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Background: Sarcopenia has a high incidence among patients undergoing

maintenance hemodialysis (MHD), significantly increasing the risk of falls,

fractures, and mortality. Traditional diagnostic methods, however, are costly and

complex, limiting their widespread clinical application. Therefore, developing an

efficient and interpretable sarcopenia prediction model using routine clinical

and laboratory data is crucial, with explainability techniques applied to further

enhance model transparency.

Methods: This study included 256 MHD patients and developed five machine

learning models based on clinical and laboratory data: Logistic Regression,

Extreme Gradient Boosting, Random Forest, Support Vector Machine, and

Gaussian Naive Bayes. Model performance was assessed using the area

under the receiver operating characteristic curve (AUC), calibration curve, and

decision curve analysis. Additionally, SHapley Additive exPlanations (SHAP) were

employed as an explainability tool to enhance and visualize the interpretability

of the optimal model.

Results: The Logistic Regression model demonstrated the best performance on

the validation set (AUC = 0.828, 95% CI: 0.626–0.989). Key predictive factors

included body mass index (BMI), age, gender, creatinine (Cr), 25-hydroxyvitamin

D3, left ventricular ejection fraction (LVEF), and estimated glomerular filtration

rate (eGFR). SHAP analysis revealed that high BMI and 25-hydroxyvitamin D3

levels were protective factors, while low Cr, LVEF, and eGFR levels, as well as

female gender, significantly increased the risk of sarcopenia.

Conclusion: This study developed a Logistic Regression model using an

interpretable machine learning approach, offering an efficient tool for early

screening of sarcopenia risk in MHD patients and facilitating personalized

intervention strategies. However, the single-center design limits the model’s

external applicability, and further multi-center studies are necessary to validate

its generalizability.
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1. Introduction 

Sarcopenia (SP) is a syndrome characterized by a decline 
in skeletal muscle mass and function (1), and its incidence 
is significantly higher in patients undergoing maintenance 
hemodialysis (MHD) (2). Due to long-term nutritional deficiencies, 
chronic inflammation, and metabolic disturbances, MHD patients 
are at an increased risk of developing sarcopenia. This condition 
not only significantly reduces the quality of life in MHD patients 
but also increases the risk of falls, fractures, cardiovascular events, 
and mortality (3, 4). Therefore, early identification and precise 
intervention for sarcopenia are critical for improving the long-term 
prognosis of MHD patients. 

Currently, the diagnosis of sarcopenia primarily relies on dual-
energy X-ray absorptiometry (DXA) to assess muscle mass and 
handgrip strength testing to evaluate muscle strength (5). Although 
these methods are relatively accurate, the high cost of equipment 
and complex procedures limit their widespread application in 
routine clinical practice. Additionally, a single diagnostic indicator 
is insuÿcient to fully capture the complex pathological mechanisms 
of sarcopenia. Thus, there is an urgent need for an eÿcient 
predictive tool that integrates multidimensional clinical and 
laboratory features. 

In recent years, machine learning (ML) technologies have 
increasingly been applied in disease risk prediction. Their powerful 
data processing and pattern recognition capabilities oer promising 
opportunities for the early screening of sarcopenia (6). However, 
traditional ML models are often considered “black-box” systems, 
limiting their clinical applicability (7). In contrast, interpretable 
machine learning (IML) approaches, supported by explainability 
techniques such as SHapley Additive exPlanations (SHAP), not 
only enhance transparency but also provide intuitive insights into 
the contribution of each feature to the prediction, oering valuable 
decision support for clinicians (8). 

While some studies have explored the risk factors for 
sarcopenia (9), research on developing XML-based sarcopenia 
prediction models specifically for MHD patients remains limited. 
This study aims to develop and validate a sarcopenia risk prediction 
model incorporating SHAP analysis by integrating routine clinical 
indicators and laboratory data. By combining multidimensional 
data, this study not only facilitates eÿcient screening for sarcopenia 
but also provides scientific evidence to support the development 
of personalized intervention strategies, ultimately improving the 
long-term prognosis of MHD patients. 

