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The use of artificial intelligence in
stereotactic ablative body
radiotherapy for hepatocellular
carcinoma

Atsuto Katano*

Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan

The integration of artificial intelligence (AI) into stereotactic ablative body

radiotherapy (SABR) for hepatocellular carcinoma (HCC) is transforming the

landscape of liver cancer treatment. SABR has emerged as a promising treatment

option for patients with localized HCC, o�ering high local control rates and

favorable toxicity profiles. As evidence supporting SABR’s clinical e�cacy

continues to grow, AI technologies are accelerating its adoption by enhancing

precision, e�ciency, and individualization of care. This review summarizes recent

advances in AI applications across the SABR workflow, including automated

contouring, knowledge-based planning, fluence prediction via deep learning,

respiratorymotionmodeling, liver function estimation, and prognosticmodeling.

Clinical studies have demonstrated notable benefits, such as a reduction in

contouring time and improved dosimetric quality using machine learning–based

optimization algorithms. However, critical limitations persist. Many AI models

are trained on limited datasets without external validation, raising concerns

about overfitting and generalizability. Future e�orts should focus on improving

model transparency, confirming their reliability across di�erent institutions, and

ensuring ethical use in real-world clinical practice.
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1 Introduction

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, with

a rising incidence worldwide, particularly in Western countries (1). Its development is

closely linked to chronic liver diseases, including hepatitis B virus (HBV) and hepatitis

C virus (HCV) infections, liver disease caused by excessive alcohol consumption, and

metabolic dysfunction-associated steatotic liver disease (MASLD) (2). The distribution of

HCC varies by region. East Asia and sub-Saharan Africa have high incidence rates owing

to the endemic prevalence of HBV and HCV, whereas in Western countries, the increasing

burden of MASLD and alcohol misuse contributes significantly to the rise in HCC cases

(3). Unlike alcohol-or viral hepatitis-associated HCC, MASLD-related HCC can develop

without cirrhosis, distinguishing it from other forms of the disease and contributing to its

rising incidence (4, 5). MASLD-related HCC poses unique problems in surgical treatment

owing to its association with metabolic comorbidities, significantly increasing the risk of

postoperative complications, including mortality, surgical-site infections, cardiovascular

events, and prolonged hospital stays (6).
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Stereotactic ablative body radiotherapy (SABR) is used for

precise delivery of a high radiation dose to a localized tumor with

minimal exposure to the surrounding healthy tissues (7). It has

emerged as a promising treatment option for HCC, yielding a high

rate of local tumor control, with a 1-year local recurrence rate below

10% (8, 9). Many international guidelines endorse SABR as an

alternative or salvage ablative treatment for early-stage HCC (10).

According to the American Society for RadiationOncology practice

guidelines, the recommended dosage for non-cirrhotic livers is 40–

60Gy delivered in 3–5 fractions (11). However, several problems

remain, including tumor motion due to respiration, the risk of

radiation-induced liver toxicity in patients with compromised

hepatic function, radiation exposure to adjacent organs, and the

complexity in the prediction of the treatment response and long-

term outcomes.

In recent years, artificial intelligence (AI) has transformed

the landscape of oncology, unlocking new opportunities for

innovation (12). It offers potential solutions to the abovementioned

problems. AI-driven innovations in imaging, motion management,

automated treatment planning, and outcome prediction hold

promise for treatment precision, safety, and personalization in this

field. In this review, we summarize the recent advancements in the

application of AI in the field of radiation therapy and examine its

potential for implementation in SABR of the liver (Figure 1).

2 Optimization of radiotherapy
planning

The integration of AI into radiotherapy planning has the

potential to enhance efficiency, improve targeting precision,

and minimize radiation exposure to normal tissues. By

FIGURE 1

Schematic Representation of Artificial-Intelligence Applications in Stereotactic Ablative Radiotherapy for Hepatocellular Carcinoma. This figure

illustrates the major domains where artificial intelligence (AI) contributes to stereotactic ablative body radiotherapy (SABR) for hepatocellular

carcinoma (HCC). CBCT, Cone-Beam Computed Tomography.

reducing reliance on manual processes, AI mitigates variability

in treatment planning, enabling more consistent and high-

quality radiotherapy. AI-driven automated treatment planning

leverages historical treatment data to optimize beam angles

and dose distributions, leading to enhanced dose conformity

and workflow efficiency. Automating this process reduces

planning time while alleviating the clinical workload,

offering substantial benefits in terms of standardization

and reproducibility.

