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Development of an interpretable
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predicting sarcopenia in patients
undergoing maintenance
hemodialysis
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Background: Sarcopenia has a high incidence among patients undergoing
maintenance hemodialysis (MHD), significantly increasing the risk of falls,
fractures, and mortality. Traditional diagnostic methods, however, are costly and
complex, limiting their widespread clinical application. Therefore, developing an
efficient and interpretable sarcopenia prediction model using routine clinical
and laboratory data is crucial, with explainability techniques applied to further
enhance model transparency.

Methods: This study included 256 MHD patients and developed five machine
learning models based on clinical and laboratory data: Logistic Regression,
Extreme Gradient Boosting, Random Forest, Support Vector Machine, and
Gaussian Naive Bayes. Model performance was assessed using the area
under the receiver operating characteristic curve (AUC), calibration curve, and
decision curve analysis. Additionally, SHapley Additive exPlanations (SHAP) were
employed as an explainability tool to enhance and visualize the interpretability
of the optimal model.

Results: The Logistic Regression model demonstrated the best performance on
the validation set (AUC = 0.828, 95% Cl: 0.626-0.989). Key predictive factors
included body mass index (BMI), age, gender, creatinine (Cr), 25-hydroxyvitamin
D3, left ventricular ejection fraction (LVEF), and estimated glomerular filtration
rate (eGFR). SHAP analysis revealed that high BMI and 25-hydroxyvitamin D3
levels were protective factors, while low Cr, LVEF, and eGFR levels, as well as
female gender, significantly increased the risk of sarcopenia.

Conclusion: This study developed a Logistic Regression model using an
interpretable machine learning approach, offering an efficient tool for early
screening of sarcopenia risk in MHD patients and facilitating personalized
intervention strategies. However, the single-center design limits the model's
external applicability, and further multi-center studies are necessary to validate
its generalizability.
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1. Introduction

Sarcopenia (SP) is a syndrome characterized by a decline
in skeletal muscle mass and function (1), and its incidence
is significantly higher in patients undergoing maintenance
hemodialysis (MHD) (2). Due to long-term nutritional deficiencies,
chronic inflammation, and metabolic disturbances, MHD patients
are at an increased risk of developing sarcopenia. This condition
not only significantly reduces the quality of life in MHD patients
but also increases the risk of falls, fractures, cardiovascular events,
and mortality (3, 4). Therefore, early identification and precise
intervention for sarcopenia are critical for improving the long-term
prognosis of MHD patients.

Currently, the diagnosis of sarcopenia primarily relies on dual-
energy X-ray absorptiometry (DXA) to assess muscle mass and
handgrip strength testing to evaluate muscle strength (5). Although
these methods are relatively accurate, the high cost of equipment
and complex procedures limit their widespread application in
routine clinical practice. Additionally, a single diagnostic indicator
is insufficient to fully capture the complex pathological mechanisms
of sarcopenia. Thus, there is an urgent need for an efficient
predictive tool that integrates multidimensional clinical and
laboratory features.

In recent years, machine learning (ML) technologies have
increasingly been applied in disease risk prediction. Their powerful
data processing and pattern recognition capabilities offer promising
opportunities for the early screening of sarcopenia (6). However,
traditional ML models are often considered “black-box” systems,
limiting their clinical applicability (7). In contrast, interpretable
machine learning (IML) approaches, supported by explainability
techniques such as SHapley Additive exPlanations (SHAP), not
only enhance transparency but also provide intuitive insights into
the contribution of each feature to the prediction, offering valuable
decision support for clinicians (8).

While some studies have explored the risk factors for
sarcopenia (9), research on developing XML-based sarcopenia
prediction models specifically for MHD patients remains limited.
This study aims to develop and validate a sarcopenia risk prediction
model incorporating SHAP analysis by integrating routine clinical
indicators and laboratory data. By combining multidimensional
data, this study not only facilitates efficient screening for sarcopenia
but also provides scientific evidence to support the development
of personalized intervention strategies, ultimately improving the
long-term prognosis of MHD patients.

