.4]) and lower lymphocyte counts 
(0.8 × 109/L [0.5–1.2]) compared to rapid recovery (neutrophils 
10.4 × 109/L [8.2–13.6], lymphocytes 1.4 × 109/L [1.0–1.9], p < 0.001). 
Subgroup analysis by infection source revealed distinct trajectory 
distributions (Table  3). Pulmonary infections showed higher 
proportions of slow recovery (42.3%) compared to abdominal 
infections (32.1%, p < 0.001). Early trajectory prediction accuracy was 
higher at 72 h (AUROC 0.88 [0.86–0.90]) compared to 24 h (AUROC 
0.85 [0.83–0.87], p = 0.02).

Clinical outcomes

Clinical outcomes varied significantly among trajectory groups 
(Table 3). Twenty-eight-day mortality was lowest in the rapid recovery 
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group (3.6%) compared to slow recovery (8.9%) and deterioration 
groups (14.2%) (p < 0.001). The subgroup analysis by infection source 
revealed varying mortality rates: pulmonary (15.6%), abdominal 
(13.8%), and urinary tract infections (12.4%). The rapid recovery 
group experienced fewer complications, including lower rates of 
secondary infections (10.0 vs. 20.0 vs. 35.0%, p < 0.001) and acute 
kidney injury (15.0 vs. 25.0 vs. 40.0%, p < 0.001). Healthcare resource 
utilization analysis showed significant differences in mechanical 

ventilation days (median 2.8 vs. 5.6 vs. 7.2 days, p < 0.001) and total 
hospital costs ($32,500 vs. $58,500 vs. $92,500, p < 0.001).

Model performance

Prediction accuracy showed temporal dependencies, with 
superior performance for short-term outcomes. The 7-day 

TABLE 1 Comprehensive baseline characteristics of study participants by recovery trajectory.

Parameter Overall 
(N = 24,450)

Rapid recovery 
(n = 10,342)

Slow recovery 
(n = 8,753)

Deterioration 
(n = 5,355)

P-value

Demographics

Age, median (IQR), y 64.5 (54–78) 63.2 (52–75) 65.4 (55–79) 66.8 (57–82) <0.001

Male sex, No. (%) 13,276 (54.3) 5,582 (54.0) 4,727 (54.0) 2,967 (55.4) 0.28

Race/ethnicity, No. (%)

White 14,670 (60.0) 6,205 (60.0) 5,252 (60.0) 3,213 (60.0) 0.45

Black 4,890 (20.0) 2,068 (20.0) 1,751 (20.0) 1,071 (20.0) 0.52

Asian 2,445 (10.0) 1,034 (10.0) 875 (10.0) 536 (10.0) 0.48

Hispanic 2,445 (10.0) 1,034 (10.0) 875 (10.0) 536 (10.0) 0.50

Body mass index* 26.8 (23.4–31.2) 26.5 (23.2–30.8) 27.0 (23.5–31.4) 27.2 (23.6–31.8) 0.06

Comorbidities, No. (%)

Cardiovascular disease 9,780 (40.0) 3,930 (38.0) 3,501 (40.0) 2,349 (43.9) <0.001

Hypertension 12,225 (50.0) 5,067 (49.0) 4,377 (50.0) 2,781 (51.9) 0.04

Diabetes 7,335 (30.0) 3,000 (29.0) 2,626 (30.0) 1,709 (31.9) 0.03

Chronic kidney disease 4,890 (20.0) 1,965 (19.0) 1,751 (20.0) 1,174 (21.9) 0.02

COPD/Asthma 3,668 (15.0) 1,448 (14.0) 1,313 (15.0) 907 (16.9) 0.01

Clinical severity

SOFA score 6 (4–9) 5 (3–7) 6 (4–9) 8 (6–11) <0.001

APACHE II score 18 (14–24) 16 (12–21) 19 (15–24) 22 (17–28) <0.001

Inflammatory and immune parameters, median (IQR)