2 Materials and methods 

2.1 Study design and population 

This study is a single-center, retrospective observational study 
conducted at Nanchong Central Hospital from January 2024 to 
January 2025. A total of 364 MHD patients were included, based 
on the following inclusion and exclusion criteria: (1) Inclusion 
Criteria: Age > 18 years, undergoing regular hemodialysis for 
more than 3 months, and receiving at least 2 dialysis sessions per 
week. (2) Exclusion Criteria: A history of pacemaker implantation, 

malignant tumors, kidney transplantation, or amputation; acute 
infection; incomplete clinical data; or refusal to participate. 

2.2 Sarcopenia diagnosis criteria 

Sarcopenia was diagnosed based on the updated 2019 
consensus from the Asian Working Group for Sarcopenia (AWGS) 
(10), using the following three criteria: (1) Muscle Mass: For 
men, skeletal muscle mass index (SMI) < 7.0 kg/m2; for women, 
SMI < 5.7 kg/m2 . (2) Muscle Strength: For men, handgrip 
strength < 28 kg; for women, handgrip strength < 18 kg. (3) 
Functional Performance: 6-meter walking speed < 1.0 m/s. 

Sarcopenia was diagnosed if a patient met the “muscle 
mass” criterion and either the “muscle strength” or “functional 
performance” criterion. To minimize the impact of dialysis-
related hydration changes on the results, all measurements were 
taken post-dialysis. 

2.3 Data collection and variables 

A total of 34 clinical and laboratory variables were collected to 
comprehensively capture nutritional status and biochemical 
profiles, which were categorized as follows: (1) General 
Information: Gender, age, body mass index (BMI), handgrip 
strength, 6-meter walking speed, dialysis duration, and medical 
history (hypertension, diabetes, cardiovascular diseases). (2) Body 
Composition and Functional Indicators: SMI and left ventricular 
ejection fraction (LVEF). (3) Dialysis Adequacy and Renal 
Function Indicators: Urea clearance index (Kt/V) and estimated 
glomerular filtration rate (eGFR). The eGFR was calculated using 
the CKD-EPI cystatin C equation (2012) as follows: 133 × min 
(Scys/0.8, 1)−0 .499 

× max (Scys/0.8, 1)−1 .328 
× 0.996Age 

× 0.932 (if 
female), where Scys is serum cystatin C (mg/L) (11). (4) Laboratory 
Biochemical Indicators: Creatinine (Cr), cystatin C (Cys-C), uric 
acid (UA), hemoglobin (Hb), albumin (ALB), prealbumin (PA), 
parathyroid hormone (PTH), neutrophil-to-lymphocyte ratio 
(NLR), high-sensitivity C-reactive protein (hs-CRP), alkaline 
phosphatase (ALP), creatine kinase (CK), 25-hydroxyvitamin D3 
(25(OH)D3), glucose (GLU), triglycerides (TG), total cholesterol 
(TC), high-density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C), calcium (Ca), phosphorus (IP), 
magnesium (Mg), and carbon dioxide (CO2CP). 

2.4 Model development and validation 

2.4.1 Feature selection 
Key features were first selected based on Pearson correlation 

analysis (using the scipy 1.11.3 package, Python), with a threshold 
of |r| > 0.7 to identify highly correlated variables. The variance 
inflation factor (VIF) for each variable was then calculated, 
and variables with a VIF greater than 5 were excluded to 
mitigate multicollinearity. Subsequently, Least Absolute Shrinkage 
and Selection Operator (LASSO) regression was applied (with 
the glmnet package in R software) to further select features. 
Finally, multivariate logistic regression was performed (using 
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SPSS 27.0) to select significant features with a p-value < 0.05 
included in the model. 

2.4.2 Dataset splitting 
The dataset was randomly divided into a training set 

(n = 179) and a validation set (n = 77) at a 7:3 ratio, using 
randomization (performed with Python, scikit-learn library). This 
first split allowed for model selection and evaluation during 
the training phase. 

Stage 1 (Model Selection): Multiple machine learning models 
were trained on the training set and evaluated using the validation 
set. The best-performing model was selected based on its overall 
performance across multiple evaluation metrics. 

Stage 2 (Final Model Training and Independent Testing): After 
selecting the optimal model, a second split was performed to create 
an independent test set (n = 39, 15% of the total dataset) that was 
not involved in the model selection process. The final model was 
retrained using the remaining data (n = 217) and its performance 
was evaluated on this independent test set. 