Tumor and organ contouring, one of the most labor-

intensive aspects of radiotherapy, is subject to inter-observer

variability. AI-based auto-segmentation technologies automatically

recognize tumor morphology, spatial positioning, and surrounding

normal structures, thereby generating high-precision contours in

a considerably shorter time than manual segmentation. Wang

et al. (13) analyzed a cohort of 36 patients to evaluate the

performance of two AI-based auto-contouring software tools. They

revealed that both tools generated clinically acceptable contours

for ∼65% of organs at risk (OAR). However, further refinement

is required to enhance the accuracy for more challenging OAR

structures and improve the overall model performance. Doolan

et al. (14) evaluated five commercially available, AI-based, auto-

segmentation solutions. They discovered high geometric similarity

between AI-generated and manually contoured structures, with

volumetric Dice similarity coefficients ranging from 0.82 to 0.88,

and contouring times were reduced by 14–93min depending on the

anatomical site. In the Asia-Pacific context, Kim et al. (15) assessed

the performance of seven AI-based auto-contouring systems for

OAR segmentation. Their reported that AI-generated contours

were clinically acceptable in most cases, although the accuracy was

lower for small or anatomically complex structures, necessitating

expert review to ensure precision.
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The conventional approach to AI-based automated treatment

planning is knowledge-based planning (KBP), which utilizes

historical treatment data to automatically generate treatment

plans for new patients (16). It begins with a training phase, in

which expert knowledge and historical cases are used to establish

a predictive model that maps patient-specific and plan-related

input features to optimal dose parameters. This knowledge base

is subsequently applied to new patients, in which their unique

characteristics are analyzed to predict tailored dose parameters,

ensuring personalized and effective treatment plans. By leveraging

machine learning (ML) and historical data, the KBP approach

improves planning efficiency, reduces variability, and enhances

the precision of radiotherapy to manual planning. Cornell et al.

(17) investigated the effectiveness of AI-driven KBP compared

to that of manual planning across multiple anatomical sites

and discovered that KBP was non-inferior overall. Additionally,

dosimetric analyses have confirmed that KBP is effective in

reducing plan variability, improving OAR dose constraints, and

maintaining treatment efficacy (18). These results underscore

the potential of AI to improve treatment standardization and

reproducibility across diverse clinical settings.

Another AI-based, automated, treatment-planning approach is

deep reinforcement learning (DRL), which has shown promise in

its formulation of the process as an optimization problem that

balances conflicting OAR protection and target-dose coverage.

Li et al. (19) reported that DRL significantly contributed to

the automation of radiotherapy plan optimization. However,

its widespread clinical adoption remains challenging owing to

inefficiencies, limited quality-assessment methods, and a lack

of interpretability.

A deep learning-based neural-network algorithm for fluence-

map prediction has been developed as a novel approach for

radiotherapy planning (20). These predictions are integrated

into a treatment-planning system for dose calculation and plan

generation, enabling automatic intensity-modulated radiotherapy

(IMRT) planning without reliance on the traditional inverse

planning process. This system was named automatic IMRT

planning via static field fluence prediction (AIP-SFFP) (21). As

the inverse-planning process is time-consuming, this approach

substantially accelerates the planning workflow while maintaining

excellent plan quality. Li et al. (22) demonstrated that the overall

isodose distribution of AIP-SFFP-generated plans was comparable

to those of KBP and clinical plans. AIP-SFFP generated each test

plan, including prediction and dose calculations, within 20 s.

The importance of radiotherapy quality assurance (QA) is

underscored by studies showing that deviations from trial protocols

are common (23). AI-driven, automated QA systems verify

treatment-plan consistency, detect dose-calculation errors, and

monitor the calibration of radiation-delivery devices (24). By

enabling real-time anomaly detection, human error is reduced

and treatment accuracy and patient safety are enhanced. Chan

et al. (25) explored ML applications in machine- and patient-

specific QA, including system performance monitoring, automated

segmentation, and treatment planning. Their virtual IMRT

QA system predicted passing rates across institutions, thereby

improving treatment accuracy and efficiency. A review of the

algorithms, dataset sizes, input features, and clinical applicability

of ML and deep-learning models for QA outcome-prediction

(26) highlighted their challenges, future directions, and potential

impact. AI-based QA will play a crucial role in patient safety.

