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Molecular signatures 
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Myocardial Infarction (MI) and lung cancers are major contributors to mortality 
worldwide. While seemingly diverse, the two share common risk factors, such 
as smoking and hypertension. There is a pressing need to identify bidirectional 
molecular signatures that link MI and lung cancer, in order to improve clinical 
outcomes for patients. In this study, we identified common differentially expressed 
genes between MI and lung cancer. Specifically, we identified 1,496 upregulated 
and 1,482 downregulated genes in the MI datasets. By focusing on the 1,000 most 
upregulated and downregulated genes in Lung Adenocarcinoma (LUAD) and Lung 
Squamous Cell Carcinoma (LUSC), we identified 35 genes that are common across 
MI, LUAD, and LUSC. Functional enrichment analysis revealed shared biological 
processes, such as “inflammatory response” and “cell differentiation.” The Cox 
proportional hazards model demonstrated a significant association between the 
shared genes and overall survival in lung cancer patients, as well as with smoking 
history in these patients. In addition, a machine learning model based on the 
expression of the shared genes distinguished MI patients from controls, achieving 
an AUROC of 0.72 and an AUPRC of 0.86. Finally, based on drug repurposing 
analysis, we proposed FDA-approved drugs potentially targeting the upregulated 
genes as novel therapeutic options for the co-occurring conditions of MI and 
lung cancer. Overall, our findings highlight the similarities in molecular makeup 
between lung cancer and MI.
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1 Introduction

The most severe clinical manifestation of coronary artery disease (CAD) and one of the 
most dangerous coronary events associated with sickle cell disease (SCD) is myocardial 
infarction (MI) (1, 2). The two types of this pathophysiology are non-ST-elevation MI (NSTE-
MI) and ST-elevation MI (STE-MI) (3). Every year, over 3 million people are diagnosed with 
STE-MI, and over 4 million with STE-MI, mostly in developed countries but also in developing 
countries (4–6). Lung cancer is the second most frequently diagnosed malignancy worldwide 
(7), with over 2.2 million new lung cancer cases and 1.7 million lung cancer-associated 
fatalities occurring annually worldwide (8). Lung carcinoma is classified into two primary 
types: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). The latter is 
further separated into three primary histological subtypes: large cell carcinoma (LCC), 
squamous cell carcinoma (SCC), and adenocarcinoma (ADC) (9).

Globally, acute myocardial infarction (AMI) and cancers are substantial contributors to 
morbidity and mortality (10). Research has shown that patients diagnosed with cancer are at 
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a higher short-term risk of experiencing cardiovascular (CV) events, 
while those with acute myocardial infarction have an increased 
incidence of cancer (11, 12). Furthermore, cardiac complications, 
including myocardial infarction, heart failure, and arrhythmias, are 
more prevalent among cancer survivors than in the general population 
(13). For example, the development of adverse cardiac events in cancer 
patients may be  influenced by inflammation, oxidative stress, and 
endothelial dysfunction, which are prevalent processes in both cancer 
and cardiovascular diseases (14). Patients with lung cancer frequently 
have pre-existing CVD comorbidities as a result of these overlapping 
risk factors. In patients with lung and bronchus cancer, hypertension, 
arrhythmia, CAD, dyslipidemia, and heart failure (HF) were identified 
as the most prevalent CV conditions (15). Moreover, the overall 
survival rate has been documented as lowest among patients with 
NSCLC and comorbid coronary heart disease, MI, or cardiac 
arrhythmias (16). Lung cancer has been identified as an independent 
risk factor for the development of CVDs, specifically CAD and 
MI. Consistent with the aforementioned links between the two 
pathologies, many risk factors are shared between cardiovascular 
disease (CVD) and lung cancer, including smoking, hypertension, 
diabetes mellitus (DM), advanced age, obesity, and racial and 
socioeconomic status (SES) (17, 18). These associations suggest a 
latent connection between AMI and lung cancer and motivate the 
need to identify shared mechanisms and biomarkers between the two 
seemingly diverse pathologies. Therefore, this study aims to identify 
molecular signatures underlying the bidirectional association between 
MI and lung cancer. Understanding the shared pathways can offer 
insights into overlapping disease mechanisms, improving early 
diagnosis and targeted therapies. Moreover, integrating these 
signatures may enhance personalized medicine approaches for 
individuals at risk of both diseases.

2 Methodology

2.1 Dataset curation and processing

We downloaded two transcriptomic datasets, GSE59867 (19) and 
GSE62646 (20), of MI patients from the GEO database. GSE59867 
included 111 MI patients with ST-segment elevation myocardial 
infarction (SEMI) and 46 patients with stable coronary artery disease 
(CAD) as the control group. GSE62646 included 28 patients with 
SEMI and 14 stable CAD patients as the control. For lung cancer, 
we downloaded RNASeq data for both lung cancer types, LUAD (21) 
and LUSC (22), profiled in The Cancer Genome Atlas (TCGA). 
HTSeq-count and the ID/gene mapping files were downloaded from 
the “DATA SETS” page of the UCSC Xena Browser (23) database for 
both cancer types. In the case of LUAD, we obtained 527 patients and 
59 normal samples, whereas, in the case of LUSC, we obtained 501 
patients and 49 normal samples. For genes with multiple transcripts, 
we took the average read count across transcripts.

