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Introduction: Affecting millions of individuals worldwide, epilepsy is a neurological 
condition marked by repeated convulsions. Monitoring brain activity and identifying 
seizures depends much on electroencephalography (EEG). An essential step that 
may help clinicians identify and treat epileptic seizures is the differentiation between 
epileptic and non-epileptic signals by use of epileptic seizure detection categorization.

Methods: In this work, we investigated Machine learning algorithms including 
Random Forest, Gradient Boosting, and K-Nearest Neighbors, alongside advanced DL 
architectures such as Long Short-Term Memory networks and Long-term Recurrent 
Convolutional Networks for detecting epileptic seizures in terms of difficulties and 
procedures evolved depending on EEG data. The EEG data classification by applying 
ML and DL framework to improve the accuracy of seizure detection. The EEG 
dataset consisted of 102 patients (55 seizure and 47 non-seizure cases), and the 
data underwent comprehensive preprocessing, including noise removal, frequency 
band extraction, and data balancing using SMOTE to address class imbalance. Key 
features, including delta, theta, alpha, beta, and gamma bands, as well as spectral 
entropy, were extracted to aid in the classification process.

Results: A comparative analysis was conducted, resulting in high classification 
accuracy, with the Random Forest model achieving the best results at 99.9% 
accuracy.

Discussion: The study demonstrates the potential of EEG data for reliable 
seizure detection while emphasizing the need for further development of more 
practical and non-invasive monitoring systems for real-world applications.
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1 Introduction

Epilepsy is a neurological condition that affects neurons in the brain. In many instances, 
epilepsy may not be curable, but it can be managed and controlled with proper care. This 
involves taking essential steps to ensure patients’ safety, especially in situations in which they 
might be driving, cooking, or simply being at home. With effective monitoring, patients can 
feel more confident in their daily activities, knowing that help is available when needed. This 
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can minimize potential harm and reduce their dependence on others. 
This highlights the significance of proper management in epilepsy.

Epilepsy, a neurological condition, is recognized as a widespread 
issue that poses a significant risk to human life. Global statistics from 
the World Health Organization (WHO) indicate that around 50 
million people worldwide are affected by epilepsy, establishing it as 
one of the most prevalent neurological diseases globally. Epilepsy 
affects individuals of all genders, including males and females, and it 
is also observed in children (1). Epilepsy refers to a neurological 
condition in which there are irregular disruptions in the usual 
functioning of the brain. These disruptions lead to seizures, which can 
differ in duration and effect from one individual to another. Seizures 
may be brief and go unnoticed or affect specific body parts or the 
entire body, occasionally resulting in unconsciousness.

Epilepsy can arise from acquired neurological insults (2) (e.g., 
oxygen deprivation, head trauma, and strokes) that damage brain 
tissue and disrupt normal electrical functioning. Genetic mutations 
affecting ion channels, neurotransmitters, and neural transmission 
can also predispose individuals to chronic seizures. Elucidating these 
precipitating factors enables better prevention and treatment of 
epilepsy. EEG is a non-invasive diagnostic tool that captures the 
electrical activity generated by brain neurons. Given the multi-channel 
signals from scalp electrodes and the necessity for long-term 
recordings, advanced signal processing methods have become 
indispensable for EEG-based detection (3).

A critical component of managing epilepsy is seizure detection, 
which involves categorizing EEG signals into seizure or non-seizure 
classes. This process is facilitated by identifying prominent features 
within the EEG signals. An important step in reducing the human and 
monetary costs of uncontrolled epilepsy is the development of 
methods for more precise seizure detection (4). According to Van de 
Vel et al. (5), beyond the pursuit of epilepsy treatment options, there 
is an increasing recognition of the need for effective epilepsy 
management strategies to enhance patient and caregiver quality of life. 
Non-EEG-based seizure detection technologies are receiving growing 
research attention due to their potential to improve care quality, peace 
of mind, and independence. A comprehensive literature review was 
carried out, and discussions were held with manufacturers of 
commercially available devices to gain further insights. The reported 
performance of non-EEG-based seizure detection devices showed a 
wide range of sensitivity, from as low as 2.2%–100%. In terms of false 
detections per hour, the range was 0–3.23 when compared with the 
gold standard of video-EEG. This underscores the varying reliability 
of these devices and the need for further research and development in 
this field.

EEG signals are prone to human error and are impractical for 
continuous monitoring. While automated systems leveraging machine 
learning and deep learning have shown promise, significant challenges 
hinder their widespread adoption in the real world.

Data Limitations EEG datasets often suffer from class imbalance, 
with far fewer seizure events than non-seizure data, leading models to 
overlook critical seizure patterns. Signal Complexity: EEG signals are 
inherently noisy, contaminated by artifacts from muscle movements, 
eye blinks, or environmental interference, complicating feature 
extraction. Computational Trade-offs: Deep Learning (DL) models 
(e.g., CNNs, LSTMs, transfer learning in DL, GRU, and transformers) 
excel at automatic feature learning but require substantial 
computational resources, making them unsuitable for low-power 

wearable devices (5). Conversely, traditional ML models, while 
efficient, rely on manual feature engineering, which risks missing 
subtle seizure signatures. Generalizability: Many algorithms perform 
well on controlled datasets but falter with patient-specific variability 
or ambulatory recordings.

This study aims to explore the potential of EEG data classification 
using machine learning techniques to enhance seizure detection. 
We conducted extensive preprocessing of the EEG data, including noise 
filtering, frequency band extraction, and data balancing, to ensure 
robust feature extraction and to improve model performance. By 
evaluating the effectiveness of different machine learning models, this 
work contributes to the growing body of research aimed at developing 
more accurate and efficient tools for epilepsy management. 
Furthermore, we emphasize the need for non-invasive, user-friendly 
monitoring systems that can complement EEG-based detection in real-
world clinical applications. The main contributions of the article include 
a robust preprocessing pipeline combining noise filtering, frequency 
band extraction, and SMOTE-based class balancing, coupled with a 
comparative analysis of five models: Random Forest (RF), Gradient 
Boosting, KNN, LSTM, and LRCN. The RF classifier achieves state-of-
the-art accuracy (99.9%). The paper is structured as follows: Section 2 
reviews existing methodologies, Section 3 details the proposed 
framework, Section 4 presents empirical results and comparisons, and 
Section 5 concludes with clinical implications and future directions.

2 Literature review

Over 50 million individuals throughout the world are afflicted with 
epilepsy, a neurological disorder. Seizures that cannot be controlled 
occur repeatedly. To improve medical results and quality of life for 
epileptic patients, it is essential to monitor and diagnose seizures in a 
timely manner. Seizures may be quickly and accurately diagnosed using 
EEG data, which records the brain’s electrical activity. On the other hand, 
patients may find it obtrusive and complicated gear is usually required.

Recent years have seen tremendous growth in the area of epileptic 
seizure identification using EEG data, merit to the use of several ML 
and DL approaches. This literature review examines 23 studies that 
have contributed to this domain, categorizing them based on their 
methodological approaches, datasets used, and the specific aspects of 
seizure detection they address. The studies are grouped into four main 
categories: Traditional ML Approaches, DL Methods, Hybrid and 
Novel Approaches, and Comparative Studies and Reviews.