2.4.3 Model construction 
Five machine learning models were constructed and compared 

using Python (with the xgboost, scikit-learn, and matplotlib 
libraries): Extreme Gradient Boosting (XGBoost), Logistic 
Regression, Random Forest, Gaussian Naive Bayes (GNB), and 
Support Vector Machine (SVM). Model performance was assessed 
using 10-fold cross-validation, with the area under the receiver 
operating characteristic curve (AUC) as the primary evaluation 
metric for model accuracy (12). 

2.4.4 Model performance evaluation 
The calibration and clinical applicability of the models were 

evaluated using calibration curves, decision curve analysis (DCA), 
and precision-recall (PR) curves (13–15). Learning curves were 
plotted to analyze the model’s fitting on both the training 
and validation sets (16). To generate the learning curves, the 
proportion of training data was incrementally increased from 10 
to 100%, in 10% steps. For each training subset, 10 repetitions 
of 10-fold cross-validation were performed, with AUC as the 
primary evaluation metric. The mean AUC (± SD) across all 
repetitions was calculated, and the 95% confidence intervals were 
determined using the t-distribution. The curves were plotted 
with the mean AUC values, and shaded areas representing the 
confidence intervals helped to visualize the model’s generalization 
ability and stability. 

2.4.5 Model interpretation 
SHAP was employed for the interpretability analysis of the 

optimal model, oering visual insights into feature importance 
ranking, the contribution of each feature to individual sarcopenia 
risk, and personalized risk assessments (17). 

2.5 Statistical analysis 

All statistical analyses were performed using SPSS 27.0, R 
3.6.1, and Python 3.4.3. Continuous variables were expressed as 
median and interquartile range (IQR), and group comparisons 

were conducted using the Mann-Whitney U test. Categorical 
variables were expressed as frequencies and percentages, with group 
comparisons made using the chi-square test. A two-tailed p-value 
of < 0.05 was considered statistically significant. 

3 Results 

3.1 Basic characteristics of the study 
population 

A total of 256 MHD patients were included in the study 
(Figure 1), with 139 males (54.2%) and 117 females (45.8%). Among 
the participants, 109 patients were diagnosed with sarcopenia 
(42.6%). The study population was randomly divided into a 
training set (n = 179) and a validation set (n = 77) at a 7:3 ratio. 
No significant dierences were observed between the two groups 
in terms of demographic characteristics and major laboratory 
indicators (p > 0.05), ensuring a balanced data distribution 
(Table 1). 

3.2 Feature selection 

Key features were initially selected using LASSO regression 
with 10-fold cross-validation. An optimal λ value (λ = 0.043) 
was determined, selecting eight candidate features (Figure 2). To 
control for confounding factors, multivariate logistic regression 
was performed, identifying seven significant predictors: gender, 
age, BMI, 25(OH)D3, LVEF, Cr, and eGFR (Table 2). While many 
other nutritional and biochemical indicators showed potential 
associations in univariate analysis, they did not provide additional 
independent predictive value in the multivariate framework. 
These variables were significantly associated with sarcopenia 
risk (p < 0.05), providing a solid foundation for model 
construction. 

3.3 Model performance comparison 

The performance of five machine learning models—XGBoost, 
Logistic Regression, Random Forest, SVM, and GNB—was 
evaluated: (1) AUC Analysis: The Logistic Regression model 
performed best in the validation set (AUC = 0.878, 95% CI: 
0.800–0.956), while XGBoost and Random Forest exhibited better 
performance in the training set (Figures 3A,B). (2) Decision 
Curve Analysis (DCA): Across a wide range of risk thresholds, 
the Logistic Regression model demonstrated the best clinical 
applicability (Figure 3C). (3) Calibration Curve: The predicted 
values of the Logistic Regression model were highly consistent 
with the actual values, indicating good calibration (Figure 3D). 
(4) Precision-Recall (PR) Curve: The Logistic Regression model 
had the highest average precision (AP value), further confirming 
its reliability (Figures 3E,F). Based on overall performance, 
the Logistic Regression model was selected as the optimal 
model. 
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FIGURE 1 

Study flowchart. MHD, maintenance hemodialysis; AWGS, asian working group for sarcopenia. 