2.2 Characterization of DEGs

We identified the DEGs using the “limma” package (24) with 
default parameters with FDR <0.05. Due to the unavailability of the 
raw data for the MI patient-related datasets, we  were unable to 

perform batch correction and instead relied on the identification of 
DEGs in each dataset independently. Normalization was done using 
the limma package during the process of DEG identification. Among 
the significant DEGs, we  further selected the top  1,000 up and 
downregulated DEGs from each dataset (~5 percentile) based on their 
logFC, as the number of DEGs was vastly greater in lung cancer 
relative to MI and also varied substantially across the MI datasets. As 
there were two MI datasets, we  took the union of the DEGs to 
represent the MI DEGs. We  used R packages “ggplot2” (25) and 
“ggrepel” (26) to visualize the differential gene expression results as 
volcano plots and create Venn diagrams.

2.3 Gene ontology analysis

We used the clusterProfiler 4.0 (27) to characterize enriched 
biological processes and molecular functions. We used our list of 
genes (common DEGs obtained in MI, LUAD, and LUSC) as the 
foreground and the default human geneset as the background. The 
minimum and maximum gene size was set as 10 and 500, respectively, 
to ensure specific terms. We used “Wang” as the measuring method, 
and the FDR value was <=0.05. We also identified the enriched KEGG 
pathways using the clusterProfiler. We used the “ggplot2” R package 
to display up to the top 20 enriched pathways.

2.4 Cell survival dependency analysis

We downloaded the DepMap data (28) provided at the BROAD 
Institute website. The data systematically maps the genetic and 
chemical vulnerabilities across hundreds of cancer cell lines. The data 
are generated using CRISPR-Cas9 gene knockout experiment to 
characterize essential genes for cell survival. We downloaded the data 
specifically for the lung cancer cell lines with a probability score 
between 0 and 1, where a value >0.5 represents gene essentiality.

2.5 Protein–protein interaction analysis

We performed protein–protein interaction analysis and 
characterized interacting partners using the STRING database (29), 
accessible at https://string-db.org/. We provided the gene list as an 
input and selected “Homo sapiens” as the organism to search for 
interacting partners. We ran the tool with default parameters, selecting 
“full STRING network” as the network type, where the edges indicate 
both functional and physical protein associations, and “high 
confidence (0.70)” as the minimum interaction required score. 
We downloaded the output network images in the high-resolution 
“png” format.

2.6 Survival analysis

We used the Cox regression approach for survival association 
using the R package “survival” and “survminer” (30). The model was 
developed using gene expression, and sex and age were used as 
covariates. We computed the hazard ratio using a 95% confidence 
interval. We  considered the genes and gene signatures to 
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be significantly associated with survival if the adjusted p-value was 
<=0.05. We conducted survival analysis using common genes (up and 
downregulated) for both LUAD and LUSC. We  also performed 
Kaplan–Meier (KM) curve analysis using the “Median” as the group 
cutoff, classifying 50% of the samples as “High” and the remaining 
50% as “Low”.

2.7 Common gene validation using 
machine learning in MI patients and 
assessing the relationship with smoking 
history in lung cancer patients

We developed five different machine learning models, including 
support vector machine (SVM), random forest (RF), Adaboost, 
Gradient boost, and ExtraTree classifier, to classify MI patients from 
the normal population using gene expression as a feature. 
We performed machine learning analysis using the Python-based 
“Scikit” package (31). We used the stratified five-fold cross-validation 
for training and testing and validated the model’s performance on an 
independent dataset. We developed models using common 35 genes 
(12 up and 23 downregulated) expression as features.

To obtain the best performance, we optimize the parameters of 
respective classifiers during training. We  used “GridSearchCV” 
function to get the best parameter. In the case of SVM, we tuned the 
parameters “kernel”, “gamma factor (g)”, and “cost factor (C)”, whereas 
the other four algorithms are tree-based and therefore the parameter 
“n_estimator” was tuned. These are the default parameters of the 
algorithms, and multiple values were used to obtain the best value. 
During each parameter tuning, stratified five-fold cross-validation was 
done to get the best performance. We computed the performance 
regarding the Area Under Receiver Operating Characteristics 
(AUROC) and Area Under Precision Recall Curve (AUPRC). The 
plots were created using the R package “pROC” (32) and PRROC (33). 
As a negative control, we created 10 sets of randomly selected genes 
and performed an analogous analysis. In the case of random gene sets, 
average values of the performance measures were computed.

