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Introduction: Despite advances in understanding the pathophysiology of rheumatoid 
arthritis (RA) and head and neck cancer (HNC) individually, their shared genetic 
and molecular mechanisms remain poorly defined.

Methods: This study aimed to explore gene-level connections between RA and HNC. 
A comprehensive literature mining approach identified gene–disease associations 
from PubMed and bioinformatics databases, covering 19,924 genes. An AI-driven 
computational pipeline applied the Adjusted Binomial Method Algorithm (ABMA) to 
assess association reliability. Overlapping genes were analyzed through protein–
protein interaction (PPI) networks, functional annotation, and literature-based 
pathway analyses to elucidate common and distinct mechanisms.

Results: The analysis identified 3,697 RA-related and 6,249 HNC-related genes, supported 
by 13,555 and 16,096 references, respectively, with a significant overlap of 2,549 
genes (OR = 7.52; p < 1 × 10−16). Statistical refinement yielded 224 significant RA genes 
and 421 significant HNC genes, including 35 overlapping genes (OR = 9.27; p = 1.63 
× 10−20), which formed a dense PPI network (206 edges; density = 0.17; clustering 
coefficient = 0.67). Seven key hub genes— TLR2, RAC1, RELA, CTSK, CDC42, CXCL11, 
and CYP2C19—emerged as central nodes in immune and inflammatory regulation. 
Functional enrichment analysis identified nine significantly enriched pathways or 
categories, including inflammatory response, chemotaxis, and the chemokine signaling 
pathway. Pathway analysis further revealed a bidirectional regulatory loop linking RA 
and HNC via five of these hub genes (RELA, CDC42, CTSK, CXCL11, and CYP2C19), 
which mediate feedback mechanisms in immune–inflammatory signaling.

Conclusion: These findings highlight robust immuno-inflammatory mechanisms 
that may serve as shared therapeutic targets for both conditions.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by joint 
inflammation, pain, swelling, and potential joint damage. It affects 0.5–1% of the global 
population, with a higher prevalence in women and typically presenting between ages 40 and 
60 (1). RA has a complex etiology involving non-modifiable risk factors—such as female sex, 
family history, and the HLA-DRB1 “shared epitope” genotype—and modifiable factors 
including cigarette smoking, which can increase RA risk two-to threefold, as well as obesity 
and silica exposure (1, 2).
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Head and neck cancer (HNC) encompasses malignancies arising 
in the oral cavity, pharynx, larynx, and related structures. Head and 
neck squamous cell carcinoma (HNSCC), which accounts for 
approximately 90% of all HNCs, is the seventh most common cancer 
worldwide, with an estimated 890,000 new cases and 450,000 deaths 
each year—representing about 4.5% of all global cancer diagnoses 
and deaths (3). In the United States, HNSCC constitutes around 3% 
of all cancers. Major risk factors include tobacco smoking and 
alcohol consumption, which together account for up to 90% of cases 
(4). Additionally, high-risk human papillomavirus (HPV) infection 
is a key driver of the increasing incidence of oropharyngeal cancers 
(5). Other contributing factors in certain populations include poor 
oral hygiene, betel quid chewing, and occupational exposures such 
as wood dust and formaldehyde (6). Emerging clinical and 
epidemiological data reveal a surprising comorbidity between RA 
and HNC, suggesting they share core molecular drivers of immune 
dysregulation and chronic inflammation (7, 8). Population studies 
report an elevated incidence of RA among HNC survivors—
particularly middle-aged men with oral cancer—underscoring a 
bidirectional risk that clinical factors alone cannot explain (8).

At the cellular level, both RA synoviocytes and cancer-associated 
fibroblasts undergo metabolic reprogramming, shifting toward 
glycolytic and lipid-utilization phenotypes that sustain inflammation 
and tissue remodeling (9, 10). These convergent pathways point to 
shared genetic susceptibilities—such as polymorphisms in cytokine 
signaling or antigen-presentation genes—that may predispose 
individuals to both autoimmunity and oncogenesis. Mapping these 
gene-level connections could therefore illuminate molecular crosstalk, 
identify cross-disease biomarkers, and guide the development of 
therapies targeting common inflammatory and cancer pathways.

