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Introduction

Prostate cancer is rapidly emerging as a significant public health concern in Morocco,
with an incidence rate of 15 new cases per 100,000 men annually (1). This escalating
burden is placing considerable strain on the healthcare system, which is equipped with
only approximately 80 linear accelerators to serve a population of 37 million.

As one of the most frequently diagnosed cancers among Moroccan men, its
management demands a highly precise approach, especially in radiotherapy, which
remains a cornerstone for treating localized disease (2). However, despite its proven
effectiveness, traditional radiotherapy faces significant challenges such as inconsistent
tumor delineation, variability in treatment planning, and the risk of radiation-induced
toxicity to surrounding healthy tissues. These obstacles are even more pronounced in
Morocco, where access to specialized radiotherapy services is still limited, particularly in
rural areas where 40% of the population resides.

AI is poised to transform prostate cancer treatment by improving radiotherapy
precision (3). AI algorithms enhance tumor segmentation, treatment planning, and
response prediction, enabling more personalized care (4, 5). While deep learning models
and ANNs show superior accuracy globally, concerns remain about their applicability to
Moroccan and African populations, as many models are trained on Western datasets (6).

The absence of locally validated AI solutions and standardized national radiotherapy
guidelines for prostate cancer highlights the urgent need for context-specific research and
tailored implementation strategies (7). Morocco’s “Plan Cancer 2020–2029” prioritizes
technological innovation, creating a unique opportunity for AI integration.

This article highlights the importance of integrating AI into prostate cancer
radiotherapy in Morocco. It discusses AI’s scientific principles, clinical applications, and
challenges in a resource-limited healthcare system. Embracing AI can improve treatment
accuracy, bridge gaps in cancer care, and enhance patient outcomes, making a strong case
for its urgent implementation in the fight against prostate cancer.
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AI-powered automation in tumor
segmentation and planning

Tumor segmentation, the delineation of tumors and
surrounding healthy tissues on medical images (e.g., CT, MRI), is a
critical yet time-consuming and error-prone step in radiotherapy
(8). Accuracy in segmentation directly impacts treatment quality
and patient outcomes. This challenge is particularly significant
in Morocco, where a shortage of radiation oncology specialists
further exacerbates the burden on the healthcare system.

AI, particularly deep learning models like CNNs, enhances
segmentation accuracy. Arjmandi et al. showed the effectiveness
of combining CNNs with Vision Transformers (ViT) in a study
of 104 prostate cancer patients. Their CNN-based Segmentation
Transformer model achieved high Dice Similarity Coefficients
(DSCs), 91.75% for the prostate and over 95% for the bladder and
femoral heads, outperforming traditional models (9).

Similarly, a large-scale Swedish study by Polymeri et al. (10)
validated AI-assisted segmentation in prostate cancer radiotherapy
planning (RTP) using 1,530 patient datasets (Table 1). The AI-
generated contours showed strong concordance with manual
delineations, achieving DSCs of 0.82 for the prostate, 0.95 for
the bladder, and 0.88 for the rectum. Additionally, a real-world
validation study by Palazzo et al. (11) demonstrated that AI-
assisted contouring significantly reduced inter-observer variability
and oncologist workload, reducing contouring time from 17 to
24minmanually to just 3–7min with AI-assisted editing (p< 0.01).

In Morocco, where the shortage of radiation oncology
specialists places immense pressure on the healthcare system, AI
integration could be particularly impactful. Automating tumor
delineation would not only alleviate the burden on specialists but
also ensure more consistent and accurate contouring, reducing
treatment delays and optimizing patient outcomes. Recent studies
emphasize the need for locally validated AI models to account for
regional anatomical variations and imaging protocols.

AI and reinforcement learning for prostate
cancer treatment planning in EBRT and
brachytherapy

Following tumor segmentation, treatment planning constitutes
a critical step in the radiotherapy workflow. It involves determining
the optimal radiation dose and beam configurations to achieve
effective tumor control while minimizing exposure to surrounding
healthy tissues. Traditionally, this process is complex, highly
individualized, and dependent on manual adjustments by
experienced dosimetrists and radiation oncologists. In resource-
constrained settings like Morocco, such workflows can be
time-intensive (often 4–6 h per case), inconsistent, and vulnerable
to human error.

