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Background: The goal of early detection is individual cancer prediction. For lung

cancer (LC), age and smoking history are the primary criteria for annual low-dose

CT screening, leaving other populations at risk of being overlooked. Machine

learning (ML) is a promising method to identify complex patterns in the data that

can reveal personalized disease predictors.

Methods: An ML-based model was used on blood test data collected before

the diagnosis of LC, and sociodemographic factors such as age and gender

among LC patients and controls were incorporated to predict the risk for future

LC diagnosis.

Results: In addition to age and gender, we identified 22 blood tests that

contributed to the model. For the entire study population, the ML model

predicted LC with an accuracy of 71.2%, a sensitivity of 63%, and a positive

predictive value of 67.2%. Higher accuracy was found among women than men

(71.8 vs. 70.8) and among never smokers than smokers (73.6 vs. 70.1%). Age was

the most significant contributor (13.6%), followed by red blood cell distribution

(5.1%), creatinine (5%), gender (3.6%), and mean corpuscular hemoglobin (3.3%).

A majority of the blood tests made a highly variable contribution to the complex

ML model; however, some tests, such as red cell distribution width, mean

corpuscular hemoglobin, prothrombin time, hematocrit, urea, and calcium,

contributed slightly more to a dichotomous prediction.

Conclusion: Blood tests can be used in the proposed ML model to predict LC.

More studies are needed in basic science fields to identify possible explanations

between specific blood results and LC prediction.
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Introduction

According to the World Health Organization (WHO), lung cancer (LC) is the leading

cause of cancer-related death worldwide, with 1.2 million global deaths a year (1). The

main risk factors for LC are age and smoking (2). In general, the goal of screening tests is

to reduce mortality through early detection and effective treatment, as symptoms typically

manifest during advanced stages (2).
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The U.S. Preventive Services Task Force (USPSTF) currently

recommends annual chest low-dose computed tomography

(LDCT) for individuals aged 50–80 years who have a smoking

history of at least 20 pack-years and who are either current smokers

or have quit within the last 15 years all three criteria must be

met (3). Recently, the American Cancer Society (ACS) published

updated recommendations for LC screening criteria using chest

LDCT. The new recommendations eliminate the criterion of

having quit smoking within the last 15 years (4).

Nevertheless, current LC screening recommendations outlined

by leading organizations such as the National Comprehensive

Cancer Network (NCCN) and U.S. Preventive Services Task Force

(USPSTF) do not target specific populations with lower risk factors,

such as never smokers, light smokers, and passive smokers. These

special populations need specific recommendations, which are

lacking. For example, a recent report by the ACS highlighted the

concerning, unclear trend of a higher LC incidence among women

aged 35 to 54 years than among men in the same age group—a

reversal of the historically higher burden in men (5).

Furthermore, the rate of eligible individuals performing the

screening program is reported to be low. For example, a systematic

review andmeta-analysis conducted in the United States found that

annual screening using LDCT after the baseline scan is very low,

ranging from 44 to 66% (6). Several recent studies have reported

similar low adherence rates, ranging from 41 to 63% (7–9).

The use of tumor marker results, such as carcinoembryonic

antigen (CEA), in the diagnosis of LC remains unreliable due to

the markers’ relatively low levels of specificity and sensitivity (10).

To date, no blood test can serve as a marker for LC screening.

While the combination of additional laboratory indicators

holds promise for improving the diagnostic efficiency of LC

markers, the complex nature of the data poses a challenge in

identification (11). As an example, in early-stage non-small cell

lung cancer (NSCLC), the utility of neuron-specific enolase (NSE),

CA125, and squamous cell carcinoma antigen (SCC) was found

to be limited, even when these three markers were used in

combination (12). In a systematic review, the value of “old”

laboratory tests, such as calcium, albumin, or other proteins, and

blood cell counts, was evaluated as prognostic factors in LC (13).