2 Materials and methods

2.1 Study design and population

This study is a single-center, retrospective observational study
conducted at Nanchong Central Hospital from January 2024 to
January 2025. A total of 364 MHD patients were included, based
on the following inclusion and exclusion criteria: (1) Inclusion
Criteria: Age > 18 years, undergoing regular hemodialysis for
more than 3 months, and receiving at least 2 dialysis sessions per
week. (2) Exclusion Criteria: A history of pacemaker implantation,
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malignant tumors, kidney transplantation, or amputation; acute
infection; incomplete clinical data; or refusal to participate.

2.2 Sarcopenia diagnosis criteria

Sarcopenia was diagnosed based on the updated 2019
consensus from the Asian Working Group for Sarcopenia (AWGS)
(10), using the following three criteria: (1) Muscle Mass: For
men, skeletal muscle mass index (SMI) < 7.0 kg/mz; for women,
SMI < 5.7 kg/m?. (2) Muscle Strength: For men, handgrip
strength < 28 kg; for women, handgrip strength < 18 kg. (3)
Functional Performance: 6-meter walking speed < 1.0 m/s.

Sarcopenia was diagnosed if a patient met the “muscle
mass” criterion and either the “muscle strength” or “functional
performance” criterion. To minimize the impact of dialysis-
related hydration changes on the results, all measurements were
taken post-dialysis.

2.3 Data collection and variables

A total of 34 clinical and laboratory variables were collected to
comprehensively capture nutritional status and biochemical
(1) General
Information: Gender, age, body mass index (BMI), handgrip

profiles, which were categorized as follows:

strength, 6-meter walking speed, dialysis duration, and medical
history (hypertension, diabetes, cardiovascular diseases). (2) Body
Composition and Functional Indicators: SMI and left ventricular
ejection fraction (LVEF). (3) Dialysis Adequacy and Renal
Function Indicators: Urea clearance index (Kt/V) and estimated
glomerular filtration rate (eGFR). The eGFR was calculated using
the CKD-EPI cystatin C equation (2012) as follows: 133 x min
(Scys/0.8,1)79.4% x max (Scys/0.8, 1)~1.328 x 0.99648¢ x 0.932 (if
female), where Scys is serum cystatin C (mg/L) (11). (4) Laboratory
Biochemical Indicators: Creatinine (Cr), cystatin C (Cys-C), uric
acid (UA), hemoglobin (Hb), albumin (ALB), prealbumin (PA),
parathyroid hormone (PTH), neutrophil-to-lymphocyte ratio
(NLR), high-sensitivity C-reactive protein (hs-CRP), alkaline
phosphatase (ALP), creatine kinase (CK), 25-hydroxyvitamin D3
(25(OH)D3), glucose (GLU), triglycerides (TG), total cholesterol
(TC), high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), calcium (Ca), phosphorus (IP),
magnesium (Mg), and carbon dioxide (CO2CP).

2.4 Model development and validation

2.4.1 Feature selection

Key features were first selected based on Pearson correlation
analysis (using the scipy 1.11.3 package, Python), with a threshold
of |r] > 0.7 to identify highly correlated variables. The variance
inflation factor (VIF) for each variable was then calculated,
and variables with a VIF greater than 5 were excluded to
mitigate multicollinearity. Subsequently, Least Absolute Shrinkage
and Selection Operator (LASSO) regression was applied (with
the glmnet package in R software) to further select features.
Finally, multivariate logistic regression was performed (using
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SPSS 27.0) to select significant features with a p-value < 0.05
included in the model.

2.4.2 Dataset splitting

The dataset was randomly divided into a training set
(n = 179) and a validation set (n = 77) at a 7:3 ratio, using
randomization (performed with Python, scikit-learn library). This
first split allowed for model selection and evaluation during
the training phase.