We also assess the relationship of common genes with smoking in 
lung cancer patients, as smoking is one of the common risk factors 
among MI and lung cancer patients. We  downloaded the 
transcriptome and clinical data for the two datasets, GSE10072 (34) 
and GSE50081 (35), from the GEO and grouped them into smoker 
(current and ex-smoker) and non-smoker categories. Next, 
we compared the gene expression of the common genes between the 
two groups and computed the Wilcoxon t-test to compute 
the significance.

2.8 Drug repurposing studies

We performed a drug repurposing study to propose novel drugs 
against our identified targets. First, we downloaded the 3D structure 
of the targets from the RCSB-Protein Data Bank (PDB) database (36). 
If they were not in the RCSB-PDB, we  downloaded AlphaFold-
predicted structures from the UniProt (37). Next, using the “Open 
Babel” software (38), we prepared the target for docking. We uploaded 
the prepared 3D structure of the target to the webserver “DrugRep” 
(39) for virtual screening and docking analysis. We  selected the 

“protein box size” and the “centers of X, Y, and Z coordinates” after 
uploading the structure. Finally, we  chose the library of 
“FDA-approved drugs” for virtual screening and downloaded the 
results as a zip file containing docked protein-ligand structures and 
the free energy.

3 Results

3.1 MI and lung cancer share common 
differentially expressed genes

We performed differential gene expression analysis in the two MI 
datasets and the two lung cancer cohorts from TCGA relative to their 
respective controls, using “limma”. As shown in the volcano plots in 
Figures 1A–D, the MI datasets exhibit a narrower range of differential 
expression than the lung cancer datasets (consistent with broad and 
heterogeneous transcriptional changes in cancer), resulting in a large 
number of DEGs in lung cancers. We  selected the top  1,000 
upregulated and the top 1,000 downregulated genes in each dataset 
from the significant genes (FDR < =0.05). As there were two MI 
datasets, we merged them and retained the unique genes. In total, 
we obtained 1,496 genes in MI, 1000 genes in LUAD and LUSC as 
upregulated, and 1,482 genes in MI, 1000 genes in LUAD and LUSC 
as downregulated. Complete results of the differential expression 
analysis for all four datasets (2 MI, 1 TCGA-LUAD, and 1 TCGA-
LUSC) are provided in Supplementary Tables S1–S4. Next, 
we overlapped the three sets of differentially expressed genes to obtain 
the common up and downregulated genes (Figures 1E,F). In total, 
we  obtained 35 common genes (12 upregulated genes and 23 
downregulated genes) among MI, LUAD, and LUSC. Of note, the 
expected overlaps based on random expectation are 3.74 and 3.70. A 
list of these common genes is provided in Supplementary Table S5.

3.2 Functional enrichment analysis 
elucidates common pathways between MI 
and lung cancer

We performed the functional enrichment analysis using the DEGs 
characterized in each diseased condition and the DEGs common to 
all three conditions. First, the 12 common upregulated genes were 
majorly enriched for the cell cycle-associated processes, such as 
“chromosome separation,” “spindle organization,” “spindle checkpoint 
signaling,” etc. (Figure 2A). Independent studies have demonstrated 
the role of cell cycle-associated processes in MI and lung cancer 
patients. Although there are no direct associations of the cell cycle 
with the initiation of MI, our observations may reflect post-MI 
healing, stress response, immune response, etc. For example, Fu et al. 
showed that post-MI, fibroblasts show higher cell differentiation and 
proliferation for long-term tissue remodeling and wound healing (40). 
Similarly, Curaj et al. showed the role of immune-mediated cell cycle 
regulation where neutrophils modulate fibroblast function and 
promote healing post-MI (41). Therefore, there is a growing interest 
in understanding the cell cycle regulation in MI patients. In the case 
of cancers, the role of cell cycle regulation is well established, and it 
has been reported that the loss of the ability of cells to proliferate in a 
controlled fashion leads to cancer (42, 43). Supplementary Table S6 
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provides a comprehensive list of enriched biological processes among 
the 12 common upregulated genes.

Similarly, the common 23 downregulated genes were enriched for 
“inflammatory response to antigenic stimulus,” “oxygen transport,” 
“interleukin-5-production,” etc. (Figure 2B). Oxygen transport plays 
an important role in the development and progression of MI and 
many cancers, including lung. For example, it is intricately linked to 
erythrocyte differentiation, which has been observed in both 
conditions previously. In MI patients, the heart undergoes severe 
damage and stress, and the production of inflammatory cytokines 
such as TNF-α, IL-1β, and IL-6 takes place. These cytokines inhibit 
the process of erythropoiesis by remodeling the bone marrow 
microenvironment (44). In the case of lung cancer, a hypoxic 

environment alters the normal hematopoiesis as cancer cells compete 
for oxygen, leading to a less favorable environment for erythrocyte 
formation and differentiation (45). Similarly, the role of IL-5 in MI 
and lung cancer has been established (46, 47). A complete list of 
enriched biological processes associated with common downregulated 
genes is provided in Supplementary Table S7.