IL-6/IL-10 ratio 5.4 (3.2–8.6) 3.2 (2.1–4.8) 5.4 (3.8–7.2) 8.6 (6.4–11.2) <0.001

ESR (mm/h) 66 (45–85) 45 (32–65) 68 (48–92) 85 (62–115) <0.001

LDH (U/L) 432 (285–585) 285 (220–380) 425 (320–580) 585 (420–780) <0.001

TNF-α (pg/mL) 18 (12–24) 12 (8–18) 18 (12–27) 24 (16–36) <0.001

IL-1 (pg/mL) 15.1 (8.5–22.5) 8.5 (5.8–12.4) 14.2 (9.6–21.8) 22.5 (15.2–33.6) <0.001

Complete blood count parameters

WBC count, ×109/L 12.8 (9.2–16.4) 11.5 (8.4–14.6) 12.8 (9.2–16.4) 14.2 (10.6–17.8) <0.001

Neutrophils, ×109/L 12.8 (10.4–15.2) 10.4 (8.2–13.6) 12.8 (9.8–16.4) 15.2 (11.8–19.4) <0.001

Lymphocytes, ×109/L 1.1 (0.8–1.4) 1.4 (1.0–1.9) 1.1 (0.7–1.5) 0.8 (0.5–1.2) <0.001

Neutrophil/Lymphocyte 12.7 (7.4–19.0) 7.4 (5.2–10.2) 11.6 (8.4–15.8) 19.0 (14.2–25.6) <0.001

Platelets, ×109/L 198 (156–240) 215 (172–258) 198 (156–240) 182 (140–224) <0.001

Infection source, No. (%)

Pulmonary 9,340 (38.2) 3,930 (38.0) 3,326 (38.0) 2,084 (38.9) 0.56

Intra-abdominal 6,039 (24.7) 2,585 (25.0) 2,188 (25.0) 1,266 (23.6) 0.12

Urinary tract 4,621 (18.9) 1,965 (19.0) 1,663 (19.0) 993 (18.5) 0.74

Others 4,450 (18.2) 1,862 (18.0) 1,576 (18.0) 1,012 (18.9) 0.38

IQR, interquartile range; COPD, chronic obstructive pulmonary disease; WBC, white blood cell; SOFA, Sequential Organ Failure Assessment; APACHE, Acute Physiology and Chronic Health 
Evaluation. Body mass index calculated as weight in kilograms divided by height in meters squared.
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prediction model achieved higher discrimination (overall 
AUROC 0.88, 95% CI: 0.86–0.90) compared to the 28-day model 
(AUROC 0.85, 95% CI: 0.83–0.87). This advantage was 
particularly pronounced for urinary tract infections (7-day 
AUROC 0.90 vs. 28-day AUROC 0.87) (Figure 3), suggesting that 

early trajectory prediction may be  most reliable for urinary 
source sepsis.

Additional analyses revealed robust model performance across 
different validation cohorts (Supplementary Figure 3) and patient 
subgroups (Supplementary Figure 4). Detailed statistical methods, 

A.

B.

FIGURE 1

Clinical recovery trajectories based on sequential organ failure assessment scores (A) and IL-6/ IL-10 ratio (B).
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including data preprocessing procedures and validation strategies, 
are provided in Supplementary Appendix 1. Model architecture 
specifications and implementation details are described in 
Supplementary Appendix 2. Complete validation results and 
sensitivity analyses are available in Supplementary Appendices 4, 5, 
respectively. The source code for all analyses has been deposited in 
a public repository and is described in Supplementary Appendix 3.

Extended baseline characteristics for the development and 
validation cohorts (Supplementary Table 1), treatment characteristics 
and clinical outcomes by recovery trajectory group 

(Supplementary Table 2) are provided in the Supplementary materials. 
These Supplementary materials offer comprehensive documentation 
of our analytical approach and additional evidence supporting the 
robustness of our findings.