Stage 1 (Model Selection): Multiple machine learning models
were trained on the training set and evaluated using the validation
set. The best-performing model was selected based on its overall
performance across multiple evaluation metrics.

Stage 2 (Final Model Training and Independent Testing): After
selecting the optimal model, a second split was performed to create
an independent test set (n = 39, 15% of the total dataset) that was
not involved in the model selection process. The final model was
retrained using the remaining data (n = 217) and its performance
was evaluated on this independent test set.

2.4.3 Model construction

Five machine learning models were constructed and compared
using Python (with the xgboost, scikit-learn, and matplotlib
Extreme Gradient Boosting (XGBoost), Logistic
Regression, Random Forest, Gaussian Naive Bayes (GNB), and

libraries):

Support Vector Machine (SVM). Model performance was assessed
using 10-fold cross-validation, with the area under the receiver
operating characteristic curve (AUC) as the primary evaluation
metric for model accuracy (12).

244 Model performance evaluation

The calibration and clinical applicability of the models were
evaluated using calibration curves, decision curve analysis (DCA),
and precision-recall (PR) curves (13-15). Learning curves were
plotted to analyze the model’s fitting on both the training
and validation sets (16). To generate the learning curves, the
proportion of training data was incrementally increased from 10
to 100%, in 10% steps. For each training subset, 10 repetitions
of 10-fold cross-validation were performed, with AUC as the
primary evaluation metric. The mean AUC (£ SD) across all
repetitions was calculated, and the 95% confidence intervals were
determined using the t-distribution. The curves were plotted
with the mean AUC values, and shaded areas representing the
confidence intervals helped to visualize the model’s generalization
ability and stability.

2.4.5 Model interpretation

SHAP was employed for the interpretability analysis of the
optimal model, offering visual insights into feature importance
ranking, the contribution of each feature to individual sarcopenia
risk, and personalized risk assessments (17).

2.5 Statistical analysis

All statistical analyses were performed using SPSS 27.0, R
3.6.1, and Python 3.4.3. Continuous variables were expressed as
median and interquartile range (IQR), and group comparisons
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were conducted using the Mann-Whitney U test. Categorical
variables were expressed as frequencies and percentages, with group
comparisons made using the chi-square test. A two-tailed p-value
of < 0.05 was considered statistically significant.

3 Results

3.1 Basic characteristics of the study
population

A total of 256 MHD patients were included in the study
(Figure 1), with 139 males (54.2%) and 117 females (45.8%). Among
the participants, 109 patients were diagnosed with sarcopenia
(42.6%). The study population was randomly divided into a
training set (n = 179) and a validation set (n = 77) at a 7:3 ratio.
No significant differences were observed between the two groups
in terms of demographic characteristics and major laboratory
indicators (p > 0.05), ensuring a balanced data distribution
(Table 1).

3.2 Feature selection

Key features were initially selected using LASSO regression
with 10-fold cross-validation. An optimal X value (A = 0.043)
was determined, selecting eight candidate features (Figure 2). To
control for confounding factors, multivariate logistic regression
was performed, identifying seven significant predictors: gender,
age, BMI, 25(OH)D3, LVEE Cr, and eGFR (Table 2). While many
other nutritional and biochemical indicators showed potential
associations in univariate analysis, they did not provide additional
independent predictive value in the multivariate framework.
These variables were significantly associated with sarcopenia
risk (p < 0.05), providing a solid foundation for model
construction.