2.1 Traditional machine learning approach

Several studies have employed traditional ML techniques for 
seizure detection and classification, often focusing on feature 
extraction and selection methods. Fergus et  al. (6) proposed a 
supervised ML method using the real dataset, achieving a sensitivity 
and specificity of 88%. This study demonstrated the potential of 
traditional ML methods in creating generalizable seizure detection 
models. Raghu et al. (7) presented a model that is computationally 
efficient by using a new feature known as a successive decomposition 
index. The system was evaluated using three different databases. 
Authors proposed support vector machine (SVM) classifiers, they 
achieved high sensitivity (95.80–97.53%) and low false detection rates 
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(0.4–0.57/h) across all datasets. The use of multiple datasets in this 
study provided robust validation of their approach, highlighting the 
importance of diverse data in developing reliable seizure detection 
methods. Rani et al. (8) developed SVM approach for classifying a 
peak signal EEG signal. The system was used dataset that collected 
from Bonn University dataset. The SVM model achieved a remarkable 
99.60% accuracy rate and a low error rate of 0.039. Almustafa (9) 
conducted a comprehensive comparison of various ML. These studies 
have demonstrated the continued relevance and effectiveness of 
traditional ML approaches in seizure detection, particularly when 
combined with innovative feature extraction methods. The high 
accuracies achieved by these methods suggest that they remain 
competitive with more complex DL approaches in certain scenarios.

2.2 Deep learning method

Due to automatically learn essential characteristics from raw EEG 
data, DL approaches have improved seizure detection accuracy and 
resilience. Liu et al. (10) created a hybrid bilinear DL network using 
CNNs and RNNs, model was scored 97.4% on the Temple University 
Hospital Seizure Corpus and 97.2% on EPILEPSIAE, demonstrating 
the power of neural network architectural composition. This research 
showed that CNNs, which excel in spatial feature extraction, and RNNs, 
which capture temporal relationships in EEG data, work well together.

The linear graph convolution network (LGCN) introduced by 
Zhao et al. (11) uses spatial interactions in EEG data using a Pearson 
correlation matrix to identify seizures. This novel method showed 
graph-based neural networks could capture intricate spatial correlations 
between EEG channels. Gabeff et al. (12) used the REPO2MSE cohort 
of scalp-EEG recordings from 568 epilepsy patients to construct a 
CNN-based model for online seizure identification. For clinical 
applications, online detection is key. This work addressed it. Chou et al. 
(13) tested four CNN architectures for video-EEG data analysis and 
found that their best model had 97.7% ictal stage accuracy. This work 
showed that CNNs can interpret multimodal data for seizure detection, 
indicating that adding visual information to EEG signals may improve 
detection. A 3D CNN-based automated epilepsy detection method by 
Sun and Chen (14) was very accurate. Their method used CNNs’ three-
dimensionality to collect EEG signals’ spatial and temporal properties. 
This research proved the generalizability of their 3D-CNN-based 
technique by performing well across numerous datasets. Kunekar et al. 
(15) employed LSTM networks to identify seizures with 97% validation 
accuracy on the UCI-Epileptic Seizure Recognition dataset. It is 
observed that LSTM outperformed traditional algorithms in accuracy 
and precision. This work showed that RNNs can identify seizures by 
recording EEG data temporal dynamics. These DL methods 
demonstrate automated feature learning and complicated, high-
dimensional EEG data processing. High accuracies across datasets 
show DL seizure detection technologies are getting more dependable.

2.3 Hybrid and novel approaches

Several studies have proposed innovative methods that combine 
different techniques or introduce novel concepts to improve seizure 
detection, often addressing specific challenges in the field or exploring 
unconventional approaches.

Bandarabadi et al. (16) presented a statistical methodology for 
selecting the preictal period, which serves as an indicator of seizure 
predictability. This study was used EGG recordings from 18 patients, 
provided insights into optimizing preictal periods for more precise 
classification models. This study contributed to the important area of 
seizure prediction, which has implications for early intervention and 
improved patient care.

Mert and Akan (3) introduced novel EEG analysis methodologies 
that achieved accuracy rates as high as 97.89%, demonstrating the 
potential of innovative signal-processing techniques in seizure 
detection. While the specific details of their approach were not 
provided in the summary, the high accuracy achieved suggests that 
there is still room for improvement in EEG signal analysis techniques.

Brari and Belghith (17) developed a machine learning framework 
leveraging chaos and fractal theories. Their approach, which included 
reconstructing EEG signals and extracting the Hurst fractal 
dimensions, achieved 100% accuracy on the Bonn EEG database using 
a small number of features and a linear classifier. This study highlighted 
the potential of applying concepts from complex systems theory to 
EEG analysis, offering a novel perspective on seizure detection.

Shah et al. (18) combined RNNs with a discrete wavelet transform 
for seizure detection. This hybrid approach demonstrated the benefits 
of combining wavelet-based feature extraction with the modeling 
capabilities of random neural networks.

Kantipudi et  al. (19) presented an advanced complex Neural 
Network. This complex approach achieved an overall detection 
performance of 99.6% with a high F-measure (99%) and G-mean 
(98.9%). The study showed the potential of combining multiple 
advanced techniques, including bio-inspired optimization and 
specialized neural network architectures.

Ein Shoka et al. (20) introduced CNN model to classify EEG data 
using chaotic maps for addressing the crucial aspect of data privacy in 
medical applications while maintaining high classification 
performance. This study addressed the important issue of privacy 
preservation in medical data analysis, which is becoming increasingly 
relevant in the era of big data and interconnected healthcare systems.

Zeng et al. (21) applied a method that integrates deep and shallow 
learning techniques. The combined approach used a deep neural 
network for feature extraction, followed by PCA for dimensionality 
reduction and shallow classifiers for final classification, achieving 
nearly 100% accuracy on the Bonn dataset. This hybrid approach 
leveraged the strengths of both deep and traditional machine learning 
methods, demonstrating the potential benefits of such integrations.

These hybrid and novel approaches demonstrate the potential for 
significant improvements in seizure detection by combining different 
techniques or introducing innovative concepts. They often address 
specific challenges in the field, such as privacy preservation, 
computational efficiency, or the need for more interpretable models.

2.4 Comparative studies and reviews

Several studies have focused on comparing different methods or 
providing comprehensive reviews of the field, offering valuable 
insights into the relative performance of various approaches and 
highlighting areas for future research.

Bhandari et al. (22) introduced a comparative study in which 
seven raters reviewed EEG sharp. Their results showed that certain 
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criteria in sensor space and source space analysis could achieve 
accuracy rates comparable to expert scoring, providing insights into 
the effectiveness of different EEG analysis methods. Singh and Kaur 
(23) designed a neural network classifiers and nonlinear EEG features, 
demonstrating high accuracy and AUC. Their study provided a 
comparison point for the effectiveness of nonlinear feature extraction 
in seizure detection and highlighted the importance of feature 
engineering in machine learning approaches.