Recent advancements in SABR for liver cancer include the

use of functional imaging to enhance treatment planning (27).

Imaging modalities such as dual-energy computed tomography

and single-photon emission computed tomography offer valuable

insights into tumor metabolism and perfusion, enabling more

precise dose-distribution planning (28, 29). The integration of

AI with functional imaging has considerable potential for the

optimization of real-time, adaptive planning, which would facilitate

greater personalization of radiotherapy strategies.

Convolutional neural networks (CNNs) have been widely

adopted for medical image segmentation due to their strong

performance in spatial feature extraction (30). Recently,

transformer-based architectures have emerged as compelling

alternatives, demonstrating superior performance in complex

tasks such as organ delineation (31, 32). By effectively capturing

long-range dependencies and global contextual information,

transformers offer distinct advantages over conventional CNNs

(33). However, their performance depends heavily on large,

annotated datasets and they are computationally demanding,

requiring substantial hardware resources. As a result, many current

approaches adopt hybrid architectures that integrate CNNs and

transformers (34).

3 Management of respiratory motion

In liver stereotactic radiotherapy, management of respiratory

motion is critical for the accurate delivery of treatment. Various

techniques such as breath-hold methods, abdominal compression,

respiratory gating, and real-time tracking are employed to address

this challenge. Real-time tracking of tumor movement caused

by patient respiration substantially improves the accuracy of

irradiation. The European Society for Radiotherapy and Oncology

guidelines recommend using the diaphragm as a surrogate tracking

marker for tumor motion (35) and recent advancements have

enabled such tracking by using kilovoltage projection streaming

images (36, 37). In addition, infrared reflective markers attached

to the patient’s skin and fiducial markers are commonly used.

Prediction models are used in this approach to learn the

relationship between surface-marker motion and internal tumor

displacement, thereby optimizing the timing of radiation delivery.

Most prediction models used in clinical practice rely on

conventional statistical approaches, such as linear regression (38,

39). However, tumor motion is highly non-linear, complicating the

accurate capturing of respiratory motion patterns via traditional

methods. Furthermore, variations in the breathing patterns of

individual patients complicate the generalization of predictive

models, leading to reduced prediction accuracy and potential errors

in radiation delivery. To address these limitations, AI technology

is being explored to improve the precision of tumor motion

prediction (40). AI-driven models are more effectively in capturing

the non-linear characteristics of tumor motion, yielding higher

accuracy than conventional regression models. The integration
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of AI into motion tracking holds great promise for radiotherapy

precision, safety, and effectiveness for liver tumors.

Zhou et al. (41) developed a convolutional neural network

to improve infrared reflective marker-based real-time tracking in

radiotherapy. Their AI-driven prediction models demonstrated

higher accuracy in the prediction of tumor positions than

conventional regression model. Liang et al. (42) developed an AI-

based framework to evaluate intrafractional motion via fiducial

tracking in patients with liver cancer undergoing robotic SABR.

Their framework achieved high accuracy in fiducial marker

detection and motion assessment, demonstrating that most

treatment fractions exhibited fiducial cohort rotations beyond

system limitations; however, rotational correction significantly

reduced residual errors.

By enabling high-precision motion prediction, AI has the

potential to reduce treatment margins, preserve blood flow, and

improve therapeutic efficacy, thereby improving the safety and

effectiveness of liver stereotactic radiotherapy.

