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Objective: To identify patients with early sepsis-associated acute kidney injury

(SA-AKI) at high risk of requiring invasive ventilation within 48 h of admission,

facilitating timely interventions to improve prognosis.

Methods: This retrospective study included patients with early SA-AKI admitted

to Dongyang People’s Hospital between January 2011 and October 2024

and Yiwu Tianxiang Dongfang Hospital between January 2016 and December

2024. Variables included age, blood parameters, and vital signs at admission.

Patients were divided into training and validation cohorts. Independent risk

factors were identified in the training cohort, and a nomogram was developed.

The discriminatory ability was assessed using the area under the receiver

operating characteristic curves (AUC). Calibration was assessed using GiViTI

calibration plots, while clinical utility was evaluated via decision curve analysis

(DCA). Validation was performed in the internal and external validation groups.

Additional models based on Sequential Organ Failure Assessment (SOFA) and

National Early Warning Score (NEWS) scores, machine learning models including

Support Vector Machine (SVM), C5.0, Extreme Gradient Boosting (XGBoost), and

an ensemble model were compared with the nomogram on the discrimination

power using DeLong’s test.

Results: The key independent risk factors for invasive ventilation in patients with

early SA-AKI included lactate, pro-BNP, albumin, peripheral oxygen saturation,

and pulmonary infection. The nomogram demonstrated an AUC of 0.857 in the

training cohort (Hosmer-Lemeshow P = 0.533), 0.850 in the inner-validation

cohort (Hosmer-Lemeshow P = 0.826) and 0.791 in the external validation

cohort (Hosmer-Lemeshow P = 0.901). DCA curves indicated robust clinical

utility. The SOFA score model exhibited weaker discrimination powers (training

AUC: 0.621; validation AUC: 0.676; P < 0.05), as did the NEWS score model

(training AUC: 0.676; validation AUC: 0.614; P < 0.05). Machine learning models

(SVM, C5.0, XGBoost, and ensemble methods) did not significantly outperform

the nomogram in the validation cohort (P > 0.05), with respective AUCs of 0.741,

0.792, 0.842, and 0.820.

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1577154
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1577154&domain=pdf&date_stamp=2025-06-18
https://doi.org/10.3389/fmed.2025.1577154
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1577154/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-12-1577154 June 14, 2025 Time: 18:1 # 2

Hong and Wang 10.3389/fmed.2025.1577154

Conclusion: The nomogram developed in this study is capable of accurately

predicting the risk of invasive ventilation in SA-AKI patients within 48 h of

admission, offering a valuable tool for early clinical decision-making.
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sepsis, acute kidney injury, invasive ventilation, prediction model, machine learning

Introduction

Sepsis is a life-threatening condition caused by an uncontrolled
host response to infection, leading to organ dysfunction (1, 2).
Despite advances in management, its incidence and mortality
remain high (3). Indeed, in recent decades, the prevalence of sepsis
has been rising (4), and it now poses a significant threat to global
public health (5–7).

Acute kidney injury (AKI) frequently develops in sepsis
patients, particularly within the first 48 h of admission, a
condition termed early sepsis-associated acute kidney injury (SA-
AKI) (8, 9). These patients face a heightened risk of respiratory
failure, often necessitating invasive ventilation, which significantly
increases mortality and prolongs hospitalization (10). Although
the implementation of the Sepsis Rescue Campaign has led to
improvements in sepsis diagnosis and treatment, a subset of
patients still require mechanical ventilation (11, 12). Studies have
shown that early mechanical ventilation in sepsis patients is linked
to poor prognosis (2), highlighting the need for an effective
prediction model to identify SA-AKI patients at high risk of
early mechanical ventilation, thereby potentially enabling timely
interventions to improve outcomes.

Traditional tools used to predict sepsis severity and disease
progression include the Sequential Organ Failure Assessment
(SOFA) score (13), National Early Warning Score (NEWS) (14),
and Acute Physiology and Chronic Health Evaluation (APACHE)
II score (15). While they can effectively assess the risk of organ
failure in sepsis patients, they were not designed to predict invasive
ventilation risk in SA-AKI patients. Existing models have been
developed to predict acute respiratory distress syndrome (ARDS)
risk in sepsis patients (16, 17), yet they do not encompass all cases
requiring invasive ventilation. Other models predict respiratory
failure and mechanical ventilation risk in sepsis patients (18, 19),
but their applicability to the SA-AKI subgroup remains unclear.