In both RA and HNC, inflammation acts as a double-edged sword, 
driving autoimmune responses in the former and promoting tumor 
growth and metastasis in the latter. Mechanistic studies have 
highlighted shared processes such as immune checkpoint 
dysregulation, oxidative stress, and metabolic reprogramming. For 
instance, somatic mutations in STAT3, frequently associated with large 
granular lymphocyte leukemia in RA patients, have been implicated in 
cancer pathways (11). Moreover, the PD-1/PD-L1 immune checkpoint 
axis, a therapeutic target in cancer immunotherapy, also plays a role in 
modulating T-cell responses in RA (12). Genetic predispositions, such 
as those influencing alcohol metabolism, further illustrate the complex 
relationship between these conditions, as alcohol consumption is 
linked to a reduced risk of RA but an increased risk of HNC (13).

Despite advances in understanding the pathophysiology of RA and 
HNC individually, the shared genetic and molecular mechanisms 
linking these diseases remain poorly understood. This study aims to 
explore the genetic overlap between RA and HNC, including its major 
subtype oral squamous cell carcinoma (OSCC), by identifying significant 
shared genes, pathways, and hub genes using AI-driven literature 
mining, the Adjusted Binomial Method (ABM), and gene expression 
validation. We hypothesize that these overlapping genetic mechanisms 
contribute to the interconnected pathophysiology of RA and HNC/
OSCC, potentially revealing novel therapeutic targets. By investigating 
these shared pathways and gene networks through bioinformatics and 
network-based analyses, we  aim to provide new insights into the 
interplay between autoimmune inflammation and cancer, ultimately 
paving the way for innovative strategies to address both conditions.

Materials and methods

Study workflow

The workflow involved four main steps: (1) A comprehensive 
literature mining effort was undertaken to gather scientific reports 
identifying potential relationships between 19,924 genes and two 
diseases—Rheumatoid Arthritis (RA) and head and neck cancer 
(HNC). (2) An AI-driven computational approach was then applied 
to construct a relationship table, using the Adjusted Binomial Method 
Algorithm (ABMA) to evaluate the reliability of each gene-disease 
relationship; to control for false discoveries, a False Discovery Rate 
(FDR) correction was applied. (3) Gene lists associated with each of 
the two diseases were compared to identify unique and overlapping 
genes across RA and HNC. (4) For overlapping genes, functional 
pathway analysis, protein–protein interaction (PPI) analysis, and 
literature-based pathway analysis were performed to explore gene-
level connections among the three diseases.

Disease gene identification using 
literature-based mining

A comprehensive literature mining effort was conducted to 
identify potential relationships between whole-genome genes (19,924 
genes) and two diseases: RA, and HNC. This process involved using 
the Entrez API1 to retrieve disease-gene references from PubMed2 and 
the AIC Bioinformatics Toolbox (ABT) to gather data from the AIC 
Bioinformatics Database (ABD).3 Relevant reference information, 
including the title, publication date, PMID, DOI, abstract, and other 
details, was organized into an Excel worksheet for post-processing and 
further analysis. The Entrez Programming Utilities (E-utilities) are a 
set of server-side programs provided by the National Center for 
Biotechnology Information (NCBI). They offer a stable interface to the 
Entrez query and database system, allowing for programmatic access 
to various NCBI databases, including PubMed, Gene, and Protein. 
This facilitates automated retrieval of biomedical literature and data 
for large-scale analyses.4 The ABT is an AI-driven platform that 
leverages the AIC Bioinformatics Database (ABD) to extract and 
analyze data across various domains within biology and bioinformatics. 
It employs natural language processing methods to process literature 
from sources like PubMed, arXiv, and bioRxiv, enabling comprehensive 
literature mining and data integration (see text footnote 3).