We also looked at the enriched processes associated with 
individual disease conditions—MI and the two lung cancers. Processes 
such as “positive regulation of DNA-binding transcription factor 
activity,” “positive regulation of cytokine production,” and “positive 
regulation of NIK/NF-kappaB signaling” are primarily enriched for 
the upregulated DEGs in MI (Figure 2C). DEGs that were upregulated 
in LUAD have been linked to cell cycle-associated processes, such as 

FIGURE 1

DEGs and common gene characterization. DESeq2 was used to characterize differentially expressed genes on MI datasets (A) GSE59867 and 
(B) GSE62646; (C) TCGA-LUAD and (D) TCGA-LUSC. Venn diagram among (E) MI datasets (combined), TCGA-LUAD, and TCGA-LUSC characterized 
upregulated genes; and (F) MI datasets (combined), TCGA-LUAD, and TCGA-LUSC characterized downregulated genes.

https://doi.org/10.3389/fmed.2025.1576375
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Nandi et al. 10.3389/fmed.2025.1576375

Frontiers in Medicine 05 frontiersin.org

“nuclear division,” “chromosome segregation,” “cell cycle checkpoint 
signaling,” and more (Figure 2D). Similarly, in LUSC, processes such 
as “epidermis development,” “mitotic cell cycle phase,” etc., were 
associated with the upregulated genes (Figure  2E). In the case of 
downregulated genes, MI was broadly enriched for the immune-
related processes, such as “immune response-regulating cell surface 
receptor signaling pathway,” “natural killer cell mediated immunity,” 
etc. (Figure 2F). For LUAD, downregulated genes were enriched for 
the processes such as “wound healing,” “extracellular matrix 
organization,” “heart morphogenesis,” etc. (Figure 2G), and finally, 

DEGs downregulated in LUSC were enriched for the processes such 
as “vascular processes in circulatory system,” “heart contraction,” 
“lung development” and others (Figure 2H). The top 20 processes are 
shown in Figures  2A–H, and the list of all enriched biological 
processes is provided in Supplementary Tables S8–S10.

The KEGG pathway analysis was also performed to characterize 
the enriched pathways associated with the disease-specific and 
common DEGs across diseased conditions. We observed only two 
significant pathways associated with the commonly upregulated genes, 
i.e., “Cell cycle” and “Oocyte meiosis.” In the case of MI, upregulated 

FIGURE 2

Gene enrichment analysis. (A,B) Represent the top 20 statistically significant enriched biological processes associated with common upregulated and 
downregulated genes, respectively; (C–E) Represent the top 20 statistically significant enriched biological processes associated with (C) upregulated 
genes in MI datasets (combined); (D) upregulated genes in TCGA-LUAD; and (E) upregulated genes in TCGA-LUSC and (F–H) represents the top 20 
statistically significant enriched biological processes associated with (F) downregulated genes in MI datasets (combined); (G) downregulated genes in 
TCGA-LUAD; and (H) downregulated genes in TCGA-LUSC. *BP, biological processes; MI, myocardial infarction; LUAD, lung adenocarcinoma; LUSC, 
lung squamous cell carcinoma.
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DEGs were majorly enriched for “Lysosome,” “Osteoclast 
differentiation,” “NOD-like receptor signaling pathway,” “TNF 
signaling pathway,” etc. Similarly, upregulated genes in LUAD and 
LUSC show enrichment of common pathways such as “cell cycle,” 
“Oocyte meiosis,” and the “Fanconi anemia pathway,” as well as unique 
pathways such as “Motor proteins” in LUAD and “p53 signaling 
pathway,” “Retinol metabolism,” etc. in LUSC. Supplementary  
Tables S11–S14 include the complete list of enriched KEGG pathways 
for the common and disease-specific upregulated genes. We  also 
performed a similar analysis with the downregulated genes, and the 
complete results for enriched biological processes are provided in 
Supplementary Tables S15–S17. Similarly, enriched KEGG pathways 
associated with common and disease-specific downregulated genes 
are provided in Supplementary Tables S18–S21.