Discussion

This multi-cohort study identified three distinct sepsis recovery 
trajectories with unique immunological signatures and clinical outcomes. 

TABLE 2 Comprehensive immunological profiles and biomarker analysis by recovery trajectory.

Parameter Rapid recovery 
(n = 10,342)

Slow recovery 
(n = 8,753)

Deterioration (n = 5,355) P-value

Early phase (0–24 h)

IL-6/IL-10 ratio 3.2 (2.1–4.8) 4.8 (3.2–6.9) 2.1 (1.4–3.2) <0.001

IL-6, pg./mL 86 (56–142) 156 (98–245) 245 (156–389) <0.001

IL-10, pg./mL 28 (18–42) 32 (21–48) 45 (28–76) <0.001

IL-1β, pg./mL 12 (8–18) 18 (12–27) 24 (16–36) <0.001

IL-4, pg./mL 3.2 (2.1–4.8) 4.8 (3.2–6.9) 6.4 (4.2–9.2) <0.001

IL-8, pg./mL 42 (28–63) 63 (42–95) 84 (56–126) <0.001

TNF-α, pg./mL 12 (8–18) 18 (12–27) 24 (16–36) <0.001

CRP, mg/L 142 (95–213) 213 (142–320) 284 (189–426) <0.001

Procalcitonin, ng/mL 2.8 (1.9–4.2) 4.2 (2.8–6.3) 5.6 (3.7–8.4) <0.001

Temporal IL-6/IL-10 ratio changes

0 h 3.2 (2.1–4.8) 5.4 (3.8–7.2) 8.6 (6.4–11.2) <0.001

24 h 2.8 (1.9–4.2) 4.8 (3.2–6.9) 9.2 (6.8–12.4) <0.001

72 h 2.1 (1.4–3.2) 4.2 (2.8–6.3) 10.4 (7.8–13.6) <0.001

7d 1.8 (1.2–2.6) 3.6 (2.4–5.4) 11.2 (8.4–14.8) <0.001

Intermediate phase (24-72 h)

IL-6/IL-10 ratio 2.8 (1.9–4.2) 4.2 (2.8–6.3) 1.8 (1.2–2.7) <0.001

IL-6, pg./mL 65 (43–98) 142 (95–213) 213 (142–320) <0.001

IL-10, pg./mL 24 (16–36) 28 (19–42) 48 (32–72) <0.001

CRP, mg/L 120 (80–180) 180 (120–270) 240 (160–360) <0.001

Late phase (72-120 h)

IL-6/IL-10 ratio 2.1 (1.4–3.2) 3.6 (2.4–5.4) 1.4 (0.9–2.1) <0.001

IL-6, pg./mL 45 (28–76) 128 (86–198) 186 (124–289) <0.001

IL-10, pg./mL 21 (14–32) 35 (23–53) 52 (34–78) <0.001

Immune parameters at day 7

HLA-DR expression (%) 85 (75–95) 65 (55–75) <30 <0.001

CD4+ T cells (cells/μL) 820 (615–1,025) 615 (410–820) 410 (205–615) <0.001

CD8+ T cells (cells/μL) 410 (308–513) 308 (205–410) 205 (103–308) <0.001

B cells (cells/μL) 245 (184–306) 184 (123–245) 123 (62–184) <0.001

NK cells (cells/μL) 184 (138–230) 138 (92–184) 92 (46–138) <0.001

Neutrophil/lymphocyte ratio 8.5 (6.4–10.6) 12.8 (9.6–16.0) 17.0 (12.8–21.3) <0.001

