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Sepsis is a systemic inflammatory response syndrome that predisposes to

severe lung infections (SeALAR) such as sepsis-associated acute lung injury

(Se/ALI) or sepsis-associated acute respiratory distress syndrome (Se/ARDS).

Through a systematic bioinformatics approach, this study aimed to unravel the

pathogenesis of SeALAR and explore potential biomarkers and individualized

therapeutic targets. We analyzed differential genes in the peripheral blood of

SeALAR patients based on the GSE10474 and GSE32707 datasets, and identified

352 significantly differentially expressed genes. Various signaling pathways

related to immune regulation were found to be significantly altered via GO

and KEGG enrichment analysis. Further combining cell death-related gene

screening and four machine learning algorithms (including LASSO-logistic,

Gradient Boosting Machine, Random Forest and xGBoost), nine SeALAR-

characterized cell death genes (SeDGs) were screened and a risk prediction

model based on SeDGs was constructed that demonstrated good prediction

performance. In immunoassays, ssGSEA showed that Activated.CD8.T.cell,

CD56bright.natural.killer.cell, MDSC, Natural.killer.T.cell, T.follicular.helper. cell

and TType.1.T.helper.cell had significantly lower infiltration abundance than

lower infiltration levels compared to the Se group. GSEA analysis revealed

key immune pathways in which SeDGs may be involved. In addition,

unsupervised clustering analysis revealed that SeALAR patients could be

classified into two molecular subtypes, providing a new direction for the

development of individualized immunotherapy strategies. In conclusion, this

study systematically analyzed the molecular features and immune disorder

mechanism of SeALAR from a multidimensional perspective, and thus provides

a theoretical basis and potential targets for precision medicine intervention and

targeted drug development.
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1 Introduction

Sepsis is one of the most common complications in intensive
care units (ICUs) (1), which usually leads to organ infections,
particularly in the lungs, thereby causing acute lung injury (ALI)
or acute respiratory distress syndrome (ARDS) due to its complex
molecular basis (2, 3). Additionally, ALI often deteriorates and
progresses to ARDS (4, 5). Statistically, sepsis-associated ARDS
accounts for approximately 32% of all sepsis cases, with an
extremely high mortality rate (6, 7). Nevertheless, the presentations
of sepsis are highly heterogeneous, which limits the predictive value
of single factors (8). Therefore, it is helpful for assessing the severity
and prognosis of sepsis to develop new risk pre-diction models
for sepsis patients with lung co-infections, such as ALI or ARDS
(SeALAR).

During pulmonary infections in septic patients, insufficient
oxygen supply pre-disposes to incomplete oxidative reactions
or hypoxia, resulting in a sharp increase in free radicals and
severe damage to the antioxidant system (1, 9). In such patients,
activated peripheral blood cells (especially neutrophils) release
inflammatory cytokines, such as tumor necrosis factor-α (TNF-α),
interleukin (IL)-1, and chemokines, when exposed to damage-
associated molecular patterns (DAMPs) or pathogen-associated
molecular patterns (PAMPs) (10–12), eventually inducing many
types of cell death, such as apoptosis, pyroptosis, and ferroptosis
(13–15). In turn, the dead cells further drive the release
and activation of various pro-inflammatory cytokines (including
TNF-α, IL-1, IL-2, IL-6, and IL-8) and systemic coagulation
abnormalities, thus accelerating the development of the disease,
triggering systemic inflammatory cascade reactions and immune
disorder, and aggravating lung injury, which contributes to the
dismal prognosis of patients (16–20). Accordingly, cell death-
related genes may serve as biomarkers and risk and prognostic
factors for SeALAR.

In this study, bioinformatics analysis was performed to
determine the expression of cell death-related genes in the
peripheral blood during the progression of sepsis, and various
statistical analysis methods were utilized to screen reliable cell
death-related signature genes (SeDGs) in SeALAR. Subsequently,
a risk prediction model for SeALAR was constructed based
on these genes, followed by immune infiltration analysis and
Gene Set Enrichment Analysis (GSEA). Overall, this study aimed
to provide new di-rections for future research, diagnosis, and
treatment of sepsis.