To date, there is no dedicated model for predicting short-term
invasive ventilation risk in SA-AKI patients. Therefore, this study
aimed to develop a model for predicting mechanical ventilation risk
within 48 h of admission in SA-AKI patients. The implementation
of such a model may provide support for clinical decision-making
and improve doctor-patient communication.

Materials and methods

Study population

The retrospective study population included sepsis patients
admitted to Dongyang People’s Hospital from January 2011 to

October 2024 as training and internal validation groups and cases
from Yiwu Tianxiang Dongfang Hospital from January 2016 to
December 2024 as the external validation group. Inclusion criteria:
(1) Diagnosis of sepsis according to Sepsis-3.0 criteria (defined
as the presence of infection with a SOFA score increase of ≥ 2
points); and (2) meeting the criteria for AKI (defined by serum
creatinine > 26.5 mmol/L, a ≥ 50% increase from baseline within
48 h of admission, or urine output < 0.5 mL/kg/h for more
than 6 h). Exclusion criteria: (1) Patients < 18 years of age;
(2) patients with uncertain baseline renal function (3) patients
having withdrawn from treatment; and (4) patients that underwent
emergency abdominal surgery.

Data collection

Patient demographics, including sex, age, and medical history,
were recorded. Comorbidities assessed included diabetes, cerebral
infarction, chronic lung diseases (such as COPD, interstitial
pneumonia, and pulmonary fibrosis), chronic liver disease
(cirrhosis), hypertension, chronic heart disease (NYHA class II
or higher), chronic kidney disease (chronic renal insufficiency
and nephrotic syndrome), leukemia, and malignancy. Laboratory
data and vital signs at admission were collected, including
high-sensitivity C-reactive protein, total bilirubin, aspartate
aminotransferase, triglycerides, creatinine, lactate, cholinesterase,
pro-BNP, D-dimer, prothrombin time, sodium, potassium,
magnesium, calcium, white blood cell count, hemoglobin, platelets,
albumin, and globulin. Vital signs recorded included peripheral
oxygen saturation, body temperature, heart rate, mean arterial
pressure, respiratory rate, and Glasgow Coma Scale (GCS) score.
Infection sites were categorized as intracranial, gastrointestinal,
biliary, pulmonary, or urinary tract infections. Criteria for invasive
ventilation included: (1) persistent dyspnea, tachypnea (> 30
breaths/min), PaO2 < 50 mmHg, or PaO2/FiO2 < 200 despite
aggressive treatment (including medicated oxygen therapy, high-
flow oxygen therapy, or non-invasive ventilation); (2) respiratory
depression (< 8 breaths/min); (3) impaired consciousness,
including stupor or coma; (4) progressive hypercapnia with
pH ≤ 7.20; (5) persistent circulatory failure despite treatment.

Variable selection

The patients with missing data across all the enrolled variables
were less than 25% and interpolated by multiple imputation using
“mice” packages. Then, continuous variables were transformed
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TABLE 1 Univariate analysis between patients with ventilation and no
ventilation in training populationa.

Variables No
ventilation
group
(n = 470)

Ventilation
group
(n = 69)

p

Gender 0.712

Male 278 (59) 43 (62)

Female 192 (41) 26 (38)

Age (years) 74 (62, 83) 72 (59, 82) 0.739

Laboratory indexb

HS-CRP (mg/L) 142 (79,
200)

155 (55, 200) 0.922

Alanine transaminase
(U/L)

23 (13, 42) 34 (17, 60) 0.005

Triglyceride (mmol/L) 3 (2, 4) 3 (2, 3) 0.018

Total bilirubin
(umol/L)

12 (7, 20) 13 (8, 24) 0.095

Creatinine (umol/L) 181 (145,
265)

211 (159, 295) 0.053

Lactic acid (mmol/L) 2 (1, 3) 5 (3, 7) <0.001

Pro-BNP (pg/mL) 2177
(855,6416)