3.3 Model performance comparison

The performance of five machine learning models—XGBoost,
Logistic Regression, Random Forest, SVM, and GNB—was
evaluated: (1) AUC Analysis: The Logistic Regression model
performed best in the validation set (AUC = 0.878, 95% CI:
0.800-0.956), while XGBoost and Random Forest exhibited better
performance in the training set (Figures 3A,B). (2) Decision
Curve Analysis (DCA): Across a wide range of risk thresholds,
the Logistic Regression model demonstrated the best clinical
applicability (Figure 3C). (3) Calibration Curve: The predicted
values of the Logistic Regression model were highly consistent
with the actual values, indicating good calibration (Figure 3D).
(4) Precision-Recall (PR) Curve: The Logistic Regression model
had the highest average precision (AP value), further confirming
its reliability (Figures 3E,F). Based on overall performance,
the Logistic Regression model was selected as the optimal
model.
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364 patients with MHD were
included , from January 2024
to January 2025
108 were excluded:
* Implantation of a cardiac pacemaker (N=7)
» Malignant tumor (N=3)
* Kidney transplantation (N=2)
» Amputation (N=8)
« Acute infectious phase (N=4)
« Clinical data incomplete or rejected (N=84)
| 256 included in the study |
70 % of patients on MHD (N= 179) 30 % of patients on MHD (N= 77)
were randomly divided into the were randomly divided into the
training set. validation set.
AWGS 2019
Sarcopenia Non-Sarcopenia Sarcopenia Non-Sarcopenia
(N=77) (N=102) (N=32) (N=45)
FIGURE 1

Study flowchart. MHD, maintenance hemodialysis; AWGS, asian working group for sarcopenia.

3.4 Stability and generalization ability of
the optimal model

The Logistic demonstrated robust
performance across all datasets. During 10-fold cross-validation,
it achieved a mean AUC of 0.874 (95% CI: 0.819-0.928) on the
training set and 0.828 (95% CI: 0.626-0.989) on the validation
set. Notably, its generalizability was confirmed on an independent
hold-out test set, with an AUC of 0.873 (95% CI: 0.792-0.954)

(Figures 4A-C). Learning curve analysis revealed converging

Regression model

training and cross-validation curves with a narrow, stable gap,
indicating effective generalization without overfitting. Each
point on the curves represents the mean AUC (£ SD) from
10 repetitions, with shaded areas denoting the 95% confidence
intervals (Figure 4D). The curves demonstrate that as the
training data volume increased, both training and cross-validation
performance metrics stabilized, further affirming the model’s
consistent generalization capability across varying sample sizes.
Collectively, these results underscore the model’s performance
robustness and stability.

3.5 Model interpretability analysis

SHAP was employed for the interpretability analysis of the
Logistic Regression model: (1) Feature Importance Ranking: BMI
was the most significant predictor for sarcopenia risk, followed
by age, gender, Cr, 25(0OH)D3, LVEE and eGFR (Figure 5A). (2)
Feature Direction of Effect: High BMI, high 25(OH)D3 levels, and
younger age were protective factors for sarcopenia, whereas low Cr,
LVEE eGFR, and female gender significantly increased sarcopenia
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risk (Figure 5B). (3) Personalized Risk Assessment: SHAP analysis
provided intuitive visualizations of feature contributions for
individual patients. For example, for Patient A (true positive), the
model predicted an 86.0% probability of sarcopenia occurrence,
with older age, female gender, and low eGFR as the primary
risk factors (Figure 6A). For patient B (true negative), the model
predicted an 18.0% probability of sarcopenia, with young age and
higher Cr levels as the main protective factors (Figure 6B).

4 Discussion

In recent years, the development of risk prediction models
for sarcopenia in dialysis patients has advanced considerably.
Various machine learning models, including Logistic Regression,
Random Forest, and SVM, have been widely applied (18, 19).
However, most existing studies primarily focus on improving
prediction performance, with insufficient exploration of the
model’s decision-making mechanisms. Notably, few studies have
systematically integrated advanced techniques such as SHAP to
interpret key risk features.

To address this gap, we present a framework that integrates
the clinically interpretable Logistic Regression model with SHAP
analysis for sarcopenia prediction in patients undergoing MHD.
This approach not only ensures model performance (AUC = 0.828)
but also utilizes SHAP to provide individualized predictive
insights, significantly enhancing both clinical interpretability and
practical utility. Moreover, the clinical indicators employed in
this study—such as BMI, age, and 25(OH)D3—are routine and
easily obtainable, further improving the model’s applicability and
feasibility in real-world medical settings.
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TABLE 1 Baseline characteristics of the training and validation sets.