3.4 Stability and generalization ability of 
the optimal model 

The Logistic Regression model demonstrated robust 
performance across all datasets. During 10-fold cross-validation, 
it achieved a mean AUC of 0.874 (95% CI: 0.819–0.928) on the 
training set and 0.828 (95% CI: 0.626–0.989) on the validation 
set. Notably, its generalizability was confirmed on an independent 
hold-out test set, with an AUC of 0.873 (95% CI: 0.792–0.954) 
(Figures 4A–C). Learning curve analysis revealed converging 
training and cross-validation curves with a narrow, stable gap, 
indicating eective generalization without overfitting. Each 
point on the curves represents the mean AUC (± SD) from 
10 repetitions, with shaded areas denoting the 95% confidence 
intervals (Figure 4D). The curves demonstrate that as the 
training data volume increased, both training and cross-validation 
performance metrics stabilized, further aÿrming the model’s 
consistent generalization capability across varying sample sizes. 
Collectively, these results underscore the model’s performance 
robustness and stability. 

3.5 Model interpretability analysis 

SHAP was employed for the interpretability analysis of the 
Logistic Regression model: (1) Feature Importance Ranking: BMI 
was the most significant predictor for sarcopenia risk, followed 
by age, gender, Cr, 25(OH)D3, LVEF, and eGFR (Figure 5A). (2) 
Feature Direction of Eect: High BMI, high 25(OH)D3 levels, and 
younger age were protective factors for sarcopenia, whereas low Cr, 
LVEF, eGFR, and female gender significantly increased sarcopenia 

risk (Figure 5B). (3) Personalized Risk Assessment: SHAP analysis 
provided intuitive visualizations of feature contributions for 
individual patients. For example, for Patient A (true positive), the 
model predicted an 86.0% probability of sarcopenia occurrence, 
with older age, female gender, and low eGFR as the primary 
risk factors (Figure 6A). For patient B (true negative), the model 
predicted an 18.0% probability of sarcopenia, with young age and 
higher Cr levels as the main protective factors (Figure 6B). 

4 Discussion 

In recent years, the development of risk prediction models 
for sarcopenia in dialysis patients has advanced considerably. 
Various machine learning models, including Logistic Regression, 
Random Forest, and SVM, have been widely applied (18, 19). 
However, most existing studies primarily focus on improving 
prediction performance, with insuÿcient exploration of the 
model’s decision-making mechanisms. Notably, few studies have 
systematically integrated advanced techniques such as SHAP to 
interpret key risk features. 

To address this gap, we present a framework that integrates 
the clinically interpretable Logistic Regression model with SHAP 
analysis for sarcopenia prediction in patients undergoing MHD. 
This approach not only ensures model performance (AUC = 0.828) 
but also utilizes SHAP to provide individualized predictive 
insights, significantly enhancing both clinical interpretability and 
practical utility. Moreover, the clinical indicators employed in 
this study—such as BMI, age, and 25(OH)D3—are routine and 
easily obtainable, further improving the model’s applicability and 
feasibility in real-world medical settings. 
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TABLE 1 Baseline characteristics of the training and validation sets. 

Variables Overall (n = 256) Training set (n = 179) Validation set 
(n = 77) 

P-value 

Diagnosis, n(%) 0.829 

Non-Sarcopenia 147(57.422) 102(56.983) 45(58.442) 

Sarcopenia 109(42.578) 77(43.017) 32(41.558) 

Gender, n(%) 0.188 

Female 117(45.703) 77(43.017) 40(51.948) 

Male 139(54.297) 102(56.983) 37(48.052) 

Hypertension, n(%) 0.44 

No 81(31.641) 54(30.168) 27(35.065) 

Yes 175(68.359) 125(69.832) 50(64.935) 

Diabetes, n(%) 0.837 

No 162(63.281) 114(63.687) 48(62.338) 

Yes 94(36.719) 65(36.313) 29(37.662) 

Cardiovascular diseases, n(%) 0.782 

No 212(82.813) 149(83.240) 63(81.818) 

Yes 44(17.188) 30(16.760) 14(18.182) 