2 Materials and methods

2.1 Data source

Two gene expression datasets, GSE10474 (21) and GSE32707
(22), were downloaded from the Gene Expression Omnibus
database, followed by the collection of peripheral blood gene
expression data of 31 septic patients complicated by ARDS,
13 septic patients complicated by ALI, and 79 septic patients
without complications (Se). Inclusion criteria for participants were
as follows: SeALAR patients and Se patients. Exclusion criteria
for participants were as follows: patients with other diseases

complicated by ARDS or ALI. As all data were obtained from public
datasets, no additional ethical re-view was required.

2.2 Differentially expressed gene (DEG)
screening

First, the annotation files of each platform were used to map
the probes to the HGNC gene symbols, and after excluding the
probes mapped to multiple genes or no corresponding genes,
the two sets of matrices were merged based on the unified gene
symbols. In order to eliminate the systematic bias between different
platforms and batches, the merged matrices for batch effects were
corrected using the ComBat function in the sva package, and
verified the significant elimination of batch clustering between
samples after correction by principal component analysis (PCA).
After completing the batch correction, background correction,
quantile normalization and log2 transformation were performed
on the data in the limma package. Afterward, the design matrix
was constructed using the 79 sepsis control cases as a reference,
and the lmFit and eBayes functions were called to identify the
differentially expressed genes. Here, the screening criterion was set
to be FDR < 0.05 and |log2FC| > 0.263. Finally, the filtered DEGs
were imported into the clusterProfiler package, and KEGG pathway
and GO bioprocess enrichment analysis were carried out. The result
was considered significant at the FDR of less than 0.05.

2.3 Construction of a risk prediction
model based on cell death-related
signature genes in SeALAR (SeDGs)

A total of 2,856 cell death-related genes were screened from 18
cell death types reported in the literature (23, 24) (Supplementary
Table 1). These cell death genes were then intersected with the
DEGs obtained in the previous step using a Venn diagram to yield
the cell death-related genes that were differentially expressed in the
peripheral blood of SeALAR patients.

To further screen SeALAR-characterized cell death genes
(SeDGs) with predictive ability, four commonly used machine
learning algorithms are introduced in this study, including LASSO-
logistic (25), Gradient Boosting Machine (GBM) (26), Random
Forest (RF) (27) and the xGBoost (28) algorithms. Among
them, the LASSO-logistic model used 10-fold cross-validation to
determine the optimal regularization parameter (lambda), and
the regression model was built by the “glmnet” package and the
variables are screened; the GBM model was constructed based on
the “gbm” package, and the main parameters were set to “gbm.” The
GBM model was constructed based on the “gbm” package, and the
main parameters were set as interaction.depth = 3, n.trees = 100,
shrinkage = 0.1, and cv.folds = 10; the RF model was constructed
using the “randomForest” package, and ntree = 500, and mtry = 10.
The RF model uses the “randomForest” package, with ntree = 500
and mtry = 500, and takes p to rank the importance of the
variables; the xGBoost model was accomplished with the “xgboost”
package, with the main parameters max_depth = 6, eta = 0.3,
nrounds = 100, and the objective set to “binary: logistic,” and
10-fold cross-validation was also used to improve the stability of
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FIGURE 1

Differential gene screening and GO and KEGG enrichment analyses. (A) A heatmap demonstrating the top 100 genes with the most significant
differences in the peripheral blood of sepsis is a systemic inflammatory response syndrome that predisposes to severe lung infections (SeALAR)
patients with lung infections (n = 44) versus septic patients (n = 79), with adjusted false discovery rate (FDR) < 0.05 and |log2FC| > 0.263 as the
screening criteria for differential genes. (B) GO functional enrichment analysis of differential genes, where the results are statistically significant when
FDR is less than 0.05. (C) KEGG pathway enrichment analysis of differential genes, where the results are statistically significant when FDR is less than
0.05.

the model. Finally, the high-weighted genes with scores greater
than five were, respectively extracted from each model, and their
intersection was taken to obtain the most stable and consistent
characteristic gene set.