3.3 Shared genes are associated with cell 
survival

CRISPR-Cas9 knockout-based DepMap data were downloaded 
for the lung cancer-specific cell lines. Median dependency scores 
across cell lines for the shared genes were computed. In the case of 
12 upregulated genes, CDCA8 and E2F2 were associated with cell 
survivability with probability scores of 0.99 and 0.95, respectively. 
These genes play a key role in cell division, as CDCA8 is associated 
with genome transfer during cell division, whereas E2F2, a 
transcription factor, controls cell cycle processes. The role of these 
genes is well-established in lung cancer (48, 49). Similarly, in the case 
of 23 downregulated genes, CPA3, GIMAP7, and SLC14A1 show the 
cell survival dependencies with a probability of 0.99, 0.94, and 0.93, 
respectively. The CPA3 gene is expressed in mast cells and is 
associated with maintaining homeostasis. The role of this gene in 
lung cancer has been shown in previous studies (50). Similarly, 
GIMAP7, a member of the GTPase family, is associated with 
regulating immune cell infiltration and the development and 
progression of multiple cancers, including lung cancer. However, 
given that DepMap is based on cell lines, the cell-endogenous role 
of GIMAP7 is unclear. Li et al. show that the downregulation of 
GIMAP7 is associated with poor prognosis and aggressive behavior 
of lung adenocarcinoma (51). Similarly, Zhou et  al. show the 
association of down expression of SLC14A1 with poor prognosis and 
progression of NSCLC (52). The association of downregulation of 
GIMAP7 and SLC14A1 with worse prognosis suggests a role 
independent of cell viability. The DepMap probability score for the 
DEGs is provided in Supplementary Table S22.

3.4 Protein–protein interaction analysis 
elucidates diverse interacting partners of 
key targets

Here, we aim to discover protein modules among the common up 
and downregulated genes and their additional interaction partner to 
gain further insights into additional proteins and processes. 
We conducted a protein–protein interaction (PPI) analysis of common 
DEGs using the STRING database. First, we performed the analysis 
using the 12 common upregulated DEGs and observed an interaction 
among the genes PLK1, ASF1B, CDC20, CDCA8, and DLGAP5 

(Figure  3A). These genes are associated with cell cycle-associated 
processes, as shown in Figure 3B. We also conducted a similar analysis 
using 23 common downregulated genes and observed two interaction 
modules, one among genes HBA2, HBB, ALAS2, SLC4A1, and CA1 
and the other in between FCER1A, CPA3, and MS4A2 (Figure 3C). 
Enrichment analysis for the first interaction networks was enriched 
for “Nitric oxide transport” and “Carbon dioxide transport” 
(Figure 3D).

We then analyzed additional interaction partners of these 
common upregulated (Supplementary Figure S1) and downregulated 
genes (Supplementary Figure S2). While there are some interactions 
among the up and downregulated genes, this analysis also suggests 
that these genes may affect multiple independent processes and may 
correspond to heterogeneous phenotypes.

3.5 Key genes are associated with overall 
survival in lung cancer patients

Here, we assessed whether the common genes are associated with 
patient prognosis, specifically in lung cancer, where the requisite data 
are available in TCGA. Using the Cox regression approach for overall 
survival analysis for the LUAD and LUSC cohorts in TCGA, 
we observed 4 of 12 genes, namely CDC20, DLGAP5, HMGA1, and 
PLK1, were associated with poor survival of LUAD cancer patients 
(Table 1). However, none of the genes show a significant survival 
association for LUSC cancer patients. Controlling for age and sex as 
covariates did not change these results. Similarly, in the case of 
downregulated genes, significant survival association was seen for 
SLC14A1, MS4A2, and HEMGN.

The key roles that these genes play in tumorigenesis further 
explain this observation. Miao et al. have shown the role of CDC20 in 
the migration, invasion, and proliferation of lung adenocarcinoma 
cells in  vitro (53). Similarly, Chen et  al. reported that DLGAP5 
upregulates PLK1, promotes cell proliferation in LUAD patients, and 
exhibits a strong correlation with unfavorable prognosis (54). 
Similarly, Zhou et al. show that SLC14A1 downregulation is associated 
with poor survival outcomes in non-small cell lung cancer (NSCLC). 
In another study, Zheng et al. have shown that high expression of 
MS4A2 genes is beneficial for the overall survival of LUAD patients 
(55). MS4A2 is associated with immune-infiltrating cells such as B 
cells, CD4+ T cells, CD8+ T cells, macrophages, etc., which play an 
important role in the immune response in patients. Interestingly, in 
the case of LUSC, we  did not observe any gene associated with 
survival. This may be because LUAD and LUSC are different in their 
genetic landscape, tumor microenvironment (TME), and therapeutic 
response (56, 57). For example, LUAD is primarily driven by 
oncogenic mutations in genes, such as EGFR, KRAS, AL, BRAF, and 
MET, which are associated with the activation of MAPK, PI3K/AKT, 
and JAK/STAT signaling pathways, whereas LUSC is driven by 
mutations in TP53, NFE2L2, NOTCH1, and SOX2, affecting cell cycle 
regulators (58). Unlike LUAD, LUSC relies more on squamous 
differentiation pathways. Furthermore, LUAD shows higher CD8+ T 
and dendritic cell infiltration compared to LUSC, where higher 
infiltration of neutrophils and macrophages is observed (59, 60). 
These differences in the two subtypes may partly explain the subtype-
specific overall survival. For example, in LUAD, CDC20, which is an 
anaphase-promoting complex (APC/C), is strongly linked to EGFR 
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and KRAS-mutant LUAD and is associated with poor prognosis (61), 
whereas LUSC relies on other regulators such as CCND1 and RB1 (62).