Age (years), median (IQR) 59(49, 70) 59(48, 69) 59(49, 70) 0.924 

BMI (kg/m2), median (IQR) 22.9(20.9, 25.5) 23(20.9, 25.5) 22.7(20.8, 25.6) 0.539 

Grip strength (kg), median (IQR) 17.9(12.7, 23.3) 18.1(12.8, 23.9) 17(12.5, 20.6) 0.492 

Walk speed (m/s), mean (± SD) 0.958 ± 0.229 0.962 ± 0.228 0.949 ± 0.230 0.687 

Dialysis vintage (months), median (IQR) 43(21, 73) 42(21, 73) 45(21, 75) 0.611 

SM I (kg/m2), mean (± SD) 6.275 ± 1.136 6.293 ± 1.180 6.235 ± 1.026 0.709 

Kt/V, median (IQR) 1.31(1.26, 1.36) 1.31(1.25, 1.36) 1.31(1.28, 1.36) 0.92 

eGFR (mL/min/1.73 m2), median (IQR) 6.566(5.752, 8.051) 6.725(5.735, 8.115) 6.346(5.777, 7.891) 0.353 

Creatinine (mg/dL), mean (± SD) 15.500 ± 5.202 15.442 ± 5.465 15.636 ± 4.528 0.785 

CysC (mg/L), median (IQR) 6.28(5.48, 7.07) 6.24(5.45, 7.07) 6.39(5.53, 7.05) 0.507 

Uric acid (µmol/L), median (IQR) 414.9(349.8, 487.5) 398.0(349.4, 489.0) 426.4(359.5, 477.7) 0.477 

LVEF, median (IQR) 65(61, 69) 65(61, 69) 65(60, 70) 0.914 

Hb (g/L), median (IQR) 110(96, 122) 110(94, 121) 110(100, 123) 0.463 

Albumin (g/L), median (IQR) 40.1(37.1, 42.0) 40.1(36.7, 42.0) 39.8(37.4, 42.1) 0.891 

Prealbumin (mg/L), mean (± SD) 311.621 ± 96.345 306.743 ± 93.448 322.961 ± 101.866 0.218 

PTH (pg/mL), median (IQR) 236.0(113.0, 428.4) 233.0(121.0, 404.0) 236.0(108.3, 461.1) 0.804 

NLR, median (IQR) 4.169(3.035, 6.381) 4.229(3.077, 6.958) 4.020(3.006, 5.963) 0.232 

hs-CRP (mg/L), median (IQR) 2.06(0.95, 6.10) 1.76(0.92, 6.21) 2.48(1.01, 5.73) 0.358 

ALP (U/L), median (IQR) 89.30(73.50, 108.00) 89.80(71.60, 108.00) 88.06(75.14, 109.00) 0.961 

CK (U/L), median (IQR) 78.34(59.70, 108.00) 79.03(60.92, 108.35) 73.99(58.67, 106.61) 0.622 

25(OH)D3 (ng/mL), median (IQR) 18.20(15.00, 23.77) 17.70(14.88, 23.77) 18.90(15.20, 24.51) 0.303 

Glucose (mmol/L), median (IQR) 7.15(5.48, 9.64) 7.12(5.45, 9.83) 7.17(5.51, 9.31) 0.962 

TG (mmol/L), median (IQR) 1.65(1.14, 2.75) 1.58(1.13, 2.65) 1.76(1.14, 2.81) 0.371 

TC (mmol/L), median (IQR) 3.72(3.14, 4.42) 3.71(3.11, 4.40) 3.72(3.16, 4.46) 0.566 

HDL-C (mmol/L), median (IQR) 0.99(0.81, 1.18) 0.98(0.81, 1.16) 1.01(0.80, 1.24) 0.515 

LDL-C (mmol/L), median (IQR) 2.00(1.56, 2.43) 2.04(1.59, 2.43) 1.92(1.50, 2.49) 0.718 

Calcium (mmol/L), mean (± SD) 2.139 ± 0.190 2.128 ± 0.188 2.166 ± 0.192 0.142 

Phosphorus (mmol/L), median (IQR) 1.64(1.33, 2.08) 1.64(1.33, 2.11) 1.64(1.32, 2.03) 0.736 