4 Liver-function assessment, toxicity
risk prediction, and real-time adaptive
radiotherapy

A distinctive feature of radiation-induced liver toxicity is

radiation-induced liver disease (RILD), which is characterized by

anicteric ascites and hepatomegaly and is primarily caused by

microvascular injury (43). Traditional liver-function evaluation

relies on clinical scoring systems such as the albumin–bilirubin

(ALBI), Child–Pugh, and Model for End-Stage Liver Disease

scoring systems, which are derived from pretreatment laboratory

data (44). The prediction of toxicity after radiotherapy is based

on dosimetric parameters, including the mean liver dose and

the functional liver volume spared from radiation (45). However,

these conventional approaches have substantial limitations: they

cannot effectively capture dynamic changes in liver function,

do not account for individual patient variability, and cannot

adapt to complex interactions between multiple risk factors. AI-

driven methodologies offer potential solutions to these challenges

through comprehensive data integration, sophisticated pattern

recognition, and adaptive modeling capabilities (46). By analyzing

large datasets encompassing clinical, laboratory, imaging, and

dosimetric parameters, AI algorithms can potentially provide more

accurate and personalized predictions of the liver toxicity risk and

enable real-time treatment optimization.

The evaluation of liver function plays a crucial role in clinical

decision-making and directly influences the selection of therapeutic

interventions. Río Bártulos et al. (47) developed a liver function

assessment system that leverages deep learning to analyze magnetic

resonance images (MRIs). Their study demonstrated that this AI-

driven imaging approach could effectively evaluate liver function

compared with the established ALBI score. Wei et al. (48)

developed probability models for normal-tissue complications that

incorporate voxel-wise functional information from dynamicMRIs

to improve patient-specific adaptation to SABR for HCC. The

feasibility of their models was demonstrated in a small cohort,

with AI-based predictions exhibiting promising accuracy in the

estimation of localized liver-function changes. Prayongrat et al.

(49) developed an ML-based probability model for normal-tissue

complications to predict RILD in patients with HCC, using data

of 201 patients. Their study demonstrated an effective ML-based

approach to estimate the risk of liver toxicity.

In the field of radiation oncology, adaptive radiotherapy has

advanced to allow real-time dose adjustments in response to

tumor changes (50). AI has the potential to improve the accuracy

and efficiency of adaptive radiotherapy. Deep-learning-based auto-

segmentation reportedly reduces the workload of clinicians while

achieving high-precision delineation of tumors (51). Additionally,

real-time optimization may enable dose-distribution adjustments

that account for anatomical changes during treatment (52).

Furthermore, AI-driven image analysis may enhance positional

correction by using cone-beam computed tomographic images or

MRIs, potentially improving irradiation accuracy (53). Moreover,

the use of predictive models may help optimize the timing of

adaptive treatment, reducing unnecessary plan modifications (54).

As these technologies advance, they are expected to facilitate

the automation of adaptive radiotherapy workflows and reduce

treatment time while maintaining quality.

5 AI-assisted prognostication in HCC
treatment

Predicting the outcomes of curative local therapies for HCC is

crucial for the optimization of follow-up strategies and estimation

of patient survival. AI-based predictive models are emerging as

valuable tools in this domain, leveraging clinical and imaging data

to enhance decision-making and personalize treatment approaches.

Sato et al. (55) developed an ML model to predict the

risk of HCC recurrence after radiofrequency ablation (RFA),

with the gradient-boosting decision-tree model achieving the

highest predictive performance (C-index = 0.67) (55). The model

identified the tumor number, serum albumin level, and des-

gamma-carboxyprothrombin level as key predictors, enabling

personalized risk stratification and follow-up planning. Zandavi

et al. (56) created an AI-based model to predict recurrence after

surgical resection from the data of 958 patients (56). Their model

achieved high accuracy (cross-validation, 0.857; testing, 0.835) by

incorporating pre-surgical risk factors, leading to the development

of an online tool for real-time prediction of the recurrence risk to

facilitate tailored interventions. Hu et al. (57) demonstrated that an

AI-driven computed tomography radiomics model could predict

progression-free survival (PFS) in patients with colorectal liver

metastasis who were undergoing radiotherapy, achieving a C-index

of 0.68. Key predictive features of their model include the strength

of the gray-tone difference matrix and the maximum radiation

dose, highlighting the potential to integrate radiomics with clinical

data to enhance prognostication and guide treatment strategies.