The complete results for the Cox regression analysis for 12 
common upregulated genes in LUAD and LUSC cohorts are provided 
in Table  1. The KM curve for the above-identified significant 
upregulated genes is shown in Figures  4A–D. Similarly, for 
downregulated genes, the results for Cox regression analysis are 
provided in Supplementary Tables S23–S24 for LUAD and LUSC, 
respectively, and the KM curve for the significant downregulated 
genes as per the Cox regression results is shown in Supplementary  
Figure S3.

3.6 Common genes can classify MI patients 
from normal with high accuracy

Here, we assessed the extent to which the common differential 
genes’ expression can distinguish MI patients from normal controls in 
an independent dataset. We trained and tested five machine learning 
models (SVM, RF, Adaboost, Gradient Boost, and ExtrTree) to classify 
MI patients from normal using the gene expression of the common 
genes characterized on the datasets used in the study for MI (see 
Methods section). Next, we validated the performance of the models 
on an independent dataset, GSE61145 (63). Five genes (one 
upregulated and four downregulated) were absent in GSE61145. 

Among all methods, the RF model based on the 30 common genes 
achieved the maximum AUROC of 0.72 (Figure 5A). The performance 
of the five ML models along with their best parameters is provided in 
Supplementary Table S25. As a negative control, random sets of 30 
genes achieved an AUROC ranging from 0.49 to 0.56 
(Supplementary Table S26). The AUPRC for the RF model was 0.86 
(expectation is 0.3; Figure 5B). To assess the impact of missing five 
genes on the robustness of the model performance, we performed an 
internal five-fold cross-validation on the dataset GSE59867 using data 
from both 30 and 35 genes. As shown in Supplementary Table S27, 
models trained using both sets of genes show similar performance. 
These observations suggest that our common gene set can classify MI 
and non-MI patients with reasonable accuracy, well above 
random expectations.

In an additional analysis, we tried to assess the relationship of the 
common gene signatures with smoking history in lung cancer patients, 
as smoking is one of the common risk factors among MI and lung 
cancer. We hypothesize that the common genes exhibit differential 
expression in lung cancer patients with a smoking history relative to 
non-smokers. We compared the gene expression of the 10 upregulated 
genes (CPT1B and ZP3 expression were not available) and observed 
that all the genes (except DLGAP5) show significantly high gene 
expression among the patients with a smoking history in GSE50081 
(Figure 5C). Similarly, in another dataset, GSE10072, 6 of 10 genes 
show significantly higher gene expression in the smoker group 

FIGURE 3

Protein–protein interaction (PPI) analysis. PPI network generated using STRING database for the 12 common upregulated genes among MI, TCGA-
LUAD, and TCGA-LUSC datasets. Each gene was submitted individually in the STRING database and the interaction network was downloaded. 
(A) Common 12 upregulated genes; (B) biological processes for common 12 upregulated genes (gene ontology); (C) common 23 downregulated 
genes; (D) biological processes for common 23 downregulated genes (gene ontology).
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(Figure  5D). We  performed a similar analysis of the common 
downregulated genes. In the case of dataset GSE50081, the majority 
of the genes show significantly higher gene expression in the 
non-smoker group compared to the smoker group 
(Supplementary Figure 4A); however, in the case of GSE10072, we do 
not observe significant gene expression in the non-smoker category 
(Supplementary Figure 4B). This analysis supports our hypothesis that 
lung cancer patients with a smoking history have higher chances of 
developing MI compared to those without a smoking history.

3.7 Drug repurposing analysis potential 
drugs against MI and lung cancer

Addressing the currently limited therapeutic options for MI and 
lung cancer, here, we  conducted a drug repurposing analysis to 
identify drugs that can potentially target the 12 common upregulated 
genes associated with the disease biology in both MI and lung cancer. 
First, for the protein products of the 12 genes (from UniProt), 
we download their 3D structure from the RCSB-PDB database. For 

genes lacking the PDB ID or full-length 3D structure, we download 
the AlphaFold predicted structure from the UniProt database (see 
Supplementary Table S28 for details). We  then used Open Babel 
software to process and refine the structures by removing heteroatoms 
and metal ions, among other things. Next, using the DrugRep server1, 
we identified the binding pockets on the protein surface and chose the 
one with the largest volume because it has more active site residues 
that can interact during docking (Supplementary Table S29). Next, 
we selected the “FDA-approved drugs” library for screening against 
our target and submitted it for docking, where the server uses the 
AutoDock Vina tool for docking. As a result, we obtained the top 100 
drugs for each protein, each represented by a “DrugBank ID” and their 
free energy value (Supplementary Table S30). We mapped the top 
three hits with the highest free energy using the DrugBank database 
to obtain the drug names. Table 2 provides a list of the top three drugs 
for each target.

1 https://cao.labshare.cn/drugrep/

TABLE 1 The Cox regression results for 12 common upregulated genes.