Magnesium (mmol/L), mean (± SD) 1.068 ± 0.177 1.067 ± 0.174 1.071 ± 0.184 0.853 

CO2CP (mmol/L), median (IQR) 19.4(17.2, 21.2) 19.3(17.2, 21.2) 20.0(17.2, 21.4) 0.565 

Frontiers in Medicine 05 frontiersin.org 

https://doi.org/10.3389/fmed.2025.1576081
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1576081 October 30, 2025 Time: 17:27 # 6

Liu et al. 10.3389/fmed.2025.1576081 

FIGURE 2 

Variable selection using LASSO regression. (A) Path plot of LASSO regression coefficients, with 10-fold cross-validation used. Vertical lines indicate 
the selected values where the optimal lambda value results in eight non-zero coefficients. (B) Cross-validation curve of LASSO regression. Vertical 
dashed lines indicate the minimum mean squared error (λ = 0.02) and minimum distance standard error (λ = 0.043). 

4.1 Clinical significance of key predictors 

4.1.1 BMI 
BMI emerged as one of the most important predictors in 

this study, aligning with previous research (20). Lower BMI is 
closely associated with muscle wasting and malnutrition in MHD 
patients (17), thereby increasing the risk of all-cause mortality and 
cardiovascular events. A meta-analysis of 12 studies found that BMI 
is one of the most common predictor in models, with AUC values 
exceeding 0.7 (21). However, BMI is not a perfect metric, especially 
in MHD patients, as body composition may change due to dialysis 
and malnutrition, potentially masking the true risk of muscle loss. 
For instance, although BMI may appear normal, an increase in 
body fat could result in falsely normal values, thus underestimating 
muscle loss risk (22). Therefore, clinical practice should combine 
other biochemical indicators (such as creatinine and LVEF) to 
provide a more comprehensive assessment of muscle status. 

4.1.2 Age and gender 
Age and gender are important predictors of sarcopenia, 

particularly in MHD patients, where age is a significant risk factor 
(23, 24). As age increases, muscle mass and strength decline, a 
trend that is particularly evident in dialysis patients. Additionally, 
gender dierences cannot be overlooked; studies indicate that 
women are 20% more likely to develop sarcopenia than men (25). 
In our study, the overall prevalence of sarcopenia was 42.6%, 
with 47.7% of men and 52.3% of women aected. Research 
suggests that testosterone promotes muscle synthesis, increasing 
muscle size and strength (26). Similarly, estrogen helps regulate 
protein synthesis in skeletal muscle (27). However, the impact of 

TABLE 2 Multivariable logistic regression analysis. 

Variables B Wald P-
value* 

OR (95%CI) 

Gender 0.712 3.888 0.049 2.038(1.004∼4.134) 

Age 0.064 14.128 0.000 1.067(1.031∼1.103) 

BMI −0.323 26.077 0.000 0.724(0.640∼0.820) 

25(OH)D3 −0.058 6.596 0.010 0.944(0.903∼0.986) 

LVEF −0.052 4.770 0.029 0.949(0.906∼0.995) 

Cr −0.144 9.152 0.002 0.866(0.789∼0.951) 

eGFR −0.186 4.240 0.039 0.830(0.695∼0.991) 

(Intercept) 12.167 20.880 0.000 – 

*p < 0.05. 

estrogen on muscle remains under investigation, with insuÿcient 
evidence to suggest a significant eect (28). These age and gender 
dierences highlight the need for personalized strategies in clinical 
interventions. For example, for female patients, particularly in 
the elderly population, nutritional assessments and rehabilitation 
training should be prioritized to reduce the incidence of sarcopenia. 

4.1.3 Renal function indicators (Cr and eGFR) 
Creatinine and eGFR were identified as important predictors 

for sarcopenia in this study. Creatinine serves as a direct indicator 
of muscle metabolism, and its decreased concentration typically 
reflects muscle mass loss (29). In MHD patients, creatinine levels, 
influenced by kidney function, can be an important marker for 
muscle wasting (30). The decline in eGFR is commonly associated 
with the progression of kidney dysfunction, which may, through 
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FIGURE 3 