Variables Training set (n = 179)

Diagnosis, n(%) 0.829
Non-Sarcopenia 147(57.422) 102(56.983) 45(58.442)

Sarcopenia 109(42.578) 77(43.017) 32(41.558)

Gender, n(%) 0.188
Female 117(45.703) 77(43.017) 40(51.948)

Male 139(54.297) 102(56.983) 37(48.052)

Hypertension, n(%) 0.44
No 81(31.641) 54(30.168) 27(35.065)

Yes 175(68.359) 125(69.832) 50(64.935)

Diabetes, n(%) 0.837
No 162(63.281) 114(63.687) 48(62.338)

Yes 94(36.719) 65(36.313) 29(37.662)

Cardiovascular diseases, n(%) 0.782
No 212(82.813) 149(83.240) 63(81.818)

Yes 44(17.188) 30(16.760) 14(18.182)

Age (years), median (IQR) 59(49, 70) 59(48, 69) 59(49, 70) 0.924
BMI (kg/mz), median (IQR) 22.9(20.9, 25.5) 23(20.9, 25.5) 22.7(20.8, 25.6) 0.539
Grip strength (kg), median (IQR) 17.9(12.7, 23.3) 18.1(12.8, 23.9) 17(12.5, 20.6) 0.492
Walk speed (m/s), mean (£ SD) 0.958 £+ 0.229 0.962 £ 0.228 0.949 £+ 0.230 0.687
Dialysis vintage (months), median (IQR) 43(21,73) 42(21,73) 45(21, 75) 0.611
SM 1 (kg/mz), mean (+ SD) 6.275 + 1.136 6.293 £+ 1.180 6.235 £ 1.026 0.709
Kt/V, median (IQR) 1.31(1.26, 1.36) 1.31(1.25, 1.36) 1.31(1.28, 1.36) 0.92
eGFR (mL/min/1.73 m?), median (IQR) 6.566(5.752, 8.051) 6.725(5.735, 8.115) 6.346(5.777, 7.891) 0.353
Creatinine (mg/dL), mean (4 SD) 15.500 + 5.202 15.442 + 5.465 15.636 + 4.528 0.785
CysC (mg/L), median (IQR) 6.28(5.48,7.07) 6.24(5.45,7.07) 6.39(5.53, 7.05) 0.507
Uric acid (umol/L), median (IQR) 414.9(349.8, 487.5) 398.0(349.4, 489.0) 426.4(359.5, 477.7) 0.477
LVEF, median (IQR) 65(61, 69) 65(61, 69) 65(60, 70) 0.914
Hb (g/L), median (IQR) 110(96, 122) 110(94, 121) 110(100, 123) 0.463
Albumin (g/L), median (IQR) 40.1(37.1, 42.0) 40.1(36.7, 42.0) 39.8(37.4, 42.1) 0.891
Prealbumin (mg/L), mean (+ SD) 311.621 + 96.345 306.743 + 93.448 322.961 + 101.866 0.218
PTH (pg/mL), median (IQR) 236.0(113.0, 428.4) 233.0(121.0, 404.0) 236.0(108.3, 461.1) 0.804
NLR, median (IQR) 4.169(3.035, 6.381) 4.229(3.077, 6.958) 4.020(3.006, 5.963) 0.232
hs-CRP (mg/L), median (IQR) 2.06(0.95, 6.10) 1.76(0.92, 6.21) 2.48(1.01, 5.73) 0.358
ALP (U/L), median (IQR) 89.30(73.50, 108.00) 89.80(71.60, 108.00) 88.06(75.14, 109.00) 0.961
CK (U/L), median (IQR) 78.34(59.70, 108.00) 79.03(60.92, 108.35) 73.99(58.67, 106.61) 0.622
25(OH)D3 (ng/mL), median (IQR) 18.20(15.00, 23.77) 17.70(14.88, 23.77) 18.90(15.20, 24.51) 0.303
Glucose (mmol/L), median (IQR) 7.15(5.48, 9.64) 7.12(5.45, 9.83) 7.17(5.51,9.31) 0.962
TG (mmol/L), median (IQR) 1.65(1.14, 2.75) 1.58(1.13, 2.65) 1.76(1.14, 2.81) 0.371
TC (mmol/L), median (IQR) 3.72(3.14, 4.42) 3.71(3.11, 4.40) 3.72(3.16, 4.46) 0.566
HDL-C (mmol/L), median (IQR) 0.99(0.81, 1.18) 0.98(0.81, 1.16) 1.01(0.80, 1.24) 0.515
LDL-C (mmol/L), median (IQR) 2.00(1.56, 2.43) 2.04(1.59, 2.43) 1.92(1.50, 2.49) 0.718
Calcium (mmol/L), mean (£ SD) 2.139 £+ 0.190 2.128 £0.188 2.166 £ 0.192 0.142
Phosphorus (mmol/L), median (IQR) 1.64(1.33,2.08) 1.64(1.33,2.11) 1.64(1.32,2.03) 0.736
Magnesium (mmol/L), mean (£ SD) 1.068 +0.177 1.067 £+ 0.174 1.071 £ 0.184 0.853
CO2CP (mmol/L), median (IQR) 19.4(17.2,21.2) 19.3(17.2,21.2) 20.0(17.2,21.4) 0.565
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FIGURE 2
Variable selection using LASSO regression. (A) Path plot of LASSO regression coefficients, with 10-fold cross-validation used. Vertical lines indicate
the selected values where the optimal lambda value results in eight non-zero coefficients. (B) Cross-validation curve of LASSO regression. Vertical
dashed lines indicate the minimum mean squared error (A = 0.02) and minimum distance standard error (A = 0.043).