Polat and Nour (24) proposed a hybrid method for seizure 
detection and classification and compared different SVM kernels and 
normalization techniques. Their study, which achieved accuracies of 
76.70%–82.50%, showed the effects of preprocessing and classifier 
selection on detection performance. This study underscored the 
importance of careful parameter tuning and preprocessing in 
achieving optimal performance with traditional machine 
learning methods.

Farooq et al. (25) conducted a systematic literature review of ML 
techniques for seizure detection. Their review identified common 
feature extraction methods and classifiers, created a taxonomy of 
state-of-the-art solutions, and highlighted research gaps and 
challenges. This comprehensive review provided a valuable overview 
of the field, insights into trends, and directions for future research.

Hamlin et al. (26) explored the use of non-cerebral sensor data for 
seizure detection and compared the effectiveness of different sensor 
types and features. Their study, which achieved a mean ROC value of 
0.9682, suggested the potential of multimodal approaches in 
improving seizure detection accuracy. This study opened up new 
possibilities for seizure detection by incorporating data from sensors 
beyond traditional EEG, potentially leading to more robust and 
versatile detection systems.

These comparative studies and reviews provide valuable insights 
into the relative performance of different methods and highlight areas 
for future research. They offer a broader perspective on the field and 
help researchers and practitioners understand the strengths and 
limitations of various approaches.

2.5 EEG datasets review

Epilepsy research and seizure detection have greatly benefited 
from the availability of diverse and comprehensive EEG datasets. This 
section provides review all type of datasets utilized in recent studies 
on epilepsy classification and seizure detection. These datasets vary in 
size, patient population, and recording methods.

2.5.1 CHB-MIT dataset
The CHB-MIT dataset has been widely used in several studies for 

seizure detection and classification. Fergus et al. (6) employed this 
dataset in their supervised machine learning approach, achieving 88% 
sensitivity and specificity. Raghu et al. (7) utilized SVM classifiers on 
this dataset, resulting in 97.28% sensitivity and a false detection rate 
of 0.57/h. Zhao et al. (11) implemented a Linear Graph Convolution 
Network (LGCN) on the CHB-MIT data, achieving impressive results 
with 99.30% accuracy, 98.82% specificity, and 99.43% sensitivity. Shah 
et al. (18) combined Random Neural Networks (RNN) with Discrete 
Wavelet Transform (DWT) on this dataset, achieving 93.27% accuracy. 
Sun and Chen (14) also used this dataset in their 3D-CNN approach, 

reporting high accuracy, although the specific value was not provided 
in the summary.

2.5.2 Bonn University dataset
The Bonn University dataset has been the foundation for several 

innovative approaches in seizure detection. Rani and Chellam (8) 
achieved a remarkable 99.60% accuracy using their Peak Signal 
Features (PSF) method combined with an SVM classifier on this 
dataset. Brari and Belghith (17) applied concepts from chaos and 
fractal theories to the Bonn dataset, achieving 100% accuracy. (18), in 
addition to their work on the CHB-MIT dataset, also used the Bonn 
dataset, achieving an even higher accuracy of 99.84% with their RNN 
and DWT combination. Zeng et al. (21) employed a hybrid approach 
combining deep and shallow learning techniques on this dataset, 
reporting nearly 100% accuracy.

2.5.3 Temple University Hospital (TUH) dataset
The TUH dataset has been utilized in studies employing various 

ML and DL techniques. Liu et al. (10) achieved a 97.4% F1-score on 
this dataset using their hybrid bilinear DL network. Raghu et al. (7), 
as part of their multi-dataset study, applied SVM classifiers to the 
TUH data, achieving 95.80% sensitivity and a false detection rate of 
0.49/h. Sun and Chen (14) included the TUH dataset in their 3D-CNN 
study, reporting high accuracy, although the specific value for this 
dataset was not provided in the summary.

2.5.4 EPILEPSIAE dataset
The EPILEPSIAE dataset was used by Liu et  al. (10) in their 

comprehensive study employing a hybrid bilinear deep learning 
network. On this dataset, their approach achieved a 97.2% F1-score, 
demonstrating the effectiveness of their method across 
different datasets.

2.5.5 UCI-epileptic seizure recognition dataset
Kunekar et al. (15) utilized the UCI-Epileptic Seizure Recognition 

dataset in their study focusing on LSTM networks for seizure 
detection. Their approach achieved a validation accuracy of 97% on 
this dataset, highlighting the potential of recurrent neural networks in 
capturing the temporal dynamics of EEG signals for seizure detection.

2.5.6 REPO2MSE dataset
Gabeff et al. (12) used the REPO2MSE dataset, which consists of 

scalp-EEG recordings from 568 epilepsy patients, to develop their 
CNN-based model for online epileptic seizure detection. Table 1 given 
highlight the importance of standardized, publicly available datasets 
in advancing seizure detection research.

2.6 Conclusion of the EEG section review

The reviewed studies demonstrate significant progress in seizure 
classification and detection based on EEG signals. Traditional machine 
learning approaches continue to show effectiveness, particularly when 
combined with innovative feature extraction methods. The studies of 
Fergus et al. (6), Raghu et al. (7), and Rani and Chellam (8) show the 
potential of these methods when applied with careful feature 
engineering and selection.

https://doi.org/10.3389/fmed.2025.1577474
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Al-Adhaileh et al. 10.3389/fmed.2025.1577474

Frontiers in Medicine 05 frontiersin.org

Deep learning techniques, especially CNNs and LSTMs, have 
demonstrated remarkable performance in automatically learning 
relevant features from raw EEG data. Liu et al. (10), Zhao et al. (11), 
and Sun and Chen (14) revealed the power of these approaches in 
capturing complex spatial and temporal patterns in EEG signals. The 
high accuracies achieved by these methods across various datasets 
suggest that they are becoming increasingly reliable for seizure 
detection tasks.

Hybrid and novel approaches, such as those leveraging Brari and 
Belghith’s chaos theory (17), fractal dimensions, and Zhao et al. (11) 
graph neural networks have shown promise in improving detection 
accuracy and addressing specific challenges in the field. These 
innovative methods often combine the strengths of different 
approaches or introduce new concepts from other domains, pushing 
the boundaries of what is possible in seizure detection.

The integration of multiple data sources and sensor types, as seen 
in Hamlin et al.’s study (26), suggests promising directions for more 
robust seizure detection systems. This multimodal approach could 
lead to detection systems that are less prone to false positives and more 
adaptable to different patient populations.

Comparative studies and reviews, such as those by Kural et al. 
(22) and Farooq et  al. (25), provide valuable insights into the 
relative performance of different methods and highlight areas for 
future research. These studies help contextualize individual 
research efforts within the broader landscape of seizure 
detection techniques.

However, challenges remain in terms of generalizability across 
different datasets and patient populations, as well as in reducing false-
positive rates and detection delays. The need for larger, more diverse 
datasets and standardized evaluation metrics is evident from the 
literature. Many studies use different datasets and evaluation metrics, 
making direct comparisons challenging. Table 2 reviews studies on 
EEG-based seizure detection by summarizing the methodologies, 
technologies, and results of various research efforts and focusing on 
the effectiveness and accuracy of EEG applications in 
detecting seizures.