Comprehensive analysis of machine learning models. (A) AUC for the training set and (B) the validation set. (C) Decision curve analysis (DCA) for the 
validation set, where the black dashed line represents the hypothesis that all patients have sarcopenia, and the red dashed line represents the 
hypothesis that no patients have sarcopenia. (D) Calibration curve for the validation set, with the x-axis representing the average predicted 
probability and the y-axis representing the actual probability of events. The dashed diagonal line serves as the reference, and the smooth solid lines 
represent the model fit lines for different models. The closer the fit line is to the reference line, the smaller the value in parentheses, indicating more 
accurate model predictions. (E) PR curve and AP value for the training set. (F) The validation set. The y-axis represents precision and the x-axis 
represents recall. Different colors in the figure correspond to the respective models, with values presented as mean and 95% CI. 
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FIGURE 4 

Training, validation, and testing of the logistic regression model. (A) ROC curve and AUC for the training set and (B) the validation set. Solid lines of 
different colors represent the results of 10-fold cross-validation. (C) ROC curve and AUC for the test set. (D) Learning curve. The solid blue line 
represents the training set, and the solid red line represents the cross-validation set. Each point represents the mean AUC (± SD), and the shaded 
areas represent the 95% confidence intervals. The curves converge with a small gap, indicating good generalization and model stability. 

chronic inflammation and metabolic disturbances, accelerate the 
onset of sarcopenia (31). 

However, we acknowledge that the reliability of eGFR in end-
stage renal disease (ESRD) may be compromised. Altered renal 
clearance and chronic inflammation, both prevalent in MHD 
patients, can aect the accuracy of eGFR measurements. To address 
these limitations, we employed the CKD-EPI cystatin C-based 
equation for eGFR calculation. Cystatin C is less aected by muscle 
mass compared to creatinine, making it a potentially more reliable 
indicator of renal function in this patient population. 

Despite the improvements aorded by the CKD-EPI cystatin C 
equation, we recognize that eGFR remains a complex predictor of 
sarcopenia. Future research should consider additional biomarkers, 

such as the Cr/Cys-C ratio, to enhance the specificity and accuracy 
of sarcopenia predictions. Integrating these markers could refine 
the prediction models further. For the present analysis, the use 
of the CKD-EPI cystatin C equation allows for a more tailored 
assessment of kidney function in MHD patients and remains a 
critical variable in our sarcopenia prediction model. 

4.1.4 Vitamin D 
Vitamin D was shown to be a protective factor for sarcopenia 

in this study. Vitamin D significantly lays a significant role in 
bone health, immune regulation, and muscle function, all of which 
are critical in the development of sarcopenia (32). Our study 
found that higher 25-hydroxyvitamin D3 levels eectively slowed 
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FIGURE 5 

SHAP model interpretation. (A) Feature importance ranking. The matrix plot displays the importance of each covariate in the final prediction model. 
(B) SHAP summary plot showing the distribution of SHAP values for each feature. Each point represents the SHAP value of a feature for each patient, 
with the x-axis representing the SHAP value. The color gradient from red to blue indicates the feature value, from high to low. 

muscle atrophy, particularly in MHD patients, where vitamin D 

supplementation is considered an eective and simple intervention 

(33). Vitamin D exerts its protective eect by inhibiting the renin-
angiotensin system (RAS) (34). Specifically, 1,25-dihydroxyvitamin 

D3 activates the vitamin D receptor (VDR) in skeletal muscle cells, 
which directly suppresses renin gene transcription and reduces the 

production of angiotensin II (Ang II). Ang II, a potent inducer of 

muscle catabolism, promotes oxidative stress, inflammation, and 

activation of the ubiquitin-proteasome system (UPS), leading to 

muscle protein degradation (35). By downregulating Ang II levels, 
vitamin D mitigates these catabolic eects, preserves mitochondrial 
function, and promotes protein synthesis in muscle cells. This 
mechanism is particularly crucial for MHD patients, who are often 

deficient in vitamin D and experience elevated RAS activity, both 
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FIGURE 6 

SHAP model interpretation for individual predictions. (A) SHAP force plot for patient A (true positive) and (B) SHAP force plot for patient B (True 
Negative). The length of the color bar represents the contribution value, with red indicating a positive contribution and blue indicating a negative 
contribution. 

of which accelerate sarcopenia progression. Therefore, vitamin 
D supplementation should be routinely incorporated into the 
management of MHD patients to prevent muscle loss and improve 
overall muscle health. 