5649 (1803,
18999)

<0.001

Cholinesterase (U/L) 4215 ± 1573 4048 ± 1831 0.473

Prothrombin time (s) 15 (14, 17) 16 (15, 20) <0.001

D-dimer (mg/L) 4 (2, 7) 8 (3, 13) <0.001

Potassium (mmol/L) 0.948

3.5–5.5 295 (63) 42 (61)

<3.5 147 (31) 23 (33)

>5.5 28 (6) 4 (6)

Sodium (mmol/L) 0.006

135–145 227 (48) 35 (51)

<135 221 (47) 24 (35)

>145 22 (5) 10 (14)

Magnesium (mmol/L) 0.14

0.75–1.25 305 (65) 43 (62)

<0.75 160 (34) 23 (33)

>1.25 5 (1) 3 (4)

Calcium (mmol/L) 0.488

2.25–2.75 24 (5) 5 (7)

<2.25 445 (95) 64 (93)

>2.25 1 (0) 0 (0)

White blood cell
(×109/L)

0.027

4–10 131 (28) 24 (35)

<4 27 (6) 9 (13)

>10 312 (66) 36 (52)

Hemoglobin (×109/L) 0.11

110–160 229 (49) 38 (55)

(Continued)

TABLE 1 (Continued)

Variables No
ventilation
group
(n = 470)

Ventilation
group
(n = 69)

p

<110 221 (47) 25 (36)

>160 20 (4) 6 (9)

Platelet (×109/L) 0.208

100–300 327 (70) 43 (62)

<100 118 (25) 19 (28)

>300 25 (5) 7 (10)

Albumin (g/L) 29 ± 5 27 ± 4 <0.001

Globulin (g/L) 27 (24, 31) 25 (20, 28) 0.001

Vital signb

SPO2 (%) 97 (95, 98) 93 (85, 97) <0.001

Temperature (◦C) 0.342

36–37.5 241 (51) 29 (42)

<36 27 (6) 4 (6)

>37.5 202 (43) 36 (52)

MAP (mmHg) 0.049

70–105 287 (61) 36 (52)

<70 126 (27) 28 (41)

>105 57 (12) 5 (7)

Heart rate (times/min) 98 (86, 114) 112 (95, 125) 0.001

Breathe rate
(times/min)

20 (19, 22) 22 (20, 28) <0.001

GCS 15 (15, 15) 15 (15, 15) 0.002

Coexisting disease

Diabetes 0.916

No 375 (80) 56 (81)

Yes 95 (20) 13 (19)

Hypertension 0.163

No 240 (51) 42 (61)

Yes 230 (49) 27 (39)

Cerebral infarction 0.546

No 449 (96) 65 (94)

Yes 21 (4) 4 (6)

Cancer 0.357

No 405 (86) 56 (81)

Yes 65 (14) 13 (19)

Chronic lung disease 1

No 452 (96) 67 (97)

Yes 18 (4) 2 (3)

Chronic heart disease 0.697

No 458 (97) 67 (97)

Yes 12 (3) 2 (3)

Chronic liver disease 0.494

(Continued)
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TABLE 1 (Continued)

Variables No
ventilation
group
(n = 470)

Ventilation
group
(n = 69)

p

No 451 (96) 68 (99)

Yes 19 (4) 1 (1)

Chronic kidney
disease

0.77

No 427 (91) 64 (93)

Yes 43 (9) 5 (7)

Leukemia 1

No 464 (99) 69 (100)

Yes 6 (1) 0 (0)

Infection site

Intracranial infection 1

No 468 (100) 69 (100)

Yes 2 (0) 0 (0)

Lung infection <0.001

No 351 (75) 30 (43)

Yes 119 (25) 39 (57)

Biliary infection 0.802

No 438 (93) 64 (93)

Yes 32 (7) 5 (7)

Urinary infection 0.478

No 374 (80) 58 (84)

Yes 96 (20) 11 (16)

Gastrointestinal
infection

0.379

No 434 (92) 61 (88)

Yes 36 (8) 8 (12)