Figure 1 illustrates a summary of the EEG classification results. It 
provides a visual representation of how different EEG signals have 
been classified and shows the accuracy and performance of the 
classification model. It presents the various metrics and comparisons, 

helping to understand the effectiveness of the approach used to 
distinguish between different brain wave patterns.

3 Methodology

The proposed system is being investigated using a real EGG 
dataset. Various algorithms were employed to enhance the existing 
methods for modeling and detecting seizure diseases. This research 
presents a detailed overview of the training and validation 
methodologies employed for the RF, GB, LSTM, and LRCN models. 
The outlined method structures the approach employed to identify 
seizures through EEG data, as illustrated in Figure 2.

3.1 EEG dataset acquisition

EEG data were collected from a group of patients who had 
continuous video-EEG monitoring for an extended duration at two 
medical institutions in Denmark: Aarhus University Hospital and the 
Danish Epilepsy Center in Dianalund (22). The data collection period 
was from January 2012 to September 2017. During the diagnostic 
evaluation phase, sharp transients were initially identified and marked. 
Subsequently, two authors conducted a comprehensive review of these 
marked transients. Through collaborative analysis, a consensus was 
established among the experts, confirming the initial marking as a 
sharp transient, regardless of its manifestation of epileptiform 
characteristics. This selected sharp transient was then subjected to 
further evaluation to ensure compliance with the predetermined 
selection criterion. In the dataset, there were 100 files in the European 
Data Format (EDF), comprising data from 55 epileptic patients and 
47 non-epileptic patients of different ages and genders. On December 
18, 2017, the dataset that was used for this research was recorded. A 
sample rate of 500 Hz was used to get the EEG data, since this is the 
industry standard for collecting the important frequency content in 
EEG signals. The raw data was further processed using a 250 Hz 
low-pass filter. The EEG recording system employed in this study 
comprised 26 channels, enabling the simultaneous measurement of 
brain activity from multiple scalp locations. Table 3 outlines the EEG 
dataset content and features, such as the number of patients and class.

TABLE 1 Summary of EEG datasets.

Studies Dataset Description

Fergus et al. (6), Raghu et al. (7), Zhao et al. 

(11), Sun and Chen (14), and Shah et al. (18)

CHB-MIT Scalp EEG data from 23 pediatric subjects with intractable seizures, recorded at the Children’s 

Hospital Boston. Contains 686 h of EEG recordings.

Rani et al. (8), Brari and Belghith (17), Shah 

et al. (18), and Zeng et al. (21)

Bonn University Consists of 5 subsets (Z, O, N, F, S) each containing 100 single-channel EEG segments of 23.6-s 

duration. Sets Z and O are from healthy subjects, N and F from seizure-free intervals, and S 

contains seizure activity.

Raghu et al. (7), Liu et al. (10), and Sun and 

Chen (14)

Temple University 

Hospital (TUH)

Large-scale dataset of clinical EEG recordings from Temple University Hospital. Contains over 

30,000 EEG records from more than 16,000 patients.

Liu et al. (10) EPILEPSIAE European database of long-term EEG data from epilepsy patients. Contains both scalp and 

intracranial EEG recordings.

Kunekar et al. (15) UCI-Epileptic Seizure 

Recognition

Dataset from UCI Machine Learning Repository, containing 11,500 EEG recordings, each 1 s 

long, classified into 5 categories.

Gabeff et al. (12) REPO2MSE Cohort of scalp-EEG recordings from 568 epilepsy patients. Specific details not provided in the 

summary.
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TABLE 2 A review of studies of EEG-based seizure detection.

Study Data Preprocessing Models/Algorithms Results

Liu et al. (10) Temple University, 

EPILEPSIAE dataset

exploit the frequency (STFT), analysis 

data

Hybrid bilinear deep learning 

network (CNNs + RNNs)

F1-score: 97.4%

Fergus et al. (6) CHB-MIT dataset Simple, filter, features extraction k-NN, SVM, NN, DT Sensitivity 88%, AUC: 93%

Mert and Akan (3) Various EEG recordings Digitalize, filter, Normalize frequency Novel EEG analysis methods Accuracy: 97.89%

Raghu et al. (7) Ramaiah Medical College, 

CHB-MIT

Feature extraction (SDI) SVM Sensitivity: 97.53%

Bhandari et al. (22) 1,001 patients (video-EEG) 

EMG Data

Record, sample and filter the data Analysis of EEG sharp transients 92% Accuracy

Zhao et al. (11) CHB-MIT dataset Pearson correlation matrix Linear Graph Convolution 

Network (LGCN)

Accuracy: 99.30%, Sensitivity: 

99.43%

Rani et al. (8) Bonn University dataset Peak Signal Features (PSF) SVM, DT, KNN Accuracy up to 99.60% with SVM

Aayesha et al. (28) Bonn and CHB-MIT datasets Feature extraction KNN, FRNN Accuracy: up to 99.81%

Gabeff et al. (12) REPO2MSE cohort Simple, segment and split the data CNN F1-score: 0.873, 90% seizure 

detection

Brari and Belghith(17) Bonn EEG database EEG signal reconstruction Chaos and fractal theories Accuracy: 100%

Chou et al. (13) Video-EEG data Not specified Four CNN architectures 97.7% accuracy for ictal stage

Shah et al. (18) CHB-MIT, BONN datasets DWT RNN, ANN, SVM CHB-MIT: 93.27%, BONN: 

99.84%

Polat and Nour (24) Not specified Z-score, Minimum-Maximum, MAD 

normalizations

SVM (Linear, Cubic, Medium 

Gaussian)

76.70–82.50%

Kantipudi et al. (19) Not specified FLHF GBSO, TAENN 99.6%, F-measure: 99%, G-mean: 

98.9%

Almustafa (9) Not specified Not specified Random Forest, K-NN, Naïve 

Bayes, Logistic Regression, DT, 

Random Tree, J48, SGD

97% accuracy,

Kunekar et al. (15) UCI-Epileptic Seizure 

Recognition dataset

Not specified LSTM, Logistic Regression, SVM, 

KNN, ANN

97% Accuracy

Hamlin et al. (26) Data from 15 patients LDA Not specified Mean ROC: %96.8

Zeng et al. (21) Bonn dataset PCA CNN, shallow classifiers ~100% Accuracy

George et al. (29) KITS, TUH databases TQWT, entropies PSO, ANN KITS: 100%, TUH: 88.8–97.4% 

Accuracy

FIGURE 1

EEG classification result.
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3.2 Preprocessing

In the data preprocessing phase, the raw EEG data undergo 
filtering to extract the relevant frequency bands of interest. Specifically, 
the following frequency bands are extracted: alpha (8–12 Hz), beta 
(13–30 Hz), theta (4–7 Hz), and gamma (above 30 Hz). These 
frequency bands are commonly analyzed in EEG studies because of 
their associations with various cognitive and physiological processes. 
It is crucial to preprocess the EEG data appropriately to ensure the 
reliability and validity of subsequent analyses (27). The filtering step 
is essential for isolating the frequency bands of interest and 
minimizing the influence of irrelevant signal components or noise. 
The extraction of these specific frequency bands facilitates the 
investigation of their potential correlations with the cognitive or 
physiological processes under study, as shown in Figure 3.