Genes HR p.value CI.lower CI.upper p.adjusted

LUAD cohort

ASF1B 1.160058843 0.0128348 1.03202767 1.30397329 0.15401757

CDC20 1.167130301 0.00176356 1.05938848 1.28582966 0.02116276

CDCA8 1.159419166 0.00899113 1.03763265 1.29549972 0.10789357

CPT1B 0.952927027 0.3174116 0.8669793 1.04739516 1

DLGAP5 1.225788067 6.13E-05 1.1096253 1.35411151 0.00073562

E2F2 1.06686299 0.25535455 0.95427513 1.19273426 1

HMGA1 1.217319908 0.00081233 1.08496571 1.3658199 0.00974793

NPM3 1.063617043 0.37819143 0.92728183 1.21999717 1

PAFAH1B3 1.128208335 0.05669227 0.99656942 1.27723571 0.68030728

PLK1 1.253633377 2.73E-05 1.12798533 1.39327756 0.0003275

TNNT1 1.064795367 0.01635512 1.01159689 1.12079148 0.19626144

ZP3 1.083524015 0.15398963 0.97037733 1.20986369 1

LUSC cohort

ASF1B 0.981040967 0.77867073 0.8584519 1.12113606 1

CDC20 1.057784384 0.43558328 0.91847411 1.21822466 1

CDCA8 1.030475775 0.68029215 0.89335529 1.18864279 1

CPT1B 1.036125181 0.49023218 0.93676258 1.14602719 1

DLGAP5 0.95405697 5.01E-01 0.83193545 1.09410496 1

E2F2 1.01179911 0.86278041 0.88577796 1.15574951 1

HMGA1 1.044064356 0.56927388 0.89998133 1.21121444 1

NPM3 0.958106971 0.57041706 0.82645041 1.1107369 1

PAFAH1B3 1.00736051 0.90464814 0.89345985 1.13578153 1

PLK1 1.066686745 4.06E-01 0.91606754 1.24207066 1

TNNT1 1.008069882 0.78760635 0.95081739 1.06876978 1

ZP3 0.954804523 0.44044292 0.84895446 1.07385227 1

The Cox regression model was developed using gene expression with age and gender as covariates. The analysis was performed for both LUAD and LUSC cohorts in TCGA. HR, hazard ratio; 
CI, confidence interval.
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4 Discussion

Lung cancer is one of the leading cancers, affecting 2,480,675 
people (both men and women) worldwide. As per the International 
Agency for Research on Cancer (IARC), lung cancer was the leading 
cause of cancer deaths, with 1.8 million deaths (18%) in 2020. 
Smoking is the leading cause of lung cancer, as it is responsible for 
nearly 85% of all cases (15). One of the reasons for the high mortality 
rate of cancer is its diagnosis at an advanced stage, where treatment 
options are limited. If diagnosed early, the survival rate can 
be  dramatically improved. Lung cancer has been hypothesized to 
be  associated with increased cardiovascular diseases, especially 
coronary heart disease (64), stroke (65), and MI (66). MI (also known 
as heart attack) is a type of CVD that is prevalent worldwide and is 
associated with significant morbidity and mortality. MI occurs due to 
a decreased or complete cessation of blood flow to the myocardium. 
A large cohort-based study known as “INTERHEART” conducted 
across 52 countries identified several risk factors associated with MI, 
which include smoking, hypertension, abnormal lipid profile/blood 
lipoprotein (ApoB/ApoA1), and diabetes mellitus (67, 68).

Numerous studies have observed a direct or indirect 
association between lung cancer and MI (18, 66, 69, 70). They 

share similar risk factors, such as smoking, obesity, inflammation, 
and so on; however, because of their complex and distinct 
pathophysiologies, analyzing both conditions has been 
challenging. In this study, we  tried to address this issue by 
analyzing MI and lung cancer together. We performed differential 
gene expression analysis using genome-wide transcriptome data 
from GEO for MI patients and TCGA for lung cancer (LUAD and 
LUSC). We characterized DEGs (12 up- and 23 downregulated) 
as common in all three conditions and performed several 
downstream analyzes. The GO analysis reveals an enrichment of 
pathways and processes found to be  common among both 
diseased conditions. For example, common-up genes were found 
to be  enriched for metabolic processes, immune-related 
processes, cell death regulation, and IL-5-mediated signaling 
pathways, indicating a possible alteration in the metabolic and 
immune landscape in the tumor microenvironment and the 
cardiovascular system.