Based on the SeDGs obtained from the screening, the “rms”
R package was further used to construct a nomogram model
for predicting the risk of SeALAR. The consistency between the
predicted and actual values of the model was assessed by plotting a
calibration curve, and the Net Benefit of the model under different
risk thresholds was evaluated by Decision Curve Analysis (DCA).
All statistical tests were considered statistically significant when the
p-value was less than 0.05.

2.4 Immune infiltration analysis, GSEA,
and clustering analysis based on SeDGs

Correlations of SeDGs with the degree of immune cell
infiltration were analyzed with “ggstatsplot” and “ggplot2” software
packages. Afterward, the enriched pathways of each SeDG were
identified with GSEA software. Then, all SeALAR patients were
subjected to cluster analysis with the “ConensusClustosPlus”
software package, followed by the drawing of principle component
analysis (PCA) curves, as well as ex-pression heatmaps and box

plots of SeDGs. The results were statistically significant when the
P value was less than 0.05.

2.5 Statistical analysis

R (version 4.1.0) was used for statistical analysis. Differences
were considered statistically significant at P < 0.05.

3 Results

3.1 Differential gene expression profiling
and pathway enrichment analysis of
peripheral blood from SeALAR patients

Initially, changes in peripheral blood gene expression profiles
during the progression of sepsis to ALI or ARDS were analyzed
with the limma package, which yielded 352 DEGs, including 91
upregulated genes and 261 downregulated genes (Supplementary
Table 2). The heatmap shows the top 100 genes with the most
significant differences (Figure 1A).
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FIGURE 2

Signature genes in sepsis is a systemic inflammatory response syndrome that predisposes to severe lung infections (SeALAR) identified by four
machine learning algorithms. (A) A total of 63 signature genes identified by GBM. (B) A total of 36 signature genes identified by xGBoost. (C) A total
of 22 signature genes identified by LASSO-logistic. (D) A total of 30 signature genes identified by Random Forest (RF). The results are statistically
significant when P is less than 0.05.

To delve into the underlying molecular mechanisms in the
peripheral blood when Se developed into SeALAR, the obtained
DEGs were subjected to GO and KEGG pathway enrichment
analyses. The results of the GO functional enrichment analysis
displayed that immunoregulation-related pathways were markedly
altered in the peripheral blood of SeALAR patients (Figure 1B
and Supplementary Table 3). In addition, the results of the KEGG
pathway enrichment analysis revealed significant enrichment of
Parkinson’s disease, human T-cell leukemia virus type 1 infection,
phagosomes, Epstein-Barr virus infection, and Th1 and Th2 cell
differentiation in SeALAR (Figure 1C and Supplementary Table 4).
These results indicate that SeALAR may occur as a result of
immune abnormalities and may trigger other system diseases.

3.2 Identification of SeDGs

To screen reliable cell death-related biomarkers in SeALAR,
DEGs were intersected with previously identified cell death-related
genes to obtain 108 cell death-related genes differentially expressed
in SeALAR (Supplementary Figure 1 and Supplementary Table 5).
Sub-sequently, these 108 genes were analyzed by GBM, xGBoost,
LASSO-logistic, and RF algorithms to screen SeDGs.

The results demonstrated that there were 63 signature genes
identified by GBM (Figure 2A), 36 signature genes identified by

xGBoost (Figure 2B), 22 signature genes identified by LASSO-
logistic (Figure 2C), and 30 signature genes identified by RF
(Figure 2D). To attain more precise SeDGs, the signature genes
identified by these algorithms were intersected. Eventually, nine
reliable SeDGs were determined (Figure 3A), among which CD19,
EXT1, FEM1B, and PINK1 were upregulated (Figures 3B–E) and
FTH1, CDKN1A, PI3, PTPRC, and PTGDS were downregulated
(Figures 3F–J) in the peripheral blood of SeALAR patients. The area
under the receiver-operating characteristic curve further confirmed
the accuracy of these nine SeDGs as biomarkers in SeALAR
(Figure 3K).