3.2.1 Data labeling
In this process, we labelled all of the EEG recordings in the dataset 

according to the patient’s status. We used the numbers “1” to denote 
normal EEG data and the number “0” to denote seizures. While 
training, the classification algorithm benefits from this labeling as it 
allows it to differentiate between the two groups.

3.2.2 Data normalization
The EEG characteristics were on the same scale, we normalized 

the data. If you want to make sure that the learning process is not 
overloaded with features with out-of-range values, normalization is a 
must. Z-score normalization method was used for scaling the rows of 
EGG dataset.

3.2.3 Data cleaning
Initial data cleaning was performed to address any missing values 

within the features. The mean imputation technique was utilized, where 
missing values in any given feature were replaced with the mean value of 
that feature. This method was implemented using the SimpleImputer 
class from the sklearn.impute module, configured with strategy = ‘mean’. 
The transformation was applied to all feature columns, excluding the 
‘label’ column, which represents the target variable.

3.2.4 Data balancing using SMOTE
SMOTE technique used to address class imbalances in datasets. 

One step in processing SMOTE data is to use synthetic samples for 
the minority class. This ensures that the distribution of classes is 
balanced. The algorithm works by identifying the KNN for each 
minority class sample and creating new synthetic samples along 
the line segments that join the minority class sample and its 
neighbors. The synthetic samples are generated by randomly 
selecting one of the KNN and introducing a perturbation along the 
line segment joining the two samples. This approach was 
implemented using the SMOTE class from the imblearn. over_
sampling library with a random_state set for the reproducibility of 
results. The resampling process adjusted the dataset to ensure an 
equal representation of both classes, mitigating the potential effect 
of class imbalance on the subsequent analysis and modeling steps. 
Figure 4 illustrates the distribution of EEG data before and after 
applying SMOTE.

3.2.5 Data splitting
Two subsets, training and testing, were taken from the dataset. 

A data allocation of 80% for training and 20% for testing the machine 
learning model is known as an 80/20 split. By splitting the data in 
this way, we can train the model on one set of data and then evaluate 
it on another set, which stops overfitting and lets the 
model generalize.

3.2.6 Heatmap of amplitude differences
The profound complexities underlying epileptic seizures 

necessitate a multifaceted approach to elucidate their intricate 
mechanisms. The study presents a comprehensive spatiotemporal 
analysis of EEG data, leveraging the visual potency of heat maps to 

FIGURE 2

Proposed methodology for EEG data classification and seizure detection.

TABLE 3 EEG dataset content.

Class Number of patients

Normal 55

Seizure 47
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FIGURE 4

EEG data distribution before and after applying SMOTE.

delineate amplitude variations across cortical regions. By comparing 
seizure and non-seizure conditions, the proposed methodology 
quantifies the dynamic shifts in neural activity, transitioning 
seamlessly from negative to positive amplitude deviations through 
a “coolwarm” color palette. This graphical representation not only 
facilitates the localization of epileptogenic foci but also elucidates 
the propagation patterns of seizure activity, thereby contributing to 
a holistic understanding of the pathophysiological processes 
underlying this neurological disorder. As shown in Figure 5, the 
knowledge acquired from this study has great consequences for the 
formulation of focused treatment strategies and the progress of our 
understanding of the complex neural dynamics controlling 
seizure events.

3.2.7 Spectral analysis
This study used Fourier spectral analysis of EEG data to elucidate the 

frequency domain signatures that differentiate seizure and non-seizure 
neural dynamics in epilepsy. The spectral power distributions derived 
from these analyses revealed pronounced amplitudes across specific 
frequency bands during seizure activity, which is indicative of heightened 
neuronal synchronization. By contrast, the non-seizure condition 

exhibited reduced spectral power, reflecting normal neural oscillations. 
By characterizing these distinct frequency profiles, this work sheds light 
on the neurophysiological underpinnings of epileptic seizures and 
pathological hypersynchrony and paves the way for improved therapeutic 
interventions, as shown in Figure 6.

3.3 Feature extraction

This study analyzed the power spectral density (PSD) levels across 
different frequency bands to investigate the differences in neural activity 
between epileptic and non-epileptic patients. The epileptic patient 
exhibited distinct PSD levels compared with the non-epileptic patient, 
suggesting variations in their underlying neural activity patterns. The 
frequencies at which the difference in PSD between the two patients was 
statistically significant (p < 0.05) were identified, indicating that the 
observed differences in brain activity were unlikely due to chance. 
Significant differences at certain frequencies, such as increased power in 
the theta and gamma bands, could reveal specific brain activity patterns 
associated with epilepsy, including the presence of epileptic networks 
outside of seizure events. These findings contribute to a better 

FIGURE 3

EEG data preprocessing steps.
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understanding of the neurophysiological underpinnings of epilepsy and 
hold promise for improving diagnostic and monitoring techniques and 
for guiding more targeted interventions for the management of epilepsy, 
as shown in Figure 7.

In this section, several features were extracted from the EEG 
signals to enable the classification of epileptic and non-epileptic 
patients. These features capture different aspects of neural activity and 
provide valuable information for distinguishing between the two 
groups. The extracted features are as follows:

 • Delta

Usually covering 0.5 to 4 Hz, this function shows the PSD in the 
delta frequency region. Deep sleep phases are linked to delta waves, 
which are also well-known to be involved in many cognitive functions 
like memory and attention.

 • Theta

The theta feature corresponds to the PSD in the theta frequency 
band, which ranges from 4 to 8 Hz. Theta oscillations are linked to 

cognitive processes such as memory formation, spatial navigation, and 
emotional regulation.

 • Alpha

The alpha feature is derived from the PSD in the alpha frequency 
band, typically between 8 and 12 Hz. Alpha waves are prominent 
during relaxed wakefulness and are believed to play a role in attention 
and information processing.

 • Beta

This feature represents the PSD in the beta frequency band, 
ranging from 13 to 30 Hz.

 • Gamma

The gamma feature corresponds to the PSD in the gamma 
frequency band, which encompasses frequencies above 30 Hz. 
Gamma oscillations are involved in various cognitive functions, 
including perception, attention, and memory.

FIGURE 5

Heat map of amplitude differences.
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 • Spectral entropy

A estimate of the complexity or irregularity of the EEG signal, 
spectral entropy It may help to identify aberrant patterns of brain 
activity by providing details on the distribution of power across many 
frequency ranges.

The power spectral density (PSD) of gamma band (30 + Hz) 
emerged as the most discriminative feature, showing statistically 
significant amplitude increases during seizures (p < 0.05, Figure 7). 
This aligns with neurophysiological evidence linking high-frequency 
oscillations to epileptic hyperexcitability. The theta band (4–8 Hz) also 
demonstrated utility, though with marginally lower significance. 
Other bands (delta, alpha, and beta) contributed minimally, as their 
PSD distributions overlapped between seizure and non-seizure states.