Callout: aContinuous variables are described as medians and interquartile ranges due to non-
normal distribution. Categories variables are analyzed by χ2 test and continuous variables
are analyzed by Wilcoxon rank sum test; bfirst examination index following admission. HS-
CRP, high sensitivity -C reactive protein; pro-BNP, pro-brain natriuretic peptide; SPO2 , pules
oxygen saturation; MAP, mean arterial pressure; GCS, Glasgow coma score.

into categorized ones based on normal ranges. The dataset from
Dongyang People’s Hospital (center 1) was randomly divided into a
training group (70%) and a internal validation group (30%), and
the patients from Yiwu Tianxiang Dongfang Hospital (center 2)
was designed as the external validation group. Univariate analysis
(P < 0.01) identified significant variables in the training group.
Multicollinearity was assessed using variance inflation factors
(VIF < 10). The Box-Tidwell test was performed to confirm
no linear relationship between variables and logit(p) (P < 0.05).
Independent risk factors were identified using multivariate logistic
regression and stepwise regression and subsequently incorporated
into the nomogram (Supplementary Figure 1).

Model development, validation, and
evaluation

The model’s discriminative ability was evaluated using Receiver
Operating Characteristic (ROC) curve analysis, with the Area

Under the Curve (AUC) serving as the primary metric (AUC > 0.75
indicating strong discrimination). Optimal cutoff values were
determined using Youden’s index, and sensitivity, specificity,
Positive Predictive Value (PPV), and Negative Predictive Value
(NPV) were calculated. Calibration was assessed using the Hosmer-
Lemeshow test (P > 0.05 indicating good calibration). Clinical
effectiveness was evaluated using Decision Curve Analysis (DCA),
with effectiveness determined by the model curve being distinct
from the extreme reference curves.

Sequential Organ Failure Assessment and NEWS-based
predictive models were developed and compared to the nomogram
using Delong’s test (P < 0.05 indicating statistical significance).
Machine learning models [Support Vector Machine (SVM),
C5.0, Extreme Gradient Boosting (XGBoost), and Ensemble]
were constructed in the validation group. An integrated model
was developed using the Stacking method and compared to the
nomogram using Delong’s test.

Statistical analysis

The required minimum of sample size was evaluated based
on the numbers of enrolled variables and patients requiring
ventilation using “pmsampsize” package in R software (version
4.1.2). Normally distributed continuous variables were expressed
as mean ± standard deviation (SD) and compared using t-tests.
Non-normally distributed variables were reported as means and
interquartile ranges (IQR), and analyzed using the Mann-Whitney
U test. Categorical variables were expressed as percentages and
compared using chi-square tests. All statistical analyses were
performed using R software.

Results

Baseline patient characteristics

A total of 769 SA-AKI patients from center 1 were included in
this study, comprising 464 males and 305 females. Among them,
101 patients (13.1%) required invasive ventilation. The sample size
was optimal based on the enrolled variables and the number of cases
requiring invasive ventilation. The training group consisted of 539
patients, while the internal validation group included 230 patients.
There were no statistically significant differences in baseline
characteristics between the two groups (Supplementary Table 1).

Univariate analyses in the training group

Univariate analysis in the training group identified significant
variables associated with invasive ventilation risk, including lactate
levels, respiratory rate, peripheral oxygen saturation, D-dimer,
prothrombin time, pro-BNP, albumin, and pulmonary infection
(P < 0.001) (Table 1). Variance inflation factors (VIFs) were 1.352,
1.197, 1.130, 1.101, 1.078, 1.062, 1.054, and 1.057, respectively,
indicating no multicollinearity. The Box-Tidwell test results yielded
P-values of 0.767, 0.149, 0.146, 0.227, 0.956, 0.914, and 0.605 for
lactate, pro-BNP, prothrombin time, D-dimer, albumin, peripheral
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oxygen saturation, and respiratory rate, respectively (P > 0.05),
confirming a linear relationship with logit(p). These variables were
therefore included in the multivariate logistic regression analysis.

Multivariate logistic regression and
stepwise regression analyses

Multivariate and stepwise regression analyses identified lactate,
pro-BNP, albumin, peripheral oxygen saturation, and pulmonary
infection as independent risk factors for invasive ventilation within
48 h of admission (P < 0.05). These variables were incorporated
into the final logistic model (Table 2).