AI-based relationship table construction

To construct a high-confidence table of gene–disease relationships, 
we  implemented a multi-stage, AI-driven extraction and quality 
control pipeline, developed in-house and based on the ChatGPT API 
(model GPT-4o). This system was designed to extract relevant 

1 http://www.ncbi.nlm.nih.gov/Entrez/

2 https://pubmed.ncbi.nlm.nih.gov

3 https://www.gousinfo.com/en/userguide.html

4 https://www.ncbi.nlm.nih.gov/books/NBK25501/?utm_

source=chatgpt.com
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biomedical relationships and assign confidence scores, directionality, 
and polarity. The process included the following key components:

 1 Information extraction and summarization

From each literature reference, the AI system extracted sentence-
level evidence involving co-occurrence of gene and disease terms. 
We  used a trained natural language processing (NLP) module to 
extract Subject–Predicate–Object triples describing the relationship.

 2 Polarity and direction assignment

For each extracted relationship, the predicate (action word or 
phrase) was compared against a manually curated dictionary of 
polarity-indicative keywords. For example:

Positive polarity: promotes, activates, induces, upregulates, enhances.
Negative polarity: inhibits, suppresses, downregulates, blocks.
The directionality was defined as Subject → Object, where the 

subject is the upstream regulator (often the gene) and the object is the 
downstream entity (e.g., a disease or another gene). For example, in 
the sentence “Gene A inhibits Disease B,” polarity is negative, and 
direction is Gene A → Disease B.

 3 ChatGPT API-based quality control

To ensure the accuracy of NLP-based polarity and direction 
assignments, we applied a secondary verification using the ChatGPT 
API. The model was instructed to evaluate the full abstract or sentence 
containing the candidate relationship and to confirm whether the 
extracted polarity and direction were consistent with the context. 
Discrepancies or ambiguous cases were flagged and either corrected 
or excluded from further analysis.

Adjusted binomial method algorithm

Following extraction, we evaluated the reliability of each gene–
disease relationship using the Adjusted Binomial Method Algorithm 
(ABMA). This statistical method considers literature support and 
polarity agreement across sources to score the confidence of each 
relationship. To reduce the risk of false discoveries, we applied a False 
Discovery Rate (FDR) correction, retaining only relationships with a 
q-value ≤ 0.01. This integrated approach enabled us to generate a refined 
set of gene–disease relationships that are statistically robust, biologically 
relevant, and suitable for downstream pathway and network analyses.

The Adjusted Binomial Method algorithm (ABMA) assesses the 
association between two entities, such as a gene and a disease, using 
an adjusted binomial test (scipy.stats).5 SciPy is an open-source 
Python library used for scientific and technical computing. The scipy.
stats module within SciPy offers a wide range of statistical functions, 
including the binomial test, which is used to assess the significance of 
observed frequencies against expected probabilities. This is 

5 https://docs.scipy.org/doc/scipy/reference/stats.html

particularly useful in evaluating the reliability of gene-disease 
associations identified through literature mining.6

This ABMA method considers the results of multiple different 
observations, including positive, negative, and inconclusive findings, 
and assesses the association between two entities by determining if the 
observed proportion of a dominant results (e.g., positive association) 
significantly differs from a hypothesized probability (p0). Here’s a 
breakdown of the statistical steps and equations involved:

Total observations calculation

To ensure a statistically sound evaluation of gene–disease 
associations derived from heterogeneous literature sources, 
we  calculated the total number of effective observations (N) by 
accounting for both reported and potentially missing studies. This step 
is essential because literature mining may yield varying levels of 
evidence (positive, negative, or unknown), and overlooking the 
possibility of publication bias or unreported findings could 
compromise the statistical inference. Incorporating an estimate for 
uncovered studies enhances the robustness of the Adjusted Binomial 
Method Algorithm (ABMA), especially in large-scale, text-mined 
datasets where data completeness cannot be guaranteed (14).

The total sample size N  is calculated using the following formula:

 = + + +0p n xN n n n n

Where, N represents the total effective sample size, pn , nn , and 0n  
represent the sample sizeof positive, negative, or unknown 
relationship, and xn  represent uncovered samples. To account for 
potential publications not identified through the initial search, we use 
an uncovered sample fraction factor α , which represents the ratio of 
uncovered to covered samples:

 ( )α= ∗ + + 0x p nn n n n

For this study, the fraction factor α  is set to 1. This choice is based 
on the assumption that PubMed and the ABD database together 
provide comprehensive coverage of