4.1 Clinical significance of key predictors

4.1.1 BMI

BMI emerged as one of the most important predictors in
this study, aligning with previous research (20). Lower BMI is
closely associated with muscle wasting and malnutrition in MHD
patients (17), thereby increasing the risk of all-cause mortality and
cardiovascular events. A meta-analysis of 12 studies found that BMI
is one of the most common predictor in models, with AUC values
exceeding 0.7 (21). However, BMI is not a perfect metric, especially
in MHD patients, as body composition may change due to dialysis
and malnutrition, potentially masking the true risk of muscle loss.
For instance, although BMI may appear normal, an increase in
body fat could result in falsely normal values, thus underestimating
muscle loss risk (22). Therefore, clinical practice should combine
other biochemical indicators (such as creatinine and LVEF) to
provide a more comprehensive assessment of muscle status.

4.1.2 Age and gender

Age and gender are important predictors of sarcopenia,
particularly in MHD patients, where age is a significant risk factor
(23, 24). As age increases, muscle mass and strength decline, a
trend that is particularly evident in dialysis patients. Additionally,
gender differences cannot be overlooked; studies indicate that
women are 20% more likely to develop sarcopenia than men (25).
In our study, the overall prevalence of sarcopenia was 42.6%,
with 47.7% of men and 52.3% of women affected. Research
suggests that testosterone promotes muscle synthesis, increasing
muscle size and strength (26). Similarly, estrogen helps regulate
protein synthesis in skeletal muscle (27). However, the impact of
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TABLE 2 Multivariable logistic regression analysis.