Nomogram construction

A nomogram was developed based on the identified
independent risk factors (Figure 1). Each factor got a score,
with the total score used to estimate the probability of requiring
invasive ventilation. In detail, a case was given in the figure as an
example: the patient with pro-BNP of 35000 pg/mL, lactic acid of
1.8 mmol/L, presence of pulmonary infection, peripheral oxygen
saturation of 93%, albumin of 32.5 g/L. A summed point was 0.856
and the predicted possibility of requiring ventilation was 0.135
using the lower total score lines.

Model discrimination, calibration, and
clinical effectiveness

Receiver operating characteristic curve analysis yielded an AUC
of 0.857 (95% CI: 0.818–0.897) (Figure 2A), demonstrating strong
discriminative ability. The optimal cutoff value was 0.114. Model
performance metrics included specificity of 75.5% (95% CI: 71.7%–
79.4%), sensitivity of 85.5% (95% CI: 76.8%–92.8%), accuracy of
76.8% (95% CI: 76.7%–76.9%), PPV of 33.9% (95% CI: 26.9%–
40.9%), and NPV of 97.3% (95% CI: 95.6%–98.9%). Calibration
assessment using the Hosmer-Lemeshow test produced a P-value of
0.533, a Brier scaled score of 0.092, a calibration slope of 1.000, and
an R2 value of 0.289 (Figure 2B). DCA curves showed the model
consistently outperformed extreme threshold curves (Figure 2C),
indicating high clinical utility.

Internal model validation

In the validation group, the nomogram demonstrated strong
discriminative ability, with an AUC of 0.850 (95% CI: 0.772–0.928)
(Figure 3A). The optimal cutoff value was 0.121. The model’s
performance metrics were as follows: specificity of 83.0% (95%
CI: 74.8%–85.4%), sensitivity of 84.4% (95% CI: 71.9%–96.9%),
accuracy of 80.9% (95% CI: 80.7%–81.0%), PPV of 40.9% (95%
CI: 29.0%–52.8%), and NPV of 97.0% (95% CI: 94.3%–99.6%).
Calibration analysis yielded a Hosmer-Lemeshow P-value of 0.826,
a Brier scaled score of 0.087, a calibration slope of 1.000, and an R2

of 0.361 (Figure 3B). The DCA curve remained above the extreme
curves (Figure 3C), confirming the model’s strong clinical utility.

External model validation

In the external validation group, the AUC of nomogram was
0.791 (95% CI: 0.710–0.872) (Figure 4A). At the cutoff value of
0.11, the model’s performance metrics were as follows: specificity
of 73.0% (95% CI: 57.7%–88.0%), sensitivity of 82.1% (95% CI:
61.5%–94.8%), accuracy of 74.2% (95% CI: 61.8%–85.6%), PPV of
30.7% (95% CI: 23.3%–45.9%), and NPV of 96.5% (95% CI: 93.8%–
98.9%). Calibration analysis yielded a Hosmer-Lemeshow P-value
of 0.901, a Brier scaled score of 0.098, a calibration slope of 1.000,
and an R2 of 0.183 (Figure 4B). The DCA curve remained above the
extreme curves (Figure 4C).

Comparison with the SOFA and NEWS
scoring models

In the training group, the AUC values for the SOFA and
NEWS score models were 0.621 (95% CI: 0.551–0.691) and 0.676
(95% CI: 0.608–0.744), respectively (Figure 5A). Delong’s test
revealed significant differences (Supplementary Table 2, P < 0.001),
indicating superior discriminative ability of the nomogram. In the
validation group, the AUC values for the SOFA and NEWS score
models were 0.676 (95% CI: 0.567–0.775) and 0.614 (95% CI: 0.506–
0.723), respectively (Figure 5B). Delong’s test results (P = 0.003 for
SOFA and P < 0.001 for NEWS) further confirmed the nomogram’s
superior predictive performance.