We observed that shared genes mechanistically bridge the gap 
between MI and lung cancer. For example, PLK1 (Polo-like kinase 1) 
gene overexpression has been associated with cell proliferation of 
tumor cells in cancer (71) and cardiomyocytes and reducing 
apoptosis in MI (72). PLK1 inhibition induces mitotic arrest and 

FIGURE 4

Common genes are associated with overall survival analysis. Kaplan–Meier (KM) curve of the four significant upregulated genes (A) CDC20; 
(B) DLGAP5; (C) HMGA1; and (D) PLK obtained after the Cox regression analysis. For each gene, patients were stratified into high (50%) and low (50%) 
categories based on median expression.
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apoptosis in cancer cells, highlighting its potential as a therapeutic 
target. Similarly, E2F2 (E2F transcription factor 2) is associated with 
gene regulation not only in lung cancer but also in MI. It controls cell 
proliferation, invasion, and migration in lung cancer (49), whereas 
in MI, dysregulation of E2F2 leads to cardiomyopathies (73). In 
addition to cell cycle genes, we  also observed HMGA1 (High 
Mobility Group AT-Hook 1), a non-histone chromatin binding 
protein associated with altering chromatin structure and gene 

expression. Its role in tumor progression and metastasis in lung 
cancer is established (74). In the case of MI, the gene plays a similar 
role, i.e., regulating gene transcription and chromatin remodeling 
and its overexpression is associated with cardiomyocyte 
inflammation and apoptosis (75).

Similarly, PPI analysis using STRING reveals the association of 
common genes with other proteins that regulate a diverse range of 
relevant processes. Next, we looked for the survival association of the 

FIGURE 5

Common gene signature performance on validation datasets. (A) Performance of various ML models using common 30 gene expression in terms of 
AUROC values; (B) Performance of various ML models using common 30 gene expression in terms of AUPRC values; (C) Gene expression comparison 
of common upregulated genes in the lung cancer patients classified as smoker and non-smoker in the dataset GSE50081; (D) Gene expression 
comparison of common upregulated genes in the lung cancer patients classified as smoker and non-smoker in the dataset GSE10072. ML model 
performance was computed in the form of ROC curves, gene expression comparison was made in the form of a boxplot, and the Wilcoxon test was 
performed as a measure of statistical significance.
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genes to predict prognosis in LUAD and LUSC patients and observed 
a significant association of the genes, especially up genes in the LUAD 
cohort. We also show that a machine learning model, based on the 
common genes’ expression, can differentiate MI patients from controls 
with an AUROC of 0.72 and AUPRC of 0.86 compared to the negative 
control. This result indicates the potential use of these genes as 
biomarkers for early diagnosis and risk assessment. We  further 
validated our characterized signatures on external datasets where 
we  compared the gene expression pattern in lung cancer patients 
classified as smokers or non-smokers. This is an important analysis, as 
“smoking” is one of the common risk factors for MI and lung cancer. 
As hypothesized, we observed significantly higher gene expression in 
the smoker group than in the non-smoker group. Although the 
current analysis is based on gene expression, future studies need to 
take other correlates into account, such as age and body mass index 
(BMI), to obtain more refined insights. Finally, we performed a drug 
repurposing analysis against the 12 common upregulated genes and 
proposed novel drugs.

The upregulation of 12 genes that are common to both lung cancer 
and MI suggests a converging pathogenesis. This forms a rationale for 
future work in the prediction of CV risk in patients with lung cancer, 
taking into account race and age-specific populations, which will 
likely increase the predictive value of the computational platform with 
capabilities to predict patterns and processes associated with not only 
disease susceptibility but also morbidity and mortality.

Given that the current study suggests a potential link between MI 
and lung cancer pathophysiology, it is important to address certain 
limitations. First, the current study is based on a relatively small 
dataset with limited geographical diversity; going forward, it will 
be  important to extend the current analysis to a larger and more 
diverse cohort. Second, the current study analyzes only transcriptome 
data and needs integration of other omics data, such as proteomics 
and metabolomics, for a more complete view of disease mechanisms. 
Third, we need to experimentally validate the proposed drugs. Finally, 
we  need to collect data where the patient with lung cancer has a 
previous history of MI or vice versa. Overall, the current study directs 
us to how we can leverage the commonality of the two diseases to 
improve our understanding and management, ultimately improving 
patient outcomes.

5 Conclusion

The identification of significant upregulated genes from 
myocardial infarction (MI) and lung cancer, specifically LUAD 
and LUSC, suggest a shared mechanism of pathophysiology. Such 
genes could serve as potential biomarkers in early detection and 
risk stratification in both diseases, thereby improving triaging of 
patients and clinical decision-making. The application of ML 
models further supports the potential of these genetic signatures 
to classify patients with high accuracy, providing a promising 
tool for integrating precision medicine, which will provide a basis 
for precision public health as well. This paves the way to validate 
such biomarkers in larger and more diverse populations in a race-
specific manner for further assessment of the broader 
applicability of biomarkers, pursuing an ultimate goal to improve 
early detection, personalized treatments, and improved patient 
outcomes for both cardiovascular and lung cancer care. Moreover, 
our study provides a robust underpinning to further development 
in predicting the bi-directional risk of MI and lung cancer 
patients incorporating ethnicity- and age-specific variables. 
Demographic tailoring of such predictions will enhance the 
accuracy of algorithms using computational models that not only 
identify susceptibility to disease but also morbidity and 
mortality risks.
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