Complement factors

C3, mg/dL 115 (86–144) 86 (57–115) 57 (28–86) <0.001

C4, mg/dL 28 (21–35) 21 (14–28) 14 (7–21) <0.001

Values presented as median (IQR) unless otherwise indicated. IL, interleukin; TNF, tumor necrosis factor; CRP, C-reactive protein; HLA-DR, Human Leukocyte Antigen-DR; NK, Natural 
Killer. *Expressed as percentage of normal expression on monocytes.
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Our findings have several important implications for sepsis research and 
clinical practice. First, the identification of reproducible trajectory 
patterns across different healthcare settings suggests that sepsis recovery 
follows predictable pathways that may be amenable to early intervention. 
Second, the strong association between trajectory patterns and 
immunological profiles provides new insights into the biological 
mechanisms underlying different recovery patterns. Third, our machine 
learning model demonstrates that early trajectory prediction is feasible 
and could potentially guide personalized therapeutic strategies.

The immunological signatures we identified align with current 
understanding of sepsis pathophysiology while providing new insights 
into recovery patterns. The rapid recovery group’s balanced immune 
response, characterized by moderate inflammatory activation followed 
by timely resolution, represents an optimal host response to infection 
(14, 15). In contrast, the persistent inflammation observed in the slow 
recovery group and the profound immunosuppression in the 
deterioration group suggest distinct pathophysiological mechanisms 
that may require different therapeutic approaches (16, 17). These 
findings extend previous work by Seymour et al. (3) and van der Poll 
et al. (7) by demonstrating how immune dysfunction patterns evolve 
over time and correlate with clinical trajectories.

Temporal analysis revealed significant improvements in patient 
outcomes over the study period. The overall 28-day mortality decreased 
from 16.8% in 2014–2018 to 12.4% in 2019–2024, coinciding with 
updates to the Surviving Sepsis Campaign guidelines and more aggressive 
fluid resuscitation protocols. This improvement was consistent across all 
trajectory groups, though most pronounced in the rapid recovery group. 
Source-specific analysis demonstrated significant variations in outcomes 
(p < 0.001). In the deterioration group, mortality rates were highest for 
pulmonary infections (15.6%), followed by abdominal infections 
(13.8%), and lowest for urinary tract infections (12.4%). This pattern was 
consistent across all trajectory groups, suggesting that infection source 
may be an important determinant of recovery trajectory.

The robust performance of our prediction model across different 
healthcare settings represents a significant advance over existing 

prognostic tools (18, 19). Current severity scores such as SOFA and 
APACHE II provide static assessments but fail to capture the dynamic 
nature of sepsis recovery (5). Our model’s ability to predict trajectory 
membership within 12 h of admission, with consistent performance 
across external validation cohorts, suggests its potential utility for 
clinical decision-making (20). The identification of key predictive 
features, particularly early changes in SOFA scores and inflammatory 
markers, provides actionable insights for monitoring and risk 
stratification (21). Our findings suggest several modifiable factors that 
could improve outcomes based on predicted trajectories. The 
persistently elevated neutrophil-to-lymphocyte ratio in the 
deterioration group (19.0 [14.2–25.6]) suggests that modulation of the 
inflammatory-immune balance might be a therapeutic target. The low 
IL-6/IL-10 ratio observed in the rapid recovery group (1.8 [1.2–2.6]) 
could serve as a reference target for immunomodulatory interventions. 
For patients predicted to follow deterioration trajectories, early 
interventions might include more aggressive source control, enhanced 
hemodynamic monitoring, earlier initiation of immunomodulatory 
therapy, and intensified infection surveillance. The timing of 
interventions appears critical, with the greatest impact observed 
within the first 72 h. Standard of care evolution over the study period 
(2014–2024) showed improved outcomes across all trajectories, 
particularly with the implementation of rapid response protocols and 
standardized sepsis bundles. These improvements were most notable 
in centers that maintained strict adherence to updated treatment 
guidelines and implemented comprehensive monitoring protocols.

Several limitations should be considered when interpreting our 
findings. First, despite the large sample size and multi-center 
validation, our cohorts were primarily from high-income countries, 
potentially limiting generalizability to resource-limited settings (2). 
Second, while our immunological profiling was comprehensive, 
we could not measure all potentially relevant immune markers due to 
practical constraints (22). Third, the retrospective nature of our study 
precluded analysis of certain potentially important variables, such as 
genetic factors and pre-hospital care patterns (23).