3.3 Construction of a SeDG-based risk
prediction model for SeALAR

Due to the high mortality rate of SeALAR, constructing a risk
prediction model for SeALAR is clinically important to improve
the prognosis of septic patients. In this study, the obtained SeDGs
were utilized to construct a risk prediction model for SeALAR,
which was represented as a nomogram. Through the detection of
SeDG expression in peripheral blood, the risk of SeALAR could
be assessed, providing prognostic information for septic patients
(Figure 4A). The results of calibration curves and DCA verified that
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FIGURE 3

Screening and expression analysis of characterized genes in the peripheral blood of patients with sepsis is a systemic inflammatory response
syndrome that predisposes to severe lung infections (SeALAR) and simple sepsis. (A) Venn diagram showing the nine SeALAR characterized genes
jointly identified by four machine learning algorithms, namely LASSO, Random Forest (RF), Gradient Boosting Machine (GBM) and eXtreme Gradient
Boosting (XGBoost). The box-and-line plots show the differential expression of the nine characterized genes between the se/ARDS group and the
simple sepsis group (B–J). Among them, CD19 (B), EXT1 (C), FEM1B (D), and PINK1 (E) were significantly highly expressed in the peripheral blood of
patients in the se/ARDS group; and CDKN1A (F), FTH1 (G), PI3 (H), PTGDS (I), and PTPRC (J) were significantly less expressed in the peripheral blood
of patients in the se/ARDS group. Statistical analysis was performed using Wilcoxon test with significance levels marked as *P < 0.05, **P < 0.01,
***P < 0.001. (K) ROC curves were analyzed for the diagnostic value of the nine characteristic genes used to differentiate between se/ARDS and
simple sepsis, and the corresponding area under the curve (AUC) values were labeled separately.

the SeDG-based nomogram model had superior clinical prediction
performance (Figures 4B–D).

3.4 Immune correlation analysis of
SeALAR

Previous studies have demonstrated that the immune function
of SeALAR patients is highly disturbed and that immunity
deficiency usually results in a poor prognosis for patients (1, 29).

Therefore, it is of clinical significance to analyze the changes in
the immune microenvironment of SeALAR for improving the
prognosis of SeALAR. In this study, the infiltration abundance
of immune cells was calculated with ssGSEA. Preliminary results
exhibited lower infiltration abundances of Activated.CD8.T.cell,
CD56bright.natural.killer.cell, MDSC Natural.killer.T.cell,
T.follicular.helper.cell and Type.1.T.helper.cell in the peripheral
blood of Se/ARDS patients than in the peripheral blood of Se
patients (Figure 5). Further, the correlation between SeDGs and
immune-infiltrating cells was analyzed with the “ggstatsplot”
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FIGURE 4

Construction and evaluation of a clinical risk prediction model based on sepsis is a systemic inflammatory response syndrome that predisposes to
severe lung infections (SeALAR) signature genes. (A) Nomograms of nine genes (EXT1, FTH1, FEM1B, PTGDS, PTPRC, PI3, CDKN1A, CD19, and PINK1)
were constructed to predict the risk of sepsis secondary to lung infection. Corresponding scores were obtained from the expression levels of each
gene, and the total score was obtained by summing up all gene scores to predict the risk probability of developing SeALAR in Se patients.
(B) Calibration curve analysis shows the agreement between the model predicted probabilities and the actual observed probabilities to assess the
accuracy of the prediction model. (C,D) Decision Curve Analysis (DCA) was used to assess the clinical benefit and utility of the predictive model.
(C) Shows the number of patients predicted to be at high risk by the model at different risk thresholds and the number of patients who actually
develop the disease; (D) Shows the Net Benefit of applying the model to clinical decision-making at different threshold probabilities.

and “ggplot2” software packages, providing potential targets for
personalized immunotherapy.

The results manifested the presence of a correlation between
CD19 and activated B cells (Figure 6A), between FEM1B and
regulatory T cells (Figure 6B), between FTH1 and macrophages
(Figure 6C), between PI3 and monocytes (Figure 6D), between
EXT1 and activated dendritic cells (Figure 6E), between PINK1
and T helper 17 cells (Figure 6F), between PTGDS and activated
CD8 T cells (Figure 6G), and between CDKN1A and plasmacytoid
dendritic cells (Figure 6H). In addition, PTPRC had the highest

correlation coefficient with neutrophils (Figure 6I). Accordingly, in
different SeALAR patients, specific targets are needed for treatment
against different immune cell changes.