Artificial Intelligence (AI), particularly Reinforcement
Learning (RL), is emerging as a transformative solution to
streamline and standardize treatment planning in both external
beam radiotherapy (EBRT) and brachytherapy (12, 13). RL models
learn through trial-and-error interactions with their environment,

refining their strategies based on feedback to maximize treatment
efficacy while minimizing toxicity (14).

Sprouts et al. introduced a Deep Reinforcement Learning
(DRL)-based Virtual Treatment Planner (VTP) designed to
optimize intensity-modulated radiation therapy (IMRT) plans for
prostate cancer (15). Using Q-learning and dose-volume histogram
(DVH) inputs, the VTP autonomously adjusted dosimetric
constraints to enhance plan quality (16). A 2024 study validated this
framework by applying DRL to volumetric modulated arc therapy
(VMAT), achieving comparable target coverage (63.2 ± 0.6Gy)
while reducing the mean rectal dose by 17% compared to clinical
plans.When integrated with the Eclipse treatment planning system,
the VTP improved average plan scores from 6.18 to 8.14 across 50
testing cases (17).

Recent developments have further improved training efficiency
by 40% through the introduction of DVH-based embedding
layers, enabling real-time adaptation to anatomical variability. In
Moroccan settings where access to advanced planning technologies
like IMRT may be limited, the integration of RL-based 3D-
conformal planning tools could approximate high-quality dose
distributions while reducing planning time to 1–2 h. This
technology not only improves consistency and quality but also
democratizes access to advanced planning capabilities across
diverse treatment centers (18, 19).

In parallel, AI applications in prostate brachytherapy are also
demonstrating significant clinical promise. Low-dose-rate (LDR)
brachytherapy is a highly targeted approach for localized prostate
cancer but involves intricate planning to determine seed placement
and dose distribution. Traditionally reliant on expert intervention,
brachytherapy planning can be both time-consuming and variable.

A Canadian study demonstrated that a machine learning (ML)
algorithm could generate clinically equivalent LDR brachytherapy
plans in just 0.84min, compared to 17.88min for expert-driven
plans (20). These AI-generated plans achieved comparable target
coverage, organ-at-risk (OAR) sparing, and implant confidence,
with only a 4% lower prostate V150% a non-significant difference.
Expert reviewers were unable to distinguish between AI-generated
and human-created plans (20, 21).

Further advances include the BRIGHT AI system, which
automatically generates multiple near-optimal plans, allowing
clinicians to select the best trade-off between tumor coverage
and healthy tissue preservation (22). The integration of deep
reinforcement learning into brachytherapy workflows enables
real-time constraint optimization and adaptive planning,
supporting a synergistic relationship between human expertise and
machine intelligence.

Despite the automation potential, human oversight remains
essential to balance clinical nuances and anatomical variability,
especially when navigating trade-offs between target dose escalation
and rectal or urethral sparing. In resource-limited contexts, AI can
significantly reduce clinician workload while ensuring high-quality,
personalized treatment planning, even in the absence of highly
specialized staff (23).

In Morocco, the integration of AI-driven planning tools
across both EBRT and brachytherapy presents an unprecedented
opportunity to enhance care equity, efficiency, and precision. RL-
based systems can standardize workflows, reduce planning times
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TABLE 1 Overview of artificial intelligence applications in prostate radiotherapy treatment.

Task AI technique First author
(year)

Dataset size Public/multi-
institutional

Performance metrics

Tumor segmentation Hybrid CNN-ViT
(VGG16-UNet-ViT
with attention-based
fusion)

Najmeh Arjmandi
(2024)

104 patients Multi-institutional
(retrospective)

Prostate: 91.75%, bladder: 95.32%, rectum:
87.00%, RFH: 96.30%, LFH: 96.34%

Tumor segmentation AI-based
auto-contouring
(model not specified)

Eirini Polymeri
(2023)

1,530 patients Multi-institutional
(2006–2018)

Dice: prostate 0.82, bladder 0.95, rectum
0.88; mean SD: 1.7/0.7/1.1mm; Hausdorff:
9.2/6.7/13.5mm, respectively

Tumor segmentation Commercial deep
learning-based
auto-segmentation
system (architecture
not specified)

Gabriele Palazzo
(2023)

20 patients Single center Dice similarity coefficients (DSC): manual
vs. auto (0.65–0.94), auto+ edit
(0.76–0.94); clinical score median: 4/5;
time: reduced from 17–24 to 3–7min (p <