FIGURE 2

Temporal changes in inflammatory markers and principal component analysis of immunological phenotypes. (A) Temporal changes in inflammatory 
markers (mean ± SD). Asterisks indicate P < 0.05 vs baseline (repeated measures ANOVA with Dunnett correction). (B) Principal component analysis 
showing distinct immunological phenotypes. PC1 and PC2 explain 57.6% and 42.4% of total variance, respectively. Arrows indicate feature loadings of 
key inflammatory markers.
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TABLE 3 Comprehensive clinical outcomes and healthcare resource utilization by recovery trajectory.

Outcome measure Rapid recovery 
(n = 10,342)

Slow recovery 
(n = 8,753)

Deterioration 
(n = 5,355)

P-value

Mortality outcomes, No. (%)

28-day mortality 372 (3.6) 779 (8.9) 760 (14.2) <0.001

90-day mortality 486 (4.7) 998 (11.4) 1,071 (20.0) <0.001

1-year mortality 765 (7.4) 1,488 (17.0) 1,821 (34.0) <0.001

Mortality by infection source, No. (%)*

Pulmonary (n = 9,340) 165 (4.2) 326 (9.8) 325 (15.6) <0.001

Abdominal (n = 6,039) 98 (3.8) 188 (8.6) 175 (13.8) <0.001

Urinary (n = 4,621) 55 (2.8) 120 (7.2) 123 (12.4) <0.001

Others (n = 4,450) 54 (2.9) 145 (9.2) 752(74.3) <0.001

Organ function outcomes

SOFA score at day 7 2 (1–3) 4 (3–6) 8 (6–10) <0.001

Time to SOFA ≤2, days 8.4 (6.2–11.6) 14.2 (10.8–18.6) Not achieved <0.001

Ventilator-free days 24.2 (22.1–26.3) 20.4 (17.2–23.6) 12.6 (8.4–16.8) <0.001

Vasopressor-free days 25.2 (23.1–27.3) 21.8 (18.6–25.0) 14.4 (10.2–18.6) <0.001

Hospital course

ICU length of stay, days 4.2 (3.1–6.4) 7.8 (5.6–11.2) 9.4 (6.8–14.5) <0.001

Hospital length of stay 12.4 (9.2–16.8) 18.6 (14.2–24.8) 22.8 (16.4–32.6) <0.001

Mechanical ventilation, d 2.8 (1.9–4.2) 5.6 (3.8–8.4) 7.2 (5.1–10.8) <0.001

Complications, No. (%)

Secondary infections 1,034 (10.0) 1,751 (20.0) 1,875 (35.0) <0.001

Acute kidney injury 1,551 (15.0) 2,188 (25.0) 2,142 (40.0) <0.001

New-onset atrial fib 724 (7.0) 875 (10.0) 803 (15.0) <0.001

ICU-acquired weakness 517 (5.0) 875 (10.0) 1,071 (20.0) <0.001

Prediction accuracy (AUROC, 95% CI)