3.5 GSEA results

Gene Set Enrichment Analysis was performed further to
investigate the role of each SeDG in SeALAR. The results
displayed that CD19 (Figure 7A), PTPRC (Figure 7B), PTGDS
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FIGURE 5

Characterization of immune cell infiltration in peripheral blood of patients with sepsis-associated acute respiratory distress syndrome (Se/ARDS)
versus simple sepsis. Levels of infiltration of 28 immune cell types in the peripheral blood of the two groups of patients were assessed based on
single-sample Gene Set Enrichment Analysis (ssGSEA). The statistical method included Wilcoxon rank-sum test, and the significance levels were
expressed as *P < 0.05, **P < 0.01, and ***P < 0.001.

(Figure 7C), PINK1 (Figure 7D), PI3 (Figure 7E), FTH1
(Figure 7F), FEM1B (Figure 7G), EXT1 (Figure 7H), and CDKN1A
(Figure 7I) were mainly enriched in the RIBOSOME pathway,
the LEISHMANIA INFECTION pathway, the RIBOSOME
pathway, the PORPHYRIN AND CHLOROPHYLL METABOLS
pathway, the RIBOSOME pathway, the LYSO-SOME pathway,
the OXIDATIVE PHOSPHORYLATION pathway, the TOLL
LIKE RECEPTOR pathway, and the FC GAMMA R MEDIATED
PHAGOCYTOSIS pathway, respectively. Furthermore, SeDGs
and their 20 interacting genes were subjected to protein-protein
interaction analysis with the GeneMANIA database, which clarified
the potential regulatory mechanisms of SeDGs (Supplementary
Figure 2). These results preliminarily disclosed the molecular
mechanism of SeDGs and provided theoretical guidance for the
targeted therapy of SeALAR.

3.6 Cluster analysis of SeALAR

Subsequently, a cluster analysis was performed on all SeALAR
patients with the “ConensusClustosPlus” software package based
on the above SeDGs. It was found that when K = 2, the samples
could be classified into two molecular subtypes (Figure 8A).
Next, PCA results showed significant differences between these
two subtypes (Figure 8B). Moreover, DEG analyses also revealed
that the expression of SeDGs varied across subtypes (Figure 8C).

Clustering analysis of patients can display differences in disease
features and biomarkers among subtypes, which can provide clues
for the development of new treatments and drugs and advance
the development of personalized medicine, thereby providing more
effective treatment options for patients.

4 Discussion

This study explored changes in peripheral blood gene
expression profiles during the complications of sepsis to ALI or
ARDS with comprehensive bioinformatics analysis and further
evaluated the potential role of cell death-related genes in
SeALAR. First, it was observed that immunoregulation-related
pathways were substantially altered in the peripheral blood
of SeALAR patients, underscoring the importance of immune
abnormalities in the development of SeALAR. Through differential
gene analysis combined with multiple statistical methods, nine
reliable SeDGs were screened and a risk prediction model was
constructed based on these genes, which provided a novel
means of assessing the clinical prognosis of septic patients.
Further immune correlation analysis demonstrated a correlation
between SeDGs and the degree of immune cell infiltration in the
peripheral blood of SeALAR patients, offering potential targets for
personalized immunotherapy.
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FIGURE 6

Correlation analysis between sepsis is a systemic inflammatory response syndrome that predisposes to severe lung infections (SeALAR)
characterized genes and immune cell infiltration. (A–I) Spearman’s correlation between the expression levels of nine characterized genes (CD19,
FEM1B, FTH1, PI3, EXT1, PINK1, PTGDS, CDKN1A, PTPRC) and the abundance of immune cell infiltration was assessed based on the ssGSEA method.
The horizontal coordinate indicates the Correlation Coefficient, the size of the point represents the absolute value of the correlation (|cor|), and the
color indicates the size of the P-value.