0.01); improved consistency

Automated
radiotherapy
treatment planning

Hierarchical
intelligent automatic
treatment planning
(HieVTPN)

Chenyang Shen
(2021)

Prostate IMRT: 10
training cases, 5
validation cases, 59
testing cases; SBRT: 5
testing cases

Single center Hierarchical intelligent automatic
treatment planning (HieVTPN): IMRT:
plan score 8.62± 0.83 (vs. VTPN 8.45±
0.48); SBRT: plan score 139.07 (vs. human
plans 132.21); better scalability and
explainability than prior VTPN

Prostate IMRT
automatic treatment
planning

DRL-based VTP
using Q-learning with
DVH input, ε-greedy
policy, and GPU
acceleration;
integrated with
Eclipse TPS via API

Damon Sprouts
(2022)

50 test cases+ 2
eclipse TPS
deployment cases

Single center Mean ProKnow score improved from 6.18
± 1.75 to 8.14± 1.27 (max= 9); eclipse
cases improved from 8 to 8.4 and 8.7; VTP
mimicked human planning via iterative
constraint adjustment

Prostate SBRT
automatic treatment
planning

DRL-based VTP
using DVH input to
adjust dose, volume,
and weights;
integrated with
Eclipse TPS via API

Yin Gao (2023) 36 clinical cases (20
IMRT, 16 VMAT)

Single center AAMD/RSS case: score 142.1/150 (3rd
place, median 134.6); clinical: VTP vs.
human scores—IMRT: 110.6± 6.5 vs.
110.4± 7.0; VMAT: 126.2± 4.7 vs. 125.4
± 4.4; physicist-reviewed

Prostate VMAT
machine parameter
optimization (MPO)

RL-based policy
network for 3D beam
VMAT planning;
integrated with TPS
for automatic
refinement

William T
Hrinivich (2024)

136 patients Single center Execution: 3.3± 0.5 s (RL)+ 77.4± 5.8 s
(TPS); RL+ TPS plans: Dmax 63.2±
0.6Gy vs. 63.9± 1.5Gy (p= 0.061),
rectum mean dose 17.4± 7.4 vs. 21.0±
6.0 (p= 0.024)

Prostate LDR
brachytherapy plan
generation

ML-based
case-matching+
stochastic
optimization

Alexandru Nicolae
(2017)

100 LDR cases
(training+ testing)

Single center Planning time: ML 0.84± 0.57min vs. BT
17.88± 8.76min (p= 0.020); V150% 4%
lower (p= 0.002, not clinically
significant); expert likert scores:
equivalent

Prostate LDR
brachytherapy plan
evaluation

ML-based implant
planning algorithm
(PIPA)

Alexandru Nicolae
(2020)

41 patients Single center No significant differences in prostate
D90%, V100%, rectum V100, D1cc
between ML and manual; planning time
ML 2.38± 0.96min vs. manual 43.13±
58.70min (p << 0.05)

Brachytherapy
treatment planning
(prostate and cervix)

AI-based flexible
optimization method
(BRIGHT)

Leah R M Dickhoff
(2024)

Prostate (n=12),
Cervix (n= 36)

Single center Finds multiple near-optimal plans with
similar dose-volume criteria but different
dose distributions; supports
hospital-specific aims; improves
adherence to EMBRACE-II protocol;
enables fast plan adaptation

MRI-to-sCT
generation for
MRI-only
radiotherapy in
prostate cancer

Conditional GAN
(Pix2Pix)

Safaa Tahri (2023) 90 patients Multi-institutional MAE (HU), D99% CTV, V95% PTV, Dmax

bladder/rectum, 3D gamma (1%/1mm)

MRI-only planning
for proton therapy in
prostate cancer

Commercial sCT
generator (MRI
planner v2.3, likely
DL-based)

Kajsa M. L.
Fridström (2024)

10 patients Multi-institutional MAE (HU), gamma pass rates (1%/1mm),
range difference, DVH parameters
(CTV/PTV, OARs)

(Continued)
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TABLE 1 (Continued)

Task AI technique First author
(year)

Dataset size Public/multi-
institutional

Performance metrics

CBCT-to-sCT
translation for ART in
prostate cancer

Transformer-based
DL (SwinUNETR vs.
CNN-based U-net in
CycleGAN)