4.1.5 Heart function indicators 
LVEF, a crucial indicator of heart function, was identified as a 

significant predictor for sarcopenia in this study. Reduced LVEF 
is often associated with inadequate systemic blood perfusion and 
tissue hypoxia, which can negatively aect skeletal muscle mass and 
function (36). Studies have shown that patients with reduced LVEF 
often exhibit more pronounced muscle wasting (37). Additionally, 
the presence of sarcopenia significantly increases the risk of major 
adverse cardiovascular events (MACE) in MHD patients (38). This 
study further validated the eectiveness of LVEF as a predictor of 
sarcopenia and suggested that clinicians should regularly monitor 
heart function, particularly in high-risk sarcopenia groups, to 
provide dual intervention opportunities for patients. 

4.2 Clinical value of interpretable 
machine learning 

In this study, comparative evaluation of multiple machine 
learning models identified Logistic Regression as the optimal 
choice for predicting sarcopenia risk in MHD patients. Building 
on its inherent interpretability, we applied SHAP to further 
elucidate the contributions of key features, thereby enhancing 
the model’s transparency and practical clinical value. SHAP 
visualizations, which rank feature contributions, assist physicians 
in understanding how various variables influence the occurrence 
of sarcopenia, thereby supporting precise and informed clinical 
decision-making. 

4.3 Clinical application prospects 

The model developed in this study has significant clinical 
application potential. First, based on routine clinical indicators 
[such as BMI, Cr, 25(OH)D3, etc.], the model can rapidly identify 
high-risk sarcopenia patients, making it particularly suitable 
for resource-limited primary healthcare settings. Second, when 
combined with SHAP analysis, the model supports personalized 
risk assessments, helping to devise tailored intervention strategies. 
Finally, the model’s simple structure facilitates its integration 
into electronic health record systems, oering broad potential for 
widespread adoption. 

4.4 Study limitations and future 
directions 

Despite the significant progress made in this study, the 
following limitations must be considered: (1) The single-center, 
retrospective design and relatively small sample size (n = 256) 
may introduce selection bias, potentially aecting the model’s 
generalizability and stability. A small sample size may lead to 
overoptimistic performance estimates, reducing the robustness 
of the model when applied to diverse patient populations. 
To address this, future studies should incorporate multicenter 
prospective validation with larger sample sizes to validate the 
model’s performance across a broader, independent cohort. (2) 
This study did not account for the dynamic progression of 
sarcopenia, and future research should include longitudinal follow-
up data to assess the model’s predictive ability as the disease 
progression. (3) Since SHAP relies on statistical correlations, it may 
not fully capture causal relationships. Therefore, future research 
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should combine biological experiments to better understand the 
mechanisms behind the predictive factors. 

Future studies could further optimize and expand the model 
by: (1) Mitigating Optimism Bias: To address optimism bias, 
we plan to apply bootstrap resampling in subsequent analyses. 
This technique will allow for a more accurate quantification 
of the optimism bias and help adjust the model’s performance 
estimates. Additionally, multicenter prospective validation will be 
incorporated to assess the model’s generalizability across diverse 
clinical settings and patient populations. (2) Incorporating Multi-
Omics Data: We aim to integrate multi-omics data (e.g., genomics, 
metabolomics) to capture a broader range of sarcopenia risk 
factors. This will enhance the model’s prediction accuracy by 
incorporating biological insights that may not be captured by 
traditional clinical data alone. (3) Exploring Deep Learning Models: 
To further enhance prediction performance, we plan to explore 
deep learning models. These models may uncover more complex 
patterns within the data, and integrating advanced interpretability 
tools will help maintain the model’s clinical usefulness while 
ensuring transparency in predictions. 

5 Conclusion 

This study developed a Logistic Regression model combined 
with SHAP analysis, demonstrating its superior performance in 
predicting sarcopenia risk in MHD patients. The model oers 
high interpretability and easy feature accessibility, providing a 
valuable tool for early screening and personalized interventions for 
sarcopenia. Although further validation is required, the findings of 
this study lay a solid foundation for the precise management of 
sarcopenia and are expected to improve the long-term prognosis 
of MHD patients. 
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