Spectral entropy, quantifying signal irregularity, effectively 
captured abrupt changes in EEG complexity during seizures. It 
achieved a feature importance score of 0.180.18 in the Random Forest 
(RF) model, complementing gamma band analysis to reduce false 
positives caused by non-stationary noise.

Commonly utilized in EEG analysis, these characteristics have 
been shown to be useful in distinguishing and defining many brain 
states and disorders, including epilepsy. Table  4 summarizes the 
obtained characteristics; they will be  input for 
categorization techniques.

3.4 Modeling

In the classification stage, the EEG data was analyzed using four 
models: RF, GB, KNN, LSTM, and LRCN. The RF constructs multiple 
decision trees and uses majority voting for classification, well-suited 

for high-dimensional, nonlinear data like EEG signals. Gradient 
Boosting iteratively combines weak models to capture complex 
patterns. LSTM, a recurrent neural network variant, can learn long-
term dependencies in sequential data such as EEG for identifying 
seizure patterns. LRCN combines convolutional layers for spatial 
feature extraction with LSTM for temporal modeling, making it 
effective for seizure detection and classification from EEG recordings. 
The specific architectures of these diverse machine learning and deep 
learning models were previously detailed, Table  5 lists EEG 
classification models. Justifications for each model in the context of 
EMG data classification between normal and seizure cases:

3.4.1 Random Forest model
Random Forest Classifier excels in handling complex EMG data 

due to its ensemble nature. Combining many decision trees, each 
tuned on random selections of data and attributes, helps to detect 
complex trends in muscle activity signals. This approach is particularly 
effective for seizure detection, as it can identify subtle differences in 
EMG characteristics. The model’s feature importance ranking also 
provides insights into which aspects of the EMG signal are most 
predictive of seizures, aiding in both classification and 
physiological understanding.

3.4.2 Gradient boost model
Gradient Boosting is well-suited for EMG classification due to its 

sequential learning process. Approaches the building of a series of 
weak learners, generally decision trees, in a stage-by-stage manner, 
with the main aim of fixing errors generated by previous models. This 
approach allows it to capture fine-grained differences in EMG patterns 
between normal and seizure states. Gradient Boosting’s ability to 
handle non-linear relationships and its robustness to outliers make it 

FIGURE 6

Spectral analysis of EEG signals of seizure and non-seizure cases.
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effective in dealing with the variability often present in EMG data 
during seizures.

3.4.3 K-nearest neighbors model
The K-Nearest Neighbors model is valuable for EMG classification 

due to its non-parametric nature. It does not assume any specific 

distribution of the data, making it adaptable to the complex and often 
non-linear patterns in EMG signals during seizures. By classifying 
based on the majority class of nearby data points in the feature space, 
KNN can effectively capture local patterns in muscle activity. This 
local decision-making is particularly useful for identifying seizure-
related EMG characteristics that may vary across patients or types 
of seizures.

FIGURE 7

PSD for the alpha, beta, theta, and gamma bands between epileptic and non-epileptic patients.

TABLE 4 EEG extracted features summary.

Feature Description

Delta PSD in the delta frequency band (0.5–4 Hz)

Theta PSD in the theta frequency band (4–8 Hz)

Alpha PSD in the alpha frequency band (8–12 Hz)

Beta PSD in the beta frequency band (13–30 Hz)

Gamma PSD in the gamma frequency band (above 30 Hz)

Spectral entropy Measure of the complexity or irregularity of the EEG signal

TABLE 5 EEG classification models.

No Model

1 Random Forest Model

2 Gradient Boost Model

3 K-Nearest Neighbors Model

4 LSTM Model

5 LRCN Model
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3.4.4 LSTM model
Long Short-Term Memory networks can process sequential data 

and record long-term dependencies, they are especially appropriate 
for EMG data interpretation. EMG signals during seizures often 
exhibit temporal patterns that evolve over time. LSTM’s gating 
mechanism allows it to selectively remember or forget information, 
making it adept at identifying relevant temporal features in the EMG 
signal that distinguish seizure activity from normal muscle function. 
This temporal modeling capability is crucial for detecting the onset 
and progression of seizures in EMG data.

3.4.5 LRCN model
The LRCN combines the strengths of both CNNs and LSTMs, 

making it highly effective for EMG-based seizure detection. The CNN 
component excels at extracting spatial features from the EMG signal, 
potentially identifying characteristic frequency patterns or signal 
morphologies associated with seizures. The LSTM layer then processes 
these features sequentially, capturing the temporal evolution of muscle 
activity during seizure events. This dual approach allows LRCN to 
simultaneously analyze both the spatial and temporal aspects of EMG 
data, potentially leading to more accurate and robust seizure detection.

4 Results and discussion

In this subsection, we  explore the performance of EEG 
classification for seizure detection using four models: GB, RF, K-NN, 
LSTM, and LRCN. The objective was to assess and compare their 
effectiveness in identifying seizures from EEG data. The results are 
detailed in the accompanying tables and figures, which present the 
potential of these models in advancing neurological diagnostics. 
Table 5 outlines the EEG classification models.

4.1 Evaluation matrix

The ML and DL model were evaluated by using evaluation 
matrix. The Equations 1–5 of evaluation metrics can be defined 
as follows:
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4.2 Environment setup

All experiments were conducted on a laptop with the following 
specifications: Intel Core i7 processor, 16GB RAM, and an NVIDIA 
GeForce RTX 3070 GPU with 8GB VRAM. The software environment 
consisted of Python 3.9 running within Anaconda, with TensorFlow 
version 10.1.2 employed for deep learning tasks.

4.3 Results of the GB model

This work classified epileptic and non-epileptic patients using 
Gradient Boosting (GB) model depending on EEG features. With an 
accuracy of 0.750, a precision of 0.756, a recall of 0.743, an F1 score of 
0.749, and a ROC AUC score of 0.835 the model was able to 
differentiate between the two groups. With 51,964 true negatives, 
51,636 true positives, 16,701 false positives, and 17,850 false negatives, 
the confusion matrix as shown in Figure  8 further exposed the 
performance of the model. These findings show how well the model 
detects trends in EEG data; although there is potential for development 
in lowering misclassifications, especially in terms of false positives and 
false negatives, overall the model performs really well.

These results demonstrate the potential of the GB model in 
accurately classifying epileptic and non-epileptic patients while also 
highlighting areas for further improvement through feature 
engineering, hyperparameter tuning, or ensemble methods, as shown 
in Figure 9.

4.4 Results of the RF model

As shown in Figure 10, the RF model was used with EEG traits to 
divide people into epileptic and non-epileptic groups. With an 
accuracy of 0.999, a precision of 1.000, a recall of 0.998, an F1 score of 
0.991, and an ROC score of 1.000, the RF model showed 
extraordinary performance.