Yuhei Koike (2024) 260 patients Single institution MAE (HU), gamma pass rates, DVH
deviation (<1%)

sCT generation from
MRI and CBCT for
pelvic radiotherapy

Multi-domain GAN
(StarGAN vs.
CycleGAN)

Paritt Wongtrakool
(2025)

53 pelvic cancer cases Single institution MAE (HU), dose difference (<2%),
gamma pass rate (>90%), qualitative
anatomical preservation

Adaptative
radiotherapy

Hybrid data
augmentation+

transformer-based
segmentation+ CNN
regression

Jing Wang (2024) Single institution DSC up to 0.9789, HD95∼1.8mm, 3D
centroid error <0.33mm, tracking latency
90 ms/frame, error <1mm under high
noise, success rate≈ 100%

Adaptative
radiotherapy

Deep learning model
for autocontouring
(Annotate ART-Plan)
(V1.8.3,
TheraPanacea)

Marcel Nachbar
(2024)

232 T2w-MRI
datasets from 47
patients (1.5T Elekta
Unity MR-Linac)

Single-institution DSC: bladder 0.97 (best), penile bulb 0.73
(worst); 95% HD: bladder 2.7mm (best),
rectum 6.9mm (worst); sDSC: rectum
0.94 (best), anal canal 0.68 (worst); 80%
clinically acceptable

Adaptative
radiotherapy

In-house trained
nnU-Net
(auto-segmentation)

Maximilian Lukas
Konrad (2024)

15 prostate cancer
patients

Single-institution Mean delineation time reduced from 9.8
to 5.3min; more consistent timing; fewer
re-adaptations needed

Survival prediction
and decision support
in prostate cancer

ANN models: MLP,
MLP-N, and LSTM;
comparison with Cox
regression

Kyo Chul Koo
(2020)

7,267 patients
(1988–2017)

Multi-institutional LSTM had highest predictive power
(Harrell’s C-index); outperformed Cox
regression for 5- and 10-year survival

External validation of
AI-based survival
calculator

LSTM ANNmodel
(SCaP survival
calculator)

Bumjin Lim (2021) 4,415 patients Multi-institutional:
3 institutions

5-year AUCs: 0.962 (CRPC), 0.944 (CSS),
0.884 (OS); 10-year AUCs: 0.959, 0.928,
0.854; Cal ibration accurate at 5 years,
underestimated at 10

Predict response to
hormonal therapy in
prostate cancer

3D multi-branch
CNN-transformer
(CNNFormer)

Ibrahim
Abdelhalim (2024)

39 patients Single center Accuracy: 97.5%, sensitivity: 100%,
specificity: 95.83%

by over 60%, and elevate the overall quality of radiotherapy
services, especially in institutions lacking full-time medical
physicists or IMRT infrastructure. AI thus offers not just
automation, but augmentation of clinical expertise, ultimately
improving access to safe and effective prostate cancer treatment
nationwide (24, 25).

Image-to-image translation and
synthetic imaging in prostate
radiotherapy

Artificial intelligence (AI), especially deep learning, has
revolutionized medical image translation across modalities,
significantly impacting radiation oncology (26). Accurate
imaging is essential for precise treatment planning and
delivery, particularly in prostate cancer radiotherapy.
Traditionally, computed tomography (CT) has been the
standard imaging modality for planning because it provides
electron density information necessary for accurate dose
calculation. However, magnetic resonance imaging (MRI)
offers superior soft tissue contrast, enabling more precise tumor
and organ-at-risk delineation (27, 28). This dual-modality

approach, requiring both MRI and CT, introduces complexities
including registration errors, increased patient time, and
resource demands.

To overcome these challenges, AI-driven techniques
have been developed to generate synthetic CT (sCT) images
directly from MRI data (29). This innovation enables MR-only
radiotherapy workflows by providing CT-equivalent images
necessary for dose calculation without acquiring separate CT
scans. Deep learning models such as U-Net architectures, Cycle-
Consistent Generative Adversarial Networks (CycleGANs),
and attention-guided GANs have been employed to achieve
this (30–32). These networks are trained on datasets of
paired or unpaired MRI and CT images to predict realistic
Hounsfield Unit (HU) values on MRI scans, allowing accurate
dose calculations.