Abbreviations: ACS, American Cancer Society; AI, artificial intelligence; AUC,

area under the receiver operating characteristic curve; ApoA2, apolipoprotein

A2; BUN, blood urea nitrogen; CEA, carcinoembryonic antigen; CHS,

Clalit Health Services; DFS, disease-free survival; EMR, electronic medical

records; HCC, hepatocellular carcinoma; HCT, hematocrit; HE4, human

epidermal growth factor 4; HMO, Health Maintenance Organization; IRB,

Institutional Review Board; MCH, mean corpuscular hemoglobin; ML,

machine learning; LDCT, low-dose computed tomography; LC, lung cancer;

NELSON, NEderlands Leuvens longkanker Screenings ONderzoek; NCCN,

National Comprehensive Cancer Network; NLR, neutrophil/lymphocyte

ratio; NSCLC, non-small cell lung cancer; NSE, neuron-specific enolase;

OS, overall survival; PCC, Pearson’s correlation coe�cient; PPV, positive

predictive value; PT, prothrombin time; RDW, red blood cell distribution; ROC,

receiver operating characteristic; SCC, squamous cell carcinoma antigen;

USPSTF, US Preventive Services Task Force; sVCAM-1, soluble Vascular

cell adhesion molecule-1; WBC, white blood cell; WHO, World Health

Organization.

One way to address the limitations associated with LDCT

screening is to utilize artificial intelligence (AI)-based models. For

example, machine learning (ML), a branch of AI, can analyze

large amounts of data in electronic medical records (EMRs)

and identify complex patterns in them that serve as the basis

for a wide range of clinical decisions (14, 15). Rule-based AI

systems have demonstrated varying degrees of clinical efficacy in

addressing various aspects of LC, including diagnosis, treatment,

and prognosis (11). Incorporating AI into LC imaging analysis

can enhance the precision of LC screening, reduce analysis time,

and enhance the overall efficiency of clinicians (16). For instance,

Lazebnik et al. developed a clinical model to forecast the spatial

dissemination of LC metastasis, with an accuracy rate of 74% (17).

Since blood tests are intensively used in both inpatient and

community settings, they may provide important information

concerning cancer risk. Although a single blood test result may

not predict cancer risk, the complex interactions between multiple

tests can be explored by AI, which may shed light on this domain.

Therefore, using blood tests in an AI model can potentially stratify

patients’ individual risk of LC.With the use of AI, the integration of

tumor markers with inflammatory or metabolic markers has been

found to be a reliable strategy for diagnosing LC (18). In a previous

study, the combination of human epidermal growth factor 4 (HE4),

apolipoprotein A2 (ApoA2), sarcosine (TTR), and vascular cell

adhesion molecule-1 (sVCAM-1), in conjunction with CEA, had

an area under the receiver operating characteristic curve (AUC) of

0.98, with a sensitivity of 93% and specificity of 92% (18).

Furthermore, recently, in a large study, an AI model based

on the EMRs of subjects with a positive fecal occult blood test

identified subjects withmore than twice the risk of colorectal cancer

compared to a fecal occult blood test alone (19).

Recently, the International Association for the Study of Lung

Cancer (IASLC) published a roadmap for LC screening that

emphasizes the need to identify individuals who have never smoked

but are at high risk for developing LC (20). One of the priorities for

the coming years, according to the IASLC, is to integrate AI and

biomarkers to improve the prediction of malignancy in suspicious

CT screen-detected lesions.

The objective of this study is to design an ML-driven decision-

making model that utilizes blood tests in patients with high

and low risk for LC to evaluate individual risk for LC. Our

hypothesis is that using blood tests in an AImodel could predict the

individual risk of LC. In the future, personalized recommendations

for chest LDCT screening using AI and blood tests could be

developed. We have designed this article in accordance with the

Transparent Reporting of a multivariable prediction or diagnosis

model (TRIPOD) reporting checklist.