The confusion matrix revealed 68,631 true negatives, 69,358 true 
positives, 34 false positives, and 128 false negatives. These exceptional 
results demonstrate the efficacy of the RF model in accurately 
classifying epileptic and non-epileptic patients based on the extracted 
EEG features, although further validation on independent datasets 
may be necessary to ensure generalizability, as shown in Figure 11.

4.5 Results of the K-NN

Normal from epileptic EEG data were distinguished using a 
K-NN classifier. Assigning the class of a data point depending on 
the majority class of its “k” closest neighbors in the feature space, 
K-NN is a basic, non-parametric classification method. This work 
selected K-NN with (𝑘 = 5), therefore classifying every EEG sample 
according on the majority vote of its five closest neighbors in the 
feature space.
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The confusion matrix revealed that, out of the total predictions, 
65,924 were true negatives and 67,084 were true positives, indicating 
that the majority of the normal and seizure cases were correctly 
identified. However, there were also 2,879 false positives and 2,264 
false negatives, as shown in Figure 12.

The KNN model was shown scored with high accuracy (96.3%) 
indicates that the model correctly classified a substantial majority of 
the EEG signals. According the precision metric the KNN achieved 
95.9% suggests that the model has a low rate of false positives, while 
recall of 96.7% indicates a low rate of false negatives. The ROC score 
of 99.02% further validates the model’s excellent ability to distinguish 
between normal and seizure cases, as illustrated in Figure 13.

These results show that although the model is highly accurate, 
there are still instances of misclassification, which is an area for 
potential improvement.

4.6 Results of the LSTM model

In this experiment, classified epileptic and non-epileptic 
patients based on EEG signal characteristics using an LSTM 
neural network model. The LSTM model turned out with a 
0.9906 accuracy. Table 6 gives the LSTM model’s parameters. As 
shown in Figure 14 the confusion matrix indicated 68,190 true 

FIGURE 8

Confusion matrix of EEG data using the GB model.

FIGURE 9

ROC AUC score of EEG data using the GB model.

https://doi.org/10.3389/fmed.2025.1577474
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Al-Adhaileh et al. 10.3389/fmed.2025.1577474

Frontiers in Medicine 14 frontiersin.org

positives, 613 erroneous positives, 68,669 true negatives, and 679 
false negatives.

Using collected EEG data, the LSTM model showed remarkable 
accuracy of 99.06%, a precision of 99.12%, a recall of 99.02% and an 
F1 score of 99.07% for both epileptic and non-epileptic individuals. 
These findings demonstrate the great capacity of the model for 
precisely differentiating between the two classes, therefore stressing its 
possible uses in EEG-based diagnosis systems. Nevertheless, as 
Figure 15 shows, the LSTM was optimized and testing across EEG 

datasets and was shown the improvement in the generalizability of the 
model and guarantee its resilience in practical conditions.

4.7 Results of the LRCN model

Based on the features of the EEG data, this work categorized 
people as either epileptic or non-epileptic using an LRCN model. The 
LRCN model’s findings show that the accuracy was 0.9906; the 

FIGURE 10

Confusion matrix of EEG data using the RF model.

FIGURE 11

ROC AUC score of EEG data using the RF model.
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precision was 0.9912; the recall was 0.9902; the F1 score was 0.9907. 
LRCN model characteristics and values (see Table 7).

Strong performance in categorizing seizure and non-seizure 
episodes from EEG data reveals in the confusion matrix for the 
LRCN model. The model fairly identifies most instances with 
68,678 TP and 69,187 TN. Whereas (FP = 161) reveal minor 
misclassification of non-seizure events, false negatives (FN = 125) 
indicate a limited proportion of missed seizures. With low error, 
the high TP and TN values indicate outstanding sensitivity and 
accuracy, so the model is very dependable for monitoring epilepsy 
(see Figure 16).

These results demonstrate the potential of the LRCN model in 
accurately classifying epileptic and non-epileptic patients based on the 

extracted EEG features, although further optimization and 
generalizability testing may be required, as shown in Figure 17.

4.8 Summary of the experimental results of 
the EEG classification

With almost perfect accuracy, precision, recall, and F1 score, the RF 
model exceeded the other models based on the testing findings in 
Section 4.3. Closely matching the RF model, the deep learning models, 
LSTM and LRCN, also showed outstanding performance with using 
various evaluation metrics. Though it performed really well, the GB 
model had somewhat worse measures than the other versions. With 

FIGURE 12

Confusion matrix of EEG data using the K-NN model.

FIGURE 13

ROC AUC score of EEG data using the K-NN model.
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FIGURE 14

Confusion matrix of EEG data using the RF model.

regard to reliably categorizing epileptic and non-epileptic patients based 
on EEG signal characteristics, the RF, LSTM, and LRCN models shown 
overall better performance; the RF model ranked highest in this regard 
in this research. Table 8 and Figure 18 help to show the outcomes.

4.9 EEG monitoring for detecting seizure 
behavior comparative

With a variety of techniques producing encouraging results, the 
subject of seizure detection and classification based on EEG data has 
experienced major developments recently. This review of 23 studies, 
along with our own research, highlights the diversity of techniques 
being applied to this critical medical challenge.

Traditional machine learning approaches continue to demonstrate 
their effectiveness, particularly when combined with innovative 
feature extraction methods. For instance, Rani and Chellam (8) 
achieved 99.60% accuracy using their Peak Signal Features method 
with an SVM classifier on the Bonn University dataset. Similarly, 
Almustafa (9) achieved 97.08% accuracy using a Random Forest 
classifier. These results underscore the continued relevance of classical 
machine learning techniques when applied with careful 
feature engineering.

Deep learning methods have shown remarkable performance in 
automatically learning relevant features from raw EEG data. Liu et al. 
(10) achieved a 97.4% F1-score using a hybrid bilinear deep learning 
network on the Temple University Hospital dataset, while Zhao et al. 
(11) reached 99.30% accuracy with a Linear Graph Convolution 
Network on the CHB-MIT dataset. These results demonstrate the 
power of deep learning in capturing complex patterns in EEG signals 
without the need for extensive feature engineering.

Hybrid and novel approaches have also yielded impressive results. 
Brari and Belghith (17) achieved 100% accuracy on the Bonn 
University dataset using a framework leveraging chaos and fractal 
theories. Kantipudi et al. (19) reported 99.6% detection performance 
with their complex model integrating wavelet-based filtering, 
bio-inspired optimization, and a specialized neural network. These 
innovative approaches show the potential for pushing the boundaries 
of seizure detection performance.

Our study, which achieved 99.9% accuracy using a Random Forest 
Classifier on a standard online dataset, aligns with and even surpasses 
many of the high-performing methods in the literature. This result 
underscores the potential of ensemble methods like Random Forest 
when applied to well-preprocessed EEG data.

The variability in datasets used across studies presents a challenge 
in directly comparing results. While some datasets like CHB-MIT and 
Bonn University are frequently used, allowing for some comparison, 
differences in preprocessing, feature extraction, and evaluation 
metrics can still make direct comparisons difficult. This highlights the 

TABLE 6 LSTM model parameters using EEG data.