Variables | B | Wald P- OR (95%Cl)
value*
Gender 0.712 3.888 0.049 2.038(1.004~4.134)
Age 0.064 14.128 0.000 1.067(1.031~1.103)
BMI —0.323 26.077 0.000 0.724(0.640~0.820)
25(0OH)D3 —0.058 6.596 0.010 0.944(0.903~0.986)
LVEF —0.052 4.770 0.029 0.949(0.906~0.995)
Cr —0.144 9.152 0.002 0.866(0.789~0.951)
eGFR —0.186 4.240 0.039 0.830(0.695~0.991)
(Intercept) 12.167 20.880 0.000 -
“p < 0.05.

estrogen on muscle remains under investigation, with insufficient
evidence to suggest a significant effect (28). These age and gender
differences highlight the need for personalized strategies in clinical
interventions. For example, for female patients, particularly in
the elderly population, nutritional assessments and rehabilitation
training should be prioritized to reduce the incidence of sarcopenia.

4.1.3 Renal function indicators (Cr and eGFR)
Creatinine and eGFR were identified as important predictors
for sarcopenia in this study. Creatinine serves as a direct indicator
of muscle metabolism, and its decreased concentration typically
reflects muscle mass loss (29). In MHD patients, creatinine levels,
influenced by kidney function, can be an important marker for
muscle wasting (30). The decline in eGFR is commonly associated
with the progression of kidney dysfunction, which may, through
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chronic inflammation and metabolic disturbances, accelerate the
onset of sarcopenia (31).

However, we acknowledge that the reliability of eGFR in end-
stage renal disease (ESRD) may be compromised. Altered renal
clearance and chronic inflammation, both prevalent in MHD
patients, can affect the accuracy of eGFR measurements. To address
these limitations, we employed the CKD-EPI cystatin C-based
equation for eGFR calculation. Cystatin C is less affected by muscle
mass compared to creatinine, making it a potentially more reliable
indicator of renal function in this patient population.

Despite the improvements afforded by the CKD-EPI cystatin C
equation, we recognize that eGFR remains a complex predictor of
sarcopenia. Future research should consider additional biomarkers,
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such as the Cr/Cys-C ratio, to enhance the specificity and accuracy
of sarcopenia predictions. Integrating these markers could refine
the prediction models further. For the present analysis, the use
of the CKD-EPI cystatin C equation allows for a more tailored
assessment of kidney function in MHD patients and remains a
critical variable in our sarcopenia prediction model.

4.1.4 Vitamin D

Vitamin D was shown to be a protective factor for sarcopenia
in this study. Vitamin D significantly lays a significant role in
bone health, immune regulation, and muscle function, all of which
are critical in the development of sarcopenia (32). Our study
found that higher 25-hydroxyvitamin D3 levels effectively slowed
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SHAP model interpretation. (A) Feature importance ranking. The matrix plot displays the importance of each covariate in the final prediction model.
(B) SHAP summary plot showing the distribution of SHAP values for each feature. Each point represents the SHAP value of a feature for each patient,
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muscle atrophy, particularly in MHD patients, where vitamin D
supplementation is considered an effective and simple intervention
(33). Vitamin D exerts its protective effect by inhibiting the renin-
angiotensin system (RAS) (34). Specifically, 1,25-dihydroxyvitamin
D3 activates the vitamin D receptor (VDR) in skeletal muscle cells,
which directly suppresses renin gene transcription and reduces the
production of angiotensin II (Ang II). Ang II, a potent inducer of
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muscle catabolism, promotes oxidative stress, inflammation, and
activation of the ubiquitin-proteasome system (UPS), leading to
muscle protein degradation (35). By downregulating Ang II levels,
vitamin D mitigates these catabolic effects, preserves mitochondrial
function, and promotes protein synthesis in muscle cells. This
mechanism is particularly crucial for MHD patients, who are often

deficient in vitamin D and experience elevated RAS activity, both
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of which accelerate sarcopenia progression. Therefore, vitamin
D supplementation should be routinely incorporated into the
management of MHD patients to prevent muscle loss and improve
overall muscle health.