Comparison with machine learning
models

In the validation group, the calibration of machine learning
models was less satisfactory (Figure 6A). The AUC values for the
C5.0, SVM, XGBoost, and ensemble models were 0.792 (95% CI:
0.702–0.882), 0.741 (95% CI: 0.637–0.845), 0.842 (95% CI: 0.768–
0.916), and 0.820 (95% CI: 0.744–0.896), respectively (Figure 6B).
Comparisons with the nomogram using Delong’s test yielded
P-values of 0.336, 0.1, 0.879, and 0.590, respectively, indicating no
statistically significant differences (Figure 6C and Supplementary
Table 2).

Discussion

This retrospective study of SA-AKI patients identified lactate,
pro-BNP, albumin, peripheral oxygen saturation, and pulmonary
infection as independent risk factors for invasive ventilation within
48 h of admission. A predictive model based on these variables
demonstrated strong performance.

Sepsis-associated acute kidney injury patients requiring
invasive ventilation often experience prolonged hospital stays
and increased mortality due to complications such as ventilator-
induced lung injury and sedation-related pressure ulcers. The
clinical utility of this predictive model lies in its ability to assess
the short-term risk of invasive ventilation, enabling individualized
interventions. These interventions include optimized fluid
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TABLE 2 Multivariate logistic regression analysis and stepwise regression analysis of involved variables in training group.

Multivariable logistic regression Stepwise regression

Variables OR (95% CI) P-value OR (95% CI) P-value

Lactic acid (mol/L) 1.151 (1.055–1.235) <0.001 1.157 (1.074–1.250) <0.001

Pro-BNPa (pg/ml) 1.000 (1.000–1.000) 0.001 1.000 (1.000–1.000) <0.001

Prothrombin time (s) 1.010 (0.967–1.041) 0.513 NA NA

D-dimer (mg/L)
SPO2 (%)

1.044 (0.994–1.094)
0.947 (0.914–0.976)

0.078
0.001

1.044 (0.994–1.093)
0.948 (0.915–0.976)

0.078
0.001

Albumin (g/L) 0.922 (0.867–0.980) 0.010 0.920 (0.866–0.978) 0.007

Breath rate (times/min) 1.001 (0.975–1.035) 0.899 NA NA

Lung infection 2.909 (1.624–5.241) <0.001 2.862 (1.603–5.136) <0.001

Callout:aThe exact pro-BNP in the multivariable logistic regression was 1.0000422 (1.0000165–1.0000673); the exact value for pro-BNP in the stepwise regression was 1.0000424 (1.0000171–
1.0000672); SPO2 , pules oxygen saturation.

FIGURE 1

Risk-prediction nomogram for invasive ventilation within 48 h following admission in patients with sepsis.
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FIGURE 2

Evaluation of prediction model in modeling group. (A) ROC curves; (B) calibration chart; (C) DCA curves.

FIGURE 3

Evaluation of prediction model in internal validation group. (A) ROC curves; (B) calibration chart; (C) DCA curves.

management using techniques such as Pulse Index Continuous
Cardiac Output, pulmonary artery catheterization, or rigorous
central venous pressure monitoring, as well as the timely
application of non-invasive ventilation or high-flow oxygen
therapy. Furthermore, the model enhances doctor-patient
communication, particularly for high-risk individuals, reducing
the risk of medical disputes.

Lactate, an indicator of oxygen metabolism, is produced by
cells when oxygen consumption exceeds the supply and glycolysis
occurs. Furthermore, lactate participates in an immune metabolic
response during sepsis via serving as an anergy source of activated
immune cells (20). In this way the high lactate levels found in
this study stem from the metabolic reprogramming of sepsis,
not only from Oxygen Delivery (DO2) Oxygen Consumption
(VO2) imbalance (21), which was supported by the fact that mean

arterial pressure was not enrolled in the final model. Similarly,
the level of lactate in serum has been linked to poor outcomes
and rapid progression to respiratory failure in sepsis cases (18).
Pro-BNP, a marker of ventricular pressure, is synthesized and
secreted by stretched cardiomyocyte. In patients with heart failure,
ventricular wall extension, neurohormone activation and oxygen
deficiency could result into increased secretion of BNP (22). In
patients with sepsis, the BNP level increases due to myocardial
injury, fluid overload, and renal impairment. Heart failure in
sepsis patients causes lung edema and decreases the gas exchange
function of lung, consequently leading to respiratory failure which
need invasive ventilation (23, 24). This finding highlights the need
for careful fluid management in SA-AKI patients with elevated
pro-BNP levels. Albumin, a nutritional marker, reflects both
respiratory muscle function and plasma oncotic pressure, with
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FIGURE 4

Evaluation of prediction model in external validation group. (A) ROC curves; (B) calibration chart; (C) DCA curves.