Methods

This retrospective study is based on the EMRs of patients in

’Clalit Health Services’ (CHS), the largest publicly funded Health

Maintenance Organization (HMO) in Israel, which is responsible

for ∼50% of the Israeli population. The inclusion criteria were

adults (men and women) aged 35 years and older who underwent

chest CT scans at a medical center or a clinic connected to the

picture archiving and communication system (PACS) of the CHS
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between 1 January 2005 and 31 December 2022. We excluded

patients who were diagnosed with cancer other than LC before

undergoing the CT scan.

The study group included patients with chest CT scans

performed up to∼5.5 years before the LC diagnosis. Similarly, their

blood tests were also collected during the same period. For each LC

patient, the control group included two matched participants who

were randomly matched by a computer program according to age

(by year of birth), gender, and smoking status (never smokers vs.

those with any type of smoking history) who were not diagnosed

with LC. Information regarding smoking status was recorded by the

primary physicians. The patients were interviewed by physicians at

least once during the study period. The study population included

patients who underwent chest CT scans up to ∼5.5 years before

a diagnosis of LC. Patients in the control group who were not

alive in the year their matched patients were diagnosed with LC

were excluded.

For this study, we extracted all blood test results from the EMRs.

Then, we grouped together the same blood tests with different

names/abbreviations and converted different results in different

units to a uniform value. The specific blood test result of an LC

patient was matched to a control patient based on gender and age

at the time of the blood test.

The study was approved by the Institutional Review Board

(IRB) of the Meir Medical Center, Kfar-Saba, Israel (approval

no. 0079-21-COM1).

Statistical analysis

Comparisons between the groups were made using t-tests

for continuous variables and chi-squared tests for categorical

variables. The statistical analysis was conducted using the Python

programming language (version 3.7.5) (21).

Artificial intelligence model

To develop and analyze the ability to predict LC from these

data, we first divided the dataset into training and validation

cohorts, with the former comprising 80% of the data and the latter

comprising the remaining 20%. We ensured that the training and

testing data were statistically significantly similar in terms of the

sociodemographic variables using a two-sided t-test (p < 0.05),

while also maintaining the proportion of case-to-control samples

in both cohorts within a 3% difference.

Based on these data, we used an exclusive ML pipeline. For

the feature selection part, we used the top-K method, taking into

account the most frequent features, such that k= 24 was found for

features present in at least 2% of the population (22). Notably, the

exact value of the 2% threshold was obtained via a trial-and-error

approach aiming to maximize the F1-score of the obtained model.

To this end, we also attempted principal component analysis (PCA)

with multiple dimensions (ranging from 2 to 40) (23), forward

selection (24), and backward elimination (25), which resulted in

significantly worse results. We did not identify outliers for this

cohort. As the data were encoded for the 24 features, lack of tests

was represented by a null value (not a zero value), since imputation

presents challenges with the current data due to its extreme sparsity

TABLE 1 Characteristics of the study population.

Total
(n=4,076)

Lung
cancer

(n=1,428)

Without
lung

cancer
(n=2,648)

p-Value

Age

Mean (SD) 69.51 (10.5) 69.63 (10.5) 69.44 (10.5) 0.58

Gender

Male (%) 2,475 (60.7%) 876 (61.3%) 1,599 (60.4%) 0.55

Smoking status

Never (%) 1,212 (29.7%) 371 (26.0%) 841 (31.8%) <0.001

Past or

current

(%)

2,864 (70.3%) 1,057 (74.0%) 1,807 (68.2%)

in several features, where even the majority of patients lack data

(26). Next, for the MLmodel itself, we used the CatBoost algorithm

with hyperparameter optimization obtained using the grid-search

method, optimizing the model’s accuracy on the training cohort.

Moreover, we used the SAT-based post-pruning method (27) on

the model to improve its generalization capabilities. We chose

CatBoost, as identified through an extensive search using TPOT (an

automated Machine Learning tool) (28). CatBoost is well-suited for

this task due to its robustness in terms of performance with limited

hyperparameter tuning (29, 30), which can be useful in the clinical

domain prone to concept drift (31); CatBoost’s ability to handle

missing values (i.e., nulls) out-of-the-box (32) is critical due to the

extremely sparse nature of the data.

To explore the obtained model’s decision-making process, we

evaluated the importance, using the information gain method (33),

of each model’s parameters to learn the clinical reasoning revealed

by the model.

Moreover, we compared the performance of the obtained

model with three baseline models: a decision tree (DT) (34), a

histogram-based gradient boosting model (HGBT) (35), and an

XGboost model (36).

Results

Of the 4,094 patients, 18 patients were excluded due to a lack

of smoking history. The final study population consisted of 4,076

patients, with 1,428 (35%) LC patients and 2,648 (65%) matched

patients in the control group (Table 1). The LC group had a higher

proportion of patients with a positive history of smoking (current

or past) compared to the control group (74 vs. 68%, respectively, p

< 0.0001). Age and gender were similar between the two groups.

Blood tests on an artificial model

The performance of the AI model is represented in Table 2.

For the entire study population, the validation cohort exhibited an

accuracy of 71.2%, a recall (sensitivity) of 63%, a precision (positive

predictive value; PPV) of 67.2%, a specificity of 77.2%, an F1-score

of 65.1%, and an AUC of 78.7%. Women in the validation cohort
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TABLE 2 Performance of machine learning models including gender and smoking status analysis.

Accuracy Recall∗ Precision# F1-score Specificity AUCx

All 71.2% 63.0% 67.2% 65.0% 77.2% 78.7%

Gender

Females 71.8% 64.5% 62.1% 72.5% 77.5% 79.8%

Males 70.8% 68.7% 66.3% 64.1% 77.0% 78.0%

Smoking status

Past or current 70.1% 62.2% 68.4% 65.1% 74.3% 79.1%

Never-smokers 73.6% 65.3% 64.8% 65.0% 70.8% 78.4%

∗Sensitivity.
#Positive predictive value.
xArea under the receiver operating characteristic curve.

FIGURE 1

Area under the receiver operating characteristic curve of the

obtained model.

showed slightly better performance than men, with an accuracy of

71.8 vs. 70.8%, respectively, a sensitivity of 64.5 vs. 62.1%, a PPV of

68.7 vs. 66.3%, an F1-score of 66.5 vs. 64.1%, a specificity of 77.5

vs. 77.0%, and an AUC of 79.7 vs. 78.0%. Never smokers in the

validation cohort showed better performance than smokers in that

cohort, with an accuracy of 73.6 vs. 70.1%, a sensitivity of 65.3 vs.

62.2%, but a lower PPV of 64.8 vs. 68.4%, an F1-score of 66.3 vs.

65.1%, a specificity of 77.1 vs. 76.6%, and an AUC of 79.5 vs. 78.2%,

respectively.

Figure 1 shows the receiver operating characteristic (ROC)

curve of the obtained model for the entire study population and

the two subpopulations according to gender and smoking status.

The 95% confidence interval (CI) of the obtained model’s AUC

was found to be between 78 and 79% with a Youden’s J index of

0.41. Similarly, the 95% CIs of the obtained models’ AUC for the

gender-specific models were found to be 77%−79% and 79%−81%

for men and women, respectively, with corresponding Youden’s

J indexes of 0.40 and 0.43. Smokers and non-smokers showed

almost identical results, with 95% CIs of the obtained models’ AUC

being 77%−79% and 80%−82%, respectively, with corresponding

Youden’s J indexes of 0.39 and 0.45, respectively.

Figure 2 outlines a calibration plot (also called a reliability

diagram), which illustrates how well the obtained model’s predicted

probabilities reflect actual outcomes. In Figure 2, the obtained

calibration line is close to the diagonal line, which indicates that the

obtained model is satisfactorily well-calibrated. Specifically, at low

probabilities, themodel slightly underestimates risk, while at higher

probabilities, it slightly overestimates risk, which is a common

artifact of machine learning models (37).

Figure 3 shows the mean contribution (importance) of each

parameter to the AI model. Apart from age and gender, we found

22 blood tests that significantly contribute to the AI model. Age was

the most significant contributor (13.6%), followed by the red blood

cell distribution width (RDW) (5.1%), creatinine (5%), gender

(3.6%), and mean corpuscular hemoglobin (MCH) (3.3%). As the

obtained model presents promising performance, we explored its

decision-making process.

Consequently, Figure 4 is a Shapley Additive Explanation

(SHAP) in which each test result (parameter) is represented by its

contribution to the model. For each parameter, the x-axis indicates

its contribution to the LC risk, where values above 0 increase the

risk and values below 0 reduce the risk linearly. The tests’ results are

organized with lower contribution importance to the model from

top to bottom. For each test, the redder the color, the higher the

value relative to the mean of that specific test result, and the bluer

the color, the lower the value.

For gender, the red color represents women, and the blue color

represents men. As mentioned above (Figure 3), age was identified

as the most important parameter for the model. However, the

SHAP distribution of this parameter reveals inconsistent behavior.

As such, its effect in this age-matched group was not found to

be strongly associated with LC, but rather diluted across the

model. The RDW contributed the second most to the mode, with

lower values from the mean indicating a possible relation to a

lower risk of LC, while higher values potentially indicating an

increased risk.

For creatinine, lower values were not found to be associated

with LC risk; however, higher values did not contribute to the

risk. Women were found to be associated with a lower risk of

LC in contrast to men. For MCH and calcium, higher and lower

values were found to be potentially related to increased and

decreased LC risk, respectively. On the other hand, for urea and

prothrombin time (PT) (seconds), higher and lower levels were
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FIGURE 2

Calibration graph of the obtained model. The gray-dotted line indicates a perfect calibration. (a) The overall population. (b) Divided into genders. (c)

Divided into smokers and non-smokers.

FIGURE 3

Mean contribution (importance) of each parameter to the AI model. abs, absolute; Eos, eosinophiles; GGT, gamma-glutamyl transferase; HCT,

hematocrit; HDW, hemoglobin distribution width; Lymph, lymphocyte; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MPV,

mean platelet volume; Neut, neutrophil; PLT, platelets; PT, prothrombin time; RBC, red blood cells; RDW, red blood cell distribution width; sec;

second; WBC, white blood cells.
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FIGURE 4

Shapley Additive Explanations (SHAP). abs, absolute; Eos, eosinophiles; GGT, gamma-glutamyl transferase; HCT, hematocrit; HDW, hemoglobin

distribution width; Lymph, lymphocyte; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MPV, mean platelet volume; Neut,

neutrophil; PLT, platelets; PT, prothrombin time; RBC, red blood cells; RDW, red blood cell distribution width; sec; second; WBC, white blood cells.

found to be potentially associated with decreased and increased LC

risk, respectively.

Higher white blood cell (WBC) counts were found to be

potentially associated with an increased risk of LC, particularly

concerning higher lymphocyte counts; however, lower levels

of neutrophils may be associated with a reduced risk. Higher

hematocrit (HCT) values were found to be related to an increased

risk of LC, while higher levels of magnesium were found to be

associated with a reduced risk. For the remaining blood tests, in

the majority of cases, lower levels were not found to alter the risk

for LC, while increased levels may signal either a higher or lower

LC risk.

Discussion

In this study, we evaluated the performance of a unique ML

algorithm in predicting lung cancer (LC) and identifying the most

prominent laboratory tests for forecasting LC. The overall accuracy

for LC prediction was 71.2%, with an AUC of 78.7%, while the

best accuracy was 73.6% among the never-smoker group, with

an AUC of 78.4%. This finding could be partially explained by

the matching in smoking backgrounds between the LC group

and the control group. On the other hand, it is possible that the

never-smoker group reflects biogenetic traits associated with cancer

risk other than smoking-related effects on blood tests. Genetics

and/or other environmental factors, other than smoking, could

affect both blood test results and LC risk. These changes could be

better demonstrated without smoking consequences. Among∼600

laboratory test analyses, we identified 24 main indices contributing

to the predictive model.

In a study that compared different risk prediction models

utilizing known risk factors for LC, the PLCOm2012 model (which

uses age, race, education, body mass index, COPD, personal history

of cancer, family history of lung cancer, smoking status, smoking
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duration, smoking intensity, and years since cessation) was found

to best predict LC risk with an AUC of 77%, a sensitivity of

83%, and a specificity of 62.5% (38). In our model, the AUC was

slightly higher than that of the PLCOm2012 model (78.7%) and

higher than that of the National Lung Screening Trial (NLST)

inclusion criteria model, in which the AUC was 68%. However, in

our study, the sensitivity was lower (63%), and the specificity was

higher than that of the PLCOm2012 and the NLST models (77.2

vs. 62.5% and 62.2%, respectively) (39). Since, to the best of our

knowledge, there are no existing models that use multiple blood

tests for LC prediction, our study is a pioneering effort to explore

this field. Further studies need to be performed in larger and more

diverse populations before incorporating blood tests into other

traditional models and expanding them to include non-smokers

and female populations.

Age, as expected, was identified as the most important

parameter of the model. However, the SHAP distribution of this

parameter reveals inconsistent behavior. Consequently, in this

matched group, the effect of age (along with smoking behavior and

gender) was found to be rather diluted across the model.

It is important to emphasize that, when we talk about lower

or higher levels, we are not referring to values below or above

normal ranges, but rather to values that are relatively lower or

higher compared to the average of the study population. Moreover,

by definition, AI models are very complex as they capture high-

dimensional, non-linear correlations between all parameters. For

some patients, these correlations indicate that high levels of

one parameter could increase the risk of LC, given the results

of the other parameter. In contrast, for other patients, lower

levels of a different parameter could increase the risk. For this

reason, some parameters in the proposed model appear to behave

chaotically, with both higher and lower levels potentially increasing

or decreasing the risk.

Hematologic parameters

The RDWmade the second-highest contribution to the model,

with values lower than the mean being potentially associated with

a lower risk of LC and higher values indicating an increased

risk. A growing body of research supports RDW as a potential

biomarker for both the diagnosis and prognosis of various

malignancies (40, 41). Song et al. (40) reported a significant

increase in RDW among NSCLC patients, enabling discrimination

of NSCLC patients from healthy participants with a specificity

of 76% and a sensitivity of 76%. A potential explanation is that

high RDW has been demonstrated to be an independent risk

factor for poorer prognosis in non-elderly patients with esophageal

cancer, but not in elderly patients with esophageal cancer, in

whom other comorbidities could lead to elevated RDW values

(42). Nevertheless, it is noteworthy that, after adjusting for other

hematological and inflammatory factors, RDW frequently ceased to

exhibit a significant association with cancer risk and mortality (41),

suggesting that the association between RDW and cancer primarily

reflects the involvement of RDW in inflammation and oxidative

stress, which are, in fact, risk factors for cancer (41, 43).

Other red blood cell parameters that have been shown to

influence LC prediction in this study are MCH and HCT. For

MCH, higher values may be associated with an increased risk of

LC, and lower values may be associated with a lower risk. Zhang

et al. (44) found that MCH levels before treatment could serve

as a predictive marker linked to disease-free survival (DFS) in

breast cancer, as patients in the higher MCH group exhibited

shorter DFS times than those in the lower MCH group. In another

study, in patients with hepatocellular carcinoma (HCC), MCH

was independently associated with overall survival (OS) and, as

such, may be valuable in evaluating the prognosis of patients who

undergo hepatectomy (45).

In this study, elevated levels of HCTwere found to be associated

with an increased risk of LC. A possible explanation could be the

high prevalence of smoking among LC patients, which may raise

HCT levels.

In this study, lower PT in seconds was found to be potentially

associated with an increased risk of LC, while higher levels were

associated with a lower risk. Previous studies demonstrated that

∼50% of cancer patients and up to 90% of those with metastatic

disease have abnormal clotting tests. These tests may show a mild

extension or shortening of PT or activated partial thromboplastin

time, and increased levels of fibrinogen (46). Therefore, the higher

risk of LC may be explained by a hypercoagulable state associated

with lower PT levels.

In this study, elevated WBC counts with higher absolute

lymphocytes and, in some patients, lower absolute neutrophil

counts were found to be potentially associated with an increased

risk of LC. Reduction in neutrophil counts was also found in

another study as a marker for LC diagnosis (47). On the other hand,

according to Sahin the neutrophil/lymphocyte ratio (NLR) is higher

in LC patients, aiding in the diagnosis and detection of late-stage

disease (48).

Biochemistry parameters

In this study, high serum calcium levels were associated with

a higher LC risk, while lower levels were associated with a lower

risk. A possible explanation for this observation is that elevated

calcium values may indicate advanced disease with bone metastases

or paraneoplastic syndrome. Thus, since the stage of the disease

was unknown in this study, we could not verify this observation.

It is plausible that patients with low calcium levels may be cancer-

free. Moreover, according to an observational study published in

2021, calcium concentration is an independent risk factor for brain

metastasis prediction in NSCLC patients (49).

Higher creatinine levels were found to be potentially associated

with either lower or higher LC risk, while lower levels were found

to either increase or decrease the risk. To the best of our knowledge,

there is currently no association between low creatinine levels

and LC incidence. On the other hand, an impressive dichotomous

distribution was found for urea (fifth in model importance),

in which higher urea levels were associated with decreased LC

risk, and had the highest impact (long left arm) among all the

other parameters. In addition, lower levels slightly but consistently

reduced the degree of risk. This interesting finding aligns with a

recent large study that reported a lower incidence and mortality

rate among patients with high serum urea levels for several

solid cancers, especially stomach, esophageal, and LC (50). The

authors of that study suggested that excessive urea can cause

differences in DNA damage (e.g., breakage of chromosome 3p but
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not chromosome 3q), gene regulation, and alterations in urea cycle

metabolites. Conversely, in a small study by Chang et al., a model

was proposed for LC risk assessment in which the higher the blood

urea nitrogen (BUN) levels, the greater the risk of LC (51). Further

studies are needed to explore this highly complex field.

The findings of our study have several limitations. Although, as

a retrospective study, there was a massive amount of information

from the EMR, significant heterogeneity in the data collected

in the past and its timing influenced the ML results. Since this

study only analyzed blood tests with respect to age, gender, and

smoking habits, other confounding factors, such as comorbidities,

drug use, and socioeconomic factors, were not measured. In

addition, data concerning smoking were incomplete. Information

on smoking quantity was lacking for many patients, was not dated

in all cases relative to the LC diagnosis, and was not collected

frequently enough for the entire study population. In addition, the

lack of data on tumor histologic subtypes and stages is another

shortcoming of our research. Furthermore, since we used an ML-

based modeling approach in this study, the explainability of the

CatBoost model was limited and did not provide much clinical

insight. Finally, the study’s cohort was only based on Israeli data,

which may introduce cultural, ethnic, environmental, and clinical

practices biases and could not be fully generalized. Future research

may address these limitations by collecting data from multiple

international centers and using causality models. Furthermore,

integrating blood test analysis with other EMR components, such

as AI LDCT analysis, comorbidities, drug use, and demographic

parameters, could increase model accuracy and sensitivity in

future studies.

In conclusion, the proposed AI model demonstrates good

predictive capability, achieving 71.2% accuracy in the validation

cohort for LC using only blood test results. Notably, the

model demonstrated better accuracy (73.6%) for never smokers

compared to smokers (70.1%). In addition, basic science studies

were conducted to shed light on and provide explanations

regarding the connections between the specific blood results

and LC. Further studies should be conducted to validate

these results.
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