Among SeDGs, CD19 was highly expressed in the peripheral
blood of SeALAR patients and correlated with activated B cells.
Generally, CD19 is expressed on the surface of B lymphocytes and
is a key molecule in the development and activation of B cells (30).
The correlation of CD19 with activated B cells hints at a possible
role of B cells in SeALAR by participating in immunoregulation.
EXT1 was highly expressed in the peripheral blood of SeALAR
patients and was correlated with activated dendritic cells. As
reported, EXT1 is a multifunctional glycosyltransferase that
assumes a pivotal role in regulating extracellular matrix and cellular
signaling (31). The correlation of EXT1 with activated dendritic
cells implicates a potential mechanism for mediating dendritic cell
function in SeALAR. FEM1B was overexpressed in the peripheral
blood of SeALAR patients and was correlated with regulatory T
cells. As an E3 ubiquitin ligase, FEM1B is implicated in processes
such as cell cycle regulation, signaling, and immunoregulation (32).
The correlation of FEM1B with regulatory T cells may indicate
that immune responses in SeALAR can be affected by modulating
the activity of immunosuppressive cells. As a key regulator of

mitochondrial mass and function (33), PINK1 was upregulated in
the peripheral blood of SeALAR patients. This gene was correlated
with T helper 17 cells, implying that abnormal mitochondrial
function is associated with the pathogenesis of SeALAR, which
further affects immune cell activity and inflammatory responses.
FTH1 was lowly expressed in the peripheral blood of SeALAR
patients and was correlated with macrophages. Reportedly, FTH1
is responsible for intracellular storage and release of ferric ions
(34, 35), whose correlation with macrophages may underscore
the significance of ferric ions in the pathogenesis of SeALAR
by modulating immune responses and inflammatory processes.
CDKN1A was poorly expressed in the peripheral blood of SeALAR
patients and associated with plasmacytoid dendritic cells. CDKN1A
not only is a key molecule in cell cycle regulation but also is involved
in processes such as DNA damage repair and apoptosis (36).
Therefore, its correlation with plasmacytoid dendritic cells may
suggest a potential role of cell cycle regulation and apoptosis in the
pathogenesis of SeALAR. PI3 was lowly expressed in the peripheral
blood of SeALAR patients and was correlated with monocytes. PI3
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FIGURE 7

Gene Set Enrichment Analysis (GSEA) analysis of sepsis is a systemic inflammatory response syndrome that predisposes to severe lung infections
(SeALAR) characterized genes. (A–I) GSEA was used to explore the nine characterized genes (CD19, PTPRC, PTGDS, PINK1, PI3, FTH1, FEM1B, EXT1,
and CDKN1A) in different KEGG pathway Potential functions. The figure demonstrates the pathway significance enrichment associated with high
expression of each gene, the horizontal coordinate is the enrichment score (NES), and the color indicates the enrichment direction.

is a critical signaling regulatory molecule involved in the regulation
of various cellular functions (37). Therefore, its correlation with
monocytes may illustrate a regulatory role of the PI3 pathway
in monocyte-mediated immune responses. PTPRC was expressed
at a low level in the peripheral blood of SeALAR patients and
was correlated with neutrophils. As PTPRC is a member of the
immunoglobulin superfamily that is vital for immune cell signaling
(38), its correlation with neutrophils may allude to the pivotal
involvement of immune cell activation and inflammatory responses
in the pathogenesis of SeALAR. PTGDS was downregulated in
the peripheral blood of SeALAR patients and was correlated with
activated CD8 T cells. PTGDS is a key synthase for prostaglandin
D2 that has been reported to be involved in many physiological
and pathological processes (39). Hence, the correlation of PTGDS
with activated CD8 T cells may highlight a potential regulatory
mechanism of prostaglandin D2 in T cell activity and inflammatory
responses during SeALAR. However, the above correlations are

potential clues rather than direct evidence. The specific roles of
these gene-immune cell axes in the pathogenesis of SeALAR will be
explored through functional experiments in combination with cell
or animal models in follow-up studies. In addition, a preliminary
dissection of the molecular mechanisms and potential subtypes of
SeDGs was conducted through GSEA pathway enrichment analysis
and clustering analysis. This provided theoretical guidance for the
targeted treatment of SeALAR.