FIGURE 5

Comparison of ROCs for models. (A) Comparison to the models based on SOFA and NEWS scoring system in; (B) comparison to the models based
on SOFA and NEWS scoring system in validation group.

lower levels increasing the risk of pulmonary edema and respiratory
failure (18, 25). Peripheral oxygen saturation directly correlates
with oxygenation status, where lower levels indicate for a higher
risk of intubation (26). Pulmonary infection increases the risk
of secondary respiratory failure (27), which could be explained
by impaired ventilation function of infected alveolar cell (28).
Moreover, bacterial toxin and acidosis in infected cases result

into pulmonary artery spasm and metabolic disorder, consequently
causing injuries in multiple organs (such as respiratory failure) (29),
Of course, an imbalance of inflammatory response in patients with
sepsis would contribute to the occurrence of respiratory failure,
which could be verified by including immune immunological
molecules in the prediction model (e.g., TNF-alpha, IL-6 and
procalcitonin) in the future. SaO2, PaO2 and PaO2/FiO2 ratio are
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FIGURE 6

Comparison of ROCs for all models. (A) The calibration of machine learning models; (B) the AUC values for the C5.0, SVM, XGBoost, and ensemble
models. (C) Comparison of ROCs for all models.

essential for respiratory mechanics on spontaneous breathing, but
not all these three indicators are routinely used in clinical practice,
especially for patients who are not in intense care unit. Moreover,
derived variables of PaCO2 are equally important as the ventilatory
ratio (simply derived from ventilation per minute and PaCO2) is
an important index to monitor respiratory failure and respiratory
therapy (30). In this study, SPO2 is negatively associated with
the risk of requiring mechanical ventilation, suggesting for the
potential role of other related respiratory indicators in predicting
invasive ventilation in patients with sepsis.

The nomogram outperformed the SOFA and NEWS score
models in terms of discriminative ability, likely due to the
inclusion of additional relevant clinical indicators. The SOFA and
NEWS scores were developed earlier and do not incorporate
certain variables now recognized as significant in clinical practice.
Although some biomarkers, such as pro-BNP, may be costly, their
clinical relevance justifies their inclusion. It is important to note
that while SOFA and NEWS scores are valuable for assessing disease
severity, they were not specifically designed to predict the need for
mechanical ventilation.

Although machine learning models have advantages over than
traditional models (31), they are comparable to our nomogram
model for discriminative ability in this study. However, machine
learning models suffer from the “black box” problem, limiting
their interpretability. Given this limitation, logistic regression-
based models are often preferred unless a significant performance
advantage is demonstrated (32). Furthermore, less variables are
enrolled in our model than that in the machine learning models,
facilitating its usage in clinical practice. Finally, no priority on
discrimination power of machine learning model over the logistic
model could be explained by limited interactions between any two

variables and small sample size for model comparison in this study
(33, 34).

This study has several limitations. First, the retrospective
design introduces potential selection bias caused by patients’
inclusion and data interpolated. Then, pulmonary infection was
analyzed as a broad category without subclassification based on
severity or etiology. Machine learning models were established at
default parameters, and class imbalance might exist. Moreover,
the information on whether patients received medical oxygen
therapy or high flow oxygen therapy was not available in this
study, although they could improve the prognosis of patients (35),
However, was not available for enrolled cases in this study. Finally,
some variables in the final model are not available for source limited
regions, limited its broad usage in clinical practice.

Conclusion

We developed a simple and effective predictive model
incorporating key clinical parameters to estimate the risk of
invasive ventilation in SA-AKI patients within 48 h of admission.
The model demonstrated robust performance and could provide
valuable insights to guide clinical decision-making, ultimately
improving patients’ outcomes.
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