4.1.5 Heart function indicators

LVEE a crucial indicator of heart function, was identified as a
significant predictor for sarcopenia in this study. Reduced LVEF
is often associated with inadequate systemic blood perfusion and
tissue hypoxia, which can negatively affect skeletal muscle mass and
function (36). Studies have shown that patients with reduced LVEF
often exhibit more pronounced muscle wasting (37). Additionally,
the presence of sarcopenia significantly increases the risk of major
adverse cardiovascular events (MACE) in MHD patients (38). This
study further validated the effectiveness of LVEF as a predictor of
sarcopenia and suggested that clinicians should regularly monitor
heart function, particularly in high-risk sarcopenia groups, to
provide dual intervention opportunities for patients.

4.2 Clinical value of interpretable
machine learning

In this study, comparative evaluation of multiple machine
learning models identified Logistic Regression as the optimal
choice for predicting sarcopenia risk in MHD patients. Building
on its inherent interpretability, we applied SHAP to further
elucidate the contributions of key features, thereby enhancing
the model’s transparency and practical clinical value. SHAP
visualizations, which rank feature contributions, assist physicians
in understanding how various variables influence the occurrence
of sarcopenia, thereby supporting precise and informed clinical
decision-making.

Frontiers in Medicine

4.3 Clinical application prospects

The model developed in this study has significant clinical
application potential. First, based on routine clinical indicators
[such as BMI, Cr, 25(OH)D3, etc.], the model can rapidly identify
high-risk sarcopenia patients, making it particularly suitable
for resource-limited primary healthcare settings. Second, when
combined with SHAP analysis, the model supports personalized
risk assessments, helping to devise tailored intervention strategies.
Finally, the model’s simple structure facilitates its integration
into electronic health record systems, offering broad potential for
widespread adoption.

4.4 Study limitations and future
directions

Despite the significant progress made in this study, the
following limitations must be considered: (1) The single-center,
retrospective design and relatively small sample size (n = 256)
may introduce selection bias, potentially affecting the model’s
generalizability and stability. A small sample size may lead to
overoptimistic performance estimates, reducing the robustness
of the model when applied to diverse patient populations.
To address this, future studies should incorporate multicenter
prospective validation with larger sample sizes to validate the
model’s performance across a broader, independent cohort. (2)
This study did not account for the dynamic progression of
sarcopenia, and future research should include longitudinal follow-
up data to assess the model’s predictive ability as the disease
progression. (3) Since SHAP relies on statistical correlations, it may
not fully capture causal relationships. Therefore, future research
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should combine biological experiments to better understand the
mechanisms behind the predictive factors.

Future studies could further optimize and expand the model
by: (1) Mitigating Optimism Bias: To address optimism bias,
we plan to apply bootstrap resampling in subsequent analyses.
This technique will allow for a more accurate quantification
of the optimism bias and help adjust the model’s performance
estimates. Additionally, multicenter prospective validation will be
incorporated to assess the model’s generalizability across diverse
clinical settings and patient populations. (2) Incorporating Multi-
Omics Data: We aim to integrate multi-omics data (e.g., genomics,
metabolomics) to capture a broader range of sarcopenia risk
factors. This will enhance the model’s prediction accuracy by
incorporating biological insights that may not be captured by
traditional clinical data alone. (3) Exploring Deep Learning Models:
To further enhance prediction performance, we plan to explore
deep learning models. These models may uncover more complex
patterns within the data, and integrating advanced interpretability
tools will help maintain the model’s clinical usefulness while
ensuring transparency in predictions.

5 Conclusion

This study developed a Logistic Regression model combined
with SHAP analysis, demonstrating its superior performance in
predicting sarcopenia risk in MHD patients. The model offers
high interpretability and easy feature accessibility, providing a
valuable tool for early screening and personalized interventions for
sarcopenia. Although further validation is required, the findings of
this study lay a solid foundation for the precise management of
sarcopenia and are expected to improve the long-term prognosis
of MHD patients.
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