A multi-center study by S tahri et al. demonstrated that
a generic 2D conditional GAN (Pix2Pix) model produced
sCT images from T2-weighted MRI with dosimetric accuracy
comparable to models trained specifically for individual centers
(33). The model yielded consistent mean absolute HU errors across
pelvic structures and dose deviations under 1Gy for the clinical
target volume, with no significant differences in stringent gamma
analysis metrics. This robustness suggests its practical potential for
routine clinical use.
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Further, retrospective studies assessing proton therapy
dose calculations based on MRI-derived sCT showed minimal
differences compared to planning CT-based doses for both photon
and proton plans (34).

Although gamma pass rates were slightly lower for proton
therapy, they remained within clinically acceptable thresholds,
and proton range deviations averaged only 1.0mm, indicating
negligible clinical impact.

Clinically, this MRI-to-sCT approach has been integrated into
MR-Linac systems such as Elekta Unity and ViewRay MRIdian,
enabling real-time adaptive radiotherapy with MR-only planning.
This is particularly advantageous in prostate cancer, where precise
delineation of organs-at-risk like the bladder and rectum allows for
reduction of planning target volumemargins from 7–10 to 3–5mm,
potentially reducing toxicity (35).

In low- and middle-income countries (LMICs) such as
Morocco, where access to MR-Linac technology is limited,
leveraging standard MRI simulators combined with AI-based
sCT generation offers a cost-effective pathway to MRI-guided
radiotherapy. This reduces reliance on dual imaging, streamlines
workflows, and enhances treatment precision and efficiency.

Similarly, cone-beam computed tomography (CBCT) is widely
used in image-guided radiotherapy (IGRT) for patient positioning,
but its inherent image quality limitations such as scatter
noise, beam hardening artifacts, and inaccurate HU values have
historically restricted its use for dose recalculation and adaptive
planning. AI models have been developed to convert CBCT images
into synthetic CT scans of planning quality, overcoming these
limitations and enabling adaptive radiotherapy on standard linear
accelerators (36, 37).

Approaches including CycleGANs trained on unpaired CBCT-
CT datasets, 3D residual convolutional neural networks (CNNs)
capturing volumetric context, and dual-input models combining
CBCT with planning CT or anatomical contours have proven
effective (38, 39). These techniques reduce artifacts, restore soft
tissue contrast, and calibrate HU values, producing images suitable
for accurate dose calculation.

In prostate cancer, AI-generated sCTs from daily CBCT enable
clinicians to adapt treatment to anatomical changes such as
bladder and rectal filling or prostate motion exceeding 5mm. This
adaptation improves target coverage and treatment precision.

A retrospective study with 260 patients found that a
transformer-based SwinUNETRmodel outperformed conventional
U-net architectures within a CycleGAN framework, achieving
lower mean absolute HU errors and dose deviations under
1% (40). Another study comparing StarGAN and CycleGAN
models showed StarGAN better preserved anatomical structures
qualitatively, while both achieved clinically acceptable dosimetric
accuracy with dose differences within 2% and gamma passing rates
above 90% (37).

For resource-constrained settings like Morocco, where
MR-guided adaptive radiotherapy remains limited, AI-powered
CBCT-to-sCT conversion offers a practical, scalable solution
to implement daily adaptive radiotherapy using existing linear
accelerators. This innovation promises to improve treatment
accuracy, optimize resource use, and ultimately enhance prostate
cancer outcomes.

Real-time tumor tracking and adaptive
radiotherapy

In Morocco, radiotherapy resources are often constrained by
high patient volumes, leading to potential delays and a reduction in
treatment quality.

Prostate motion, induced by physiological factors such as
bladder filling or rectal gas, further complicates this issue, as
even minor displacements during treatment can compromise the
precision of radiation delivery. This can affect tumor control and
compromise the safety of surrounding tissues. AI technologies offer
a promising solution to address this issue by enabling real-time
tumor tracking with sub-millimeter accuracy, allowing adaptive
radiotherapy where treatment plans are adjusted dynamically based
on tumor position (41, 42).

In recent studies, advancements have been made in the
development of AI-driven tools for adaptive radiotherapy.
Nachbar et al. created an AI-based auto contouring model for
online adaptive MR-guided radiotherapy using the 1.5 T MR-
Linac system (43). This model achieved clinically acceptable
contours in 80% of cases and required only minor adjustments
in 16% of cases. It demonstrated high accuracy in segmenting
structures like the bladder and rectum, with quantitative
evaluations indicating excellent performance, making it suitable
for future clinical implementation in MR-guided adaptive
radiotherapy workflows.