In a meta-analysis, Wu et al. (58) systematically evaluated the

predictive performance of AI for recurrence after first-line liver-

cancer treatment. They revealed that AI models achieved high

predictive accuracy, with pooled areas under the receiver operating

characteristic curve of 0.92 for percutaneous ablation, 0.86 for

surgical resection, and 0.79 for transarterial chemoembolization

(TACE) in patients with HCC. These results underscore the clinical

applicability of AI in recurrence prediction and risk stratification.
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Expanding on disease-specific models, Keyl et al. (59)

developed AI-derived, cancer-agnostic clinical markers by

using multimodal real-world data and explainable AI. By

analyzing 15,726 patients with 38 types of solid cancer, they

demonstrated that AI-driven assessment of clinical markers

may greatly contribute to personalized oncology care via the

enhancement of treatment planning and risk prediction across

various malignancies.

Multiple options, including surgical resection, RFA, TACE,

and SABR, are available for local therapy for HCC. Treatment

selection depends not only on tumor stage but also on hepatic

reserve, overall patient condition, and individual preferences. The

precise selection of individuals for therapeutic strategies with

established survival advantages is crucial to improve outcomes.

A more refined patient selection approach can be achieved by

integrating longitudinal clinical data, predictive modeling, and AI-

assisted decision support systems. These advancements have the

potential to improve treatment personalization, optimize resource

allocation, and ultimately enhance survival outcomes for patients

with HCC.

6 Limitations in clinical
implementation

Several limitations impede the widespread clinical adoption

of AI for SABR for HCC. The primary issue is the lack

of standardization across AI models and treatment planning

systems, which leads to variability owing to differences in

training data, contouring protocols, and radiation deliverymethods

(60). Limited interoperability between systems further impedes

integration into diverse clinical environments. And, the absence

of unified regulatory frameworks delays approval processes and

creates uncertainty regarding compliance and clinical responsibility

(61). Additionally, ethical considerations include data privacy,

algorithmic bias, lack of transparency, and the challenge of

establishing accountability in AI-assisted decision-making (62).

Furthermore, Niraula et al. (63) have indicated that both excessive

reliance on and excessive skepticism of AI may hinder treatment

optimization. Determining the appropriate balance in human–AI

collaboration remains a considerable challenge that requires careful

consideration. Standardization, rigorous validation, and seamless

clinical integration are essential to fully harness the potential of AI.

7 Conclusion

The integration of AI into SABR for HCC holds great promise

for the enhancement of treatment precision, patient outcomes, and

workflow efficiency. AI-driven advancements, including automated

treatment planning, real-time tumor tracking, and predictive

modeling of treatment responses, have demonstrated considerable

potential to improve the effectiveness of radiotherapy.

SABR forHCC is becoming increasingly complex, performed in

unison with molecularly targeted therapy and immune checkpoint

inhibitors. Dawson et al. (64) conducted a phase 3 trial in which

they compared SABR plus sorafenib to sorafenib alone among 177

patients with locally advanced HCC. SABR improved the median

overall survival (OS; 15.8 vs. 12.3 months, hazard ratio [HR]:

0.72, P = 0.04) and PFS (9.2 vs. 5.5 months, HR: 0.55, P <

0.001). Chiang et al. (65) retrospectively compared SABR alone to

SABR with immunotherapy (SABR-IO) among 100 patients with

unresectable HCC. SABR-IO yielded superior survival outcomes

(3-year OS: 63.9% vs. 43.3%, P = 0.034), an improved time to

progression, and a higher overall response rate (88% vs. 50%, P

= 0.006). In this increasingly complex therapeutic landscape, AI

is poised to play a crucial role in the optimization of treatment

approaches. In addition to its applications in radiotherapy, AI

has the potential to integrate data from multiple treatment

modalities, including surgical interventions, percutaneous local

therapies, and systemic treatments such as immunotherapy. Such

comprehensive integration may enable AI to propose sophisticated

and personalized treatment strategies that consider the full

spectrum of available therapeutic options.

AI is transforming radiation oncology by enabling more

precise, individualized, and effective treatment approaches. In

SABR for HCC, AI holds promise in the optimization of workflows,

improving of accuracy, and enhancing of patient outcomes.

However, its implementation demands a cautious approach that

acknowledges its limitations and ensures the safe and reliable use

of AI. Moving forward, continuous research and clinical evaluation

of AI are crucial to maximize its potential while ensuring the safe

and effective delivery of treatment.
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