Although this study initially constructed a characteristic
molecular model for identifying SeALAR patients based on
multiple sets of GEO data and cross-validated with multiple
machine learning algorithms, there are still several non-negligible
limitations. First, all the samples were obtained from two public
databases, GSE10474 and GSE32707, with relatively limited sample
sizes and possible bias of regions, populations, or sampling
platforms. This limits the broad applicability of the findings to
some extent. Second, although the internal performance of the
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FIGURE 8

Molecular subtyping analysis based on sepsis is a systemic inflammatory response syndrome that predisposes to severe lung infections (SeALAR)
signature genes. (A) The results of the consensus clustering analysis showed that patients with sepsis could be stably classified into two molecular
subtypes (Cluster 1 and Cluster 2) at the number of clusters K = 2. The consensus matrix heat map in the figure shows the consistency of clustering
between samples. (B) Principal component analysis (PCA) further validated the above clustering results, showing that the characteristic genes can
clearly distinguish patients into two subtypes [gene clusters A and B) with good discriminatory ability. (C) Heatmap demonstrating the expression
distribution of nine characteristic genes (EXT1, FTH1, FEM1B, PTGDS, PTPRC, PI3, CDKN1A, CD19, PINK1) in different subtypes (A vs. B) as well as in
different groups (Se vs. Se/ARDS), with the sample source (GSE10474 vs. GSE32707) and the typing categories. Red color indicates high gene
expression and blue color indicates low expression.

prediction model was evaluated by calibration curve and decision
curve analysis (DCA), it has not been validated in external
multicenter or real-world independent clinical cohorts, and the
ability of model of clinical dissemination and generalization still
needs to be further tested. Third, the functional inference of
differential genes mainly relies on gene set enrichment analysis
and signaling pathway annotation, which still lacks experimental
evidence at the cellular and animal levels, and thus still needs
to be strengthened in mechanism explanation. Fourth, although

two molecular subtypes of SeALAR have been successfully
identified based on the characterized genes, the differences in
clinical phenotype, immune characteristics, disease progression,
and therapeutic response between the different subtypes have not
been systematically investigated, and the significance of subtyping
in precision diagnosis and treatment needs to be further clarified.

To overcome the above deficiencies, future studies can be
advanced in the following directions: (1) introduce large-scale,
multicenter, and more heterogeneous clinical samples for external
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validation, and systematically assess the stability, accuracy, and
application value of the risk model in different clinical settings;
(2) combine the in vitro functional experiments (such as gene
knockdown or overexpression) and in vivo animal models to
further validate the specific role and regulatory mechanism of key
SeDGs in the SeALAR development; (3) based on the current
molecular subtyping, we will explore the differences in immune
cell infiltration characteristics, inflammatory factor levels, disease
severity, response to interventions, and survival and prognosis
of patients with various subtypes, and establish a more clinically
instructive subtyping system; and (4) we will integrate the
single-cell transcriptomics, proteomics and metabolomics data
dynamically and depict the immune microenvironmental changes
and signaling pathway remodeling process in SeALAR from a
multi-dimensional perspective, providing a solid foundation for
the validation of molecular markers and the optimization of target
intervention strategies.

In addition, it is worthwhile to further explore the integration of
the genetic risk model proposed in this study with existing clinical
scoring systems (e.g., SOFA, qSOFA, or APACHE II) to construct
a joint prediction model. This can enhance the support of early
identification and individualized treatment decision-making for
SeALAR patients. If the rapid detection of SeDGs can be realized
by combining qPCR or ELISA in the future, it is also expected to
promote its translational application to bedside diagnostic tools.

In summary, this study provides a new idea and methodological
framework for the molecular mechanism analysis and risk
prediction of SeALAR. Through continuous improvement in the
biological validation system with larger sample size and higher
resolution, we are expected to further promote the translational
application of SeDGs in the early identification, clinical typing, and
targeted intervention of sepsis-associated ARDS, and to provide
a more solid theoretical foundation and practical pathway for
precision diagnosis and treatment.
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