Further research has evaluated the feasibility and time gains of
AI-based delineation tools in daily prostate cancer radiotherapy.
A study involving 15 consecutive prostate cancer patients treated
with a 1.5 T MRI-Linac found that AI-based delineation reduced
contouring time from 9.8 to 5.3min, with lower variance in
delineation time throughout the treatment course (44). The AI-
based workflow also resulted in fewer instances of readaptation
due to tumor motion, demonstrating the efficiency and time-saving
potential of AI tools in enhancing radiotherapy processes.

This integration would be particularly beneficial in advanced
treatment modalities like stereotactic body radiotherapy (SBRT),
where precision is paramount. AI’s ability to track even subtle
tumor movements ensures that high doses of radiation are
delivered precisely to the tumor, minimizing exposure to nearby
organs at risk.

In Morocco, with its advanced healthcare and growing tech
investment, AI models could reduce treatment complications,
especially in busy settings. Despite economic progress, regional
disparities and high patient loads remain challenges. Additionally,
Moroccan patients value family support and personalized care.
AI could assist clinicians by offering data-driven insights,
enabling tailored treatment plans that align with patients’ needs
and preferences.

AI in predictive analytics for disease
progression and treatment response

AI is revolutionizing oncology by predicting tumor response
and survival outcomes, enhancing clinical decision-making
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and personalized treatment. Recent advancements, like the
Clinical Histopathology Imaging Evaluation Foundation (CHIEF)
model, show AI’s ability to predict survival, molecular profiles,
and treatment response with 94% accuracy, outperforming
traditional methods by up to 36%. AI-driven models,
including ANNs and deep learning, offer superior accuracy,
enabling more precise prognostic assessments in cancer
care (45).

Koo et al. (46) developed an online support tool using
a long short-term memory (LSTM) artificial neural network
(ANN) model to predict survival outcomes for prostate
cancer (PCa) patients. The model was trained using data
from 7,267 cases and 19 clinicopathological covariates,
significantly outperforming traditional Cox-proportional
hazards regression models. The LSTM model demonstrated
enhanced predictive power for 5- and 10-year progression
to castration-resistant prostate cancer (CRPC)-free survival,
cancer-specific survival (CSS), and overall survival (OS). These
findings highlight AI’s ability to refine individualized treatment
planning by providing more accurate prognostic estimates than
conventional methodologies.

Similarly, the SCaP Survival Calculator, another AI-powered
tool utilizing an LSTM ANN model, was externally validated
in a cohort of 4,415 PCa patients diagnosed between April
2005 and November 2018 across three institutions (47). The
model effectively predicted survival outcomes, including CRPC-
free survival, CSS, and OS, with area under the curve (AUC)
values of 0.962, 0.944, and 0.884 for 5-year outcomes, and
0.959, 0.928, and 0.854 for 10-year outcomes, respectively. The
superior discrimination ability of the SCaP model underscores AI’s
potential in enhancing clinical risk stratification and treatment
decision-making.

AI’s role in predicting tumor response extends beyond survival
modeling. By integrating multi-omics data, imaging biomarkers,
and real-world clinical variables, AI-driven models can enhance
precision oncology, allowing for better patient stratification and
treatment personalization. Future advancements may incorporate
genomic and radiomic features to further refine predictive
accuracy, ultimately transforming prostate cancermanagement and
improving patient outcomes.

In Morocco, the integration of AI-driven predictive tools
presents both a challenge and an opportunity. The country faces
a lack of comprehensive local clinical guidelines, particularly for
precision oncology and advanced treatment strategies. As a result,
oncologists often rely on international recommendations that may
not fully align with the genetic, epidemiological, and healthcare
infrastructure specific to Morocco.

The adoption of AI models like the SCaP Survival Calculator
could bridge this gap by providing data-driven, personalized
insights tailored to local patient populations.

Conclusion

AI holds immense potential to transform prostate cancer care
in Morocco. By enhancing tumor segmentation, optimizing
treatment planning, enabling real-time tumor tracking,
and predicting side effects and disease progression, AI can
significantly improve the accuracy, efficiency, and personalization
of radiotherapy. However, to fully realize these benefits, Morocco
must invest in infrastructure, financial support, and workforce
training. With strategic planning and international collaboration,
AI could revolutionize prostate cancer treatment in Morocco,
improving patient outcomes and setting a global example for AI
integration in oncology.
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