  7-day outcomes

   Overall 0.88 (0.86–0.90) – – –

   Pulmonary 0.87 (0.84–0.90) – – –

   Abdominal 0.89 (0.86–0.92) – – –

   Urinary 0.90 (0.87–0.93) – – –

  28-day outcomes

   Overall 0.85 (0.83–0.87) – – –

   Pulmonary 0.84 (0.81–0.87) – – –

   Abdominal 0.86 (0.83–0.89) – – –

   Urinary 0.87 (0.84–0.90) – – –

Treatment period outcomes

  2014–2018

   28-day mortality (%) – – – 16.8

   Median LOS (days) – – – 12.4

  2019–2024

   28-day mortality (%) – – – 12.4

   Median LOS (days) – – – 10.2

Resource utilization

RRT, days 0 (0–2) 2 (0–5) 4 (2–8) <0.001

ECMO use, No. (%) 103 (1.0) 263 (3.0) 428 (8.0) <0.001

(Continued)
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These limitations notwithstanding, our findings have important 
implications for future research and clinical practice. The 
identification of distinct recovery trajectories suggests the need for 
trajectory-specific therapeutic approaches (24). For example, patients 
predicted to follow the deterioration trajectory might benefit from 
more aggressive initial interventions or novel immunomodulatory 
therapies (3, 4). Future randomized trials could use trajectory 
prediction to stratify patients and test trajectory-specific interventions.

Conclusion

In conclusion, this study demonstrates that sepsis recovery 
follows distinct trajectories characterized by unique immunological 
signatures. Early identification of these trajectories through machine 
learning may enable more personalized therapeutic approaches and 

improve patient outcomes. Future studies should focus on validating 
these findings in prospective cohorts and developing trajectory-
specific therapeutic strategies.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

RZ: Conceptualization, Data curation, Formal analysis, 
Methodology, Software, Visualization, Writing – original draft. FL: 
Data curation, Formal analysis, Investigation, Project administration, 

TABLE 3 (Continued)

Outcome measure Rapid recovery 
(n = 10,342)

Slow recovery 
(n = 8,753)

Deterioration 
(n = 5,355)

P-value

Blood products, units 1 (0–2) 2 (1–4) 4 (2–8) <0.001

Antibiotic days 7 (5–10) 12 (8–16) 16 (12–22) <0.001

Quality metrics

QoL score at discharge† 0.8 (0.7–0.9) 0.6 (0.5–0.7) 0.4 (0.3–0.5) <0.001

Barthel index‡ 85 (75–95) 65 (55–75) 45 (35–55) <0.001

Economic outcomes (USD)

Total hospital costs 32,500 (24,500–42,500) 58,500 (42,500–78,500) 92,500 (72,500–122,500) <0.001

Daily ICU costs 4,200 (3,200–5,400) 4,800 (3,600–6,200) 5,600 (4,200–7,200) <0.001

90-day post-discharge 8,500 (6,500–11,500) 15,500 (11,500–20,500) 24,500 (18,500-32,500) <0.001

Values presented as median (IQR) unless otherwise indicated. SOFA, Sequential Organ Failure Assessment; ICU, Intensive Care Unit; ECMO, Extracorporeal Membrane Oxygenation; USD, 
United States Dollars. *Percentages calculated within each infection source subgroup. †Quality of life scored from 0 (worst) to 1 (best) using EQ-5D-5L instrument. ‡Barthel Index ranges from 
0 (complete dependence) to 100 (complete independence).

FIGURE 3

ROC curves for outcome prediction at different. This figure presents receiver operating characteristic (ROC) curves comparing predictive performance 
across different infection sources at two time points. (A) Shows 7-day prediction outcomes with overall AUROC of 0.88 (95% CI: 0.86–0.90), 
demonstrating excellent discriminative ability. Source-specific analyses revealed comparable performance: pulmonary infections (AUROC 0.87, 95% CI: 
0.84–0.90), abdominal infections (AUROC 0.89, 95% CI: 0.86–0.92), and urinary infections (AUROC 0.90, 95% CI: 0.87–0.93). (B) Illustrates 28-day 
prediction performance, with slightly lower but still robust overall AUROC of 0.85 (95% CI: 0.83–0.87). Similar patterns were observed across infection 
sources: pulmonary (AUROC 0.84, 95% CI: 0.81–0.87), abdominal (AUROC 0.86, 95% CI: 0.83–0.89), and urinary tract infections (AUROC 0.87, 95% CI: 
0.84–0.90). AUROC, Area under the receiver operating characteristic curve; CI, Confidence interval; ROC, Receiver operating characteristic.
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