Parameter Details

LSTM Layer 1,024

LSTM Layer 512, (BatchNormalization ())

LSTM Layer 256

Dense Lyer 34

Dense Lyer 1

Activation Function (Output Layer) sigmoid

Optimizer RMSprop

Learning Rate 0.001

Callback EarlyStopping

Patience for No Improvement 

(EarlyStopping)

5 epochs

Epoch Training Stopped At 67 epochs

Maximum Epochs 150 epochs

Batch Size 1,024
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need for standardized benchmarks and evaluation protocols in 
the field.

It’s noteworthy that while many studies report very high accuracies 
(>99%), real-world performance may differ due to factors such as 

inter-patient variability, noise in clinical settings, and the challenge of 
detecting seizure onset rather than ongoing seizure activity. Future 
research should focus on validating these high-performing models in 
diverse clinical settings and on larger patient populations.

The trend towards multimodal approaches, as seen in Hamlin 
et al. (26), and privacy-preserving methods, as in Ein Shoka et al. (20), 
points to future directions for the field. Integrating data from multiple 
sensor types and ensuring patient privacy will be  crucial for the 
widespread adoption of automated seizure detection systems in 
clinical practice.

While the study demonstrates high accuracy (99.9%) in seizure 
detection, translating these models to wearable devices faces critical 
hurdles. Computational efficiency demands significant processing 
power, conflicting with the resource constraints of wearables. Real-
time implementation requires low-latency pipelines, necessitating 
streamlined preprocessing and hardware-accelerated signal 
processing. Power consumption, patient-specific variability, and 
ambulatory noise (e.g., motion artifacts) further complicate reliability. 
Regulatory compliance, cost barriers, and the need for fail-safe 
mechanisms to minimize false alarms add layers of complexity. 
Addressing these challenges hinges on hardware sensor systems to 
balance accuracy with practicality for clinical adoption.

In conclusion, while significant progress has been made in seizure 
detection and classification, with our study contributing to the high-
performance benchmarks, there remains room for improvement in 
areas such as real-time detection, generalizability across patients, and 
interpretability of complex models. Future work should focus on these 

FIGURE 15

Accuracy and loss of EEG data using the LSTM model.

TABLE 7 LRCN model parameters using EEG data.

Parameter Details

ConvD1 filters = 64, kernel = 3, activation = ‘relu’

Custom Layer Max Pooling

LSTM Lyer 1,024

LSTM Layer 512

LSTM 128

Dense Lyer 1

Activation Function (Output Layer) sigmoid

Optimizer RMSprop

Learning Rate 0.001

Callback EarlyStopping

Patience for No Improvement 

(EarlyStopping)

5 epochs

Epoch Training Stopped At 69 epochs

Maximum Epochs 150 epochs

Batch Size 128
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FIGURE 16

Confusion matrix of EEG data using the LRCN model.

FIGURE 17

Accuracy and loss of EEG data using the LRCN model.
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challenges to bridge the gap between research performance and 
clinical applicability (see Table 9).

To contextualize the performance of our proposed framework, 
we provide a detailed comparison with recent state-of-the-art methods in 

EEG-based seizure detection. Table 10 summarizes key metrics, datasets, 
and methodologies, emphasizing the strengths of our approach.

Deploying EEG-based seizure detection in clinical settings faces 
computational and practical hurdles. While our Random Forest (RF) 

TABLE 8 EEG classification results summary.

Model Accuracy % Precision % Recall % F1 score %

GB 75.0 75.6 74.3 74.9

KNN 96.3 95.9 96.7 96.3

RFC 99.8 99.9 99.8 99.8

LSTM 99.0 99.1 99.0 99.0

LRCN 99.7 99.8 99.7 99.7

FIGURE 18

EEG classification results summary.

TABLE 9 EEG monitoring for detecting seizure behavior comparative.

Study Model Results

Our study Random forest classifier 99.9% accuracy

Liu et al. (10) Hybrid bilinear deep learning network 97.4% F1-score (TUH), 97.2% F1-score (EPILEPSIAE)

Fergus et al. (6) k-NN classifier 88% sensitivity and specificity

Raghu et al. (7) SVM with SDI feature 95.80–97.53% sensitivity, 0.4–0.57/h false detection rate

Rani and Chellam (8) SVM with Peak Signal Features 99.60% accuracy

Almustafa (9) Random Forest 97.08% accuracy

Zhao et al. (11) Linear Graph Convolution Network 99.30% accuracy

Gabeff et al. (12) CNN 0.873 F1-score, 90% seizure detection

Chou et al. (13) CNN (various architectures) 97.7% accuracy (best model)

Kunekar et al. (15) LSTM 97% validation accuracy

Mert and Akan (3) Novel EEG analysis methodologies 97.89% accuracy

Brari and Belghith (17) Chaos and fractal theory-based ML 100% accuracy

Shah et al. (18) Random Neural Networks with DWT 93.27% (CHB-MIT), 99.84% (Bonn) accuracy

Kantipudi et al. (19) FLHF, GBSO, and TAENN 99.6% detection performance

Zeng et al. (21) Hybrid deep and shallow learning Nearly 100% accuracy

Polat and Nour (24) SVM with various kernels 76.70–82.50% accuracy

Hamlin et al. (26) LDA with non-cerebral sensors 96% mean ROC value
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model achieves 99.9% accuracy with low latency (<10 ms) on CPUs, 
deep learning (DL) models like LSTM/LRCN require GPUs and exhibit 
higher latency (80–120 ms), limiting real-time use in wearables. 
Scalability and power constraints further favor RF, which processes 
100 + EEG streams efficiently (~2 W) compared to DL’s GPU-dependent 
demands (~150 W). Additionally, long-term EEG monitoring poses 
comfort challenges, as patients must wear sensor caps for extended 
periods—a barrier for ambulatory use but manageable for admitted 
patients under supervision. For hospitalized individuals, continuous 
EEG provides critical insights despite discomfort, enabling timely 
interventions. Future work must address hardware miniaturization (e.g., 
flexible, wireless electrodes) and hybrid models to balance accuracy, 
comfort, and regulatory compliance (e.g., IEC 62304). These steps are 
vital to translate lab advancements into bedside solutions.

5 Conclusion

This study demonstrates that EEG signals remain a robust source 
for epileptic seizure detection, with the RF classifier achieving a 
remarkable 99.9% accuracy. Although deep learning models, such as 
LSTM and LRCN, also performed well, the superior results of RF 
underscore the relevance of traditional machine learning approaches 
in clinical seizure detection. These findings indicate that RF offers a 
viable solution for practical EEG-based seizure monitoring due to its 
accuracy and generalizability. However, the practical challenges 
associated with continuous, long-term EEG monitoring necessitate 
further exploration of alternative non-invasive monitoring techniques. 
Future research should focus on reducing the number of electrodes 
required for EEG-based detection without compromising accuracy, 
investigate dry electrode technologies, and integrate EEG with other 
modalities, such as video and EMG, for more comprehensive seizure 
monitoring solutions. Moreover, addressing the challenges of real-time 
detection and generalizability across diverse patient populations 
remains paramount for the widespread clinical adoption of EEG-based 
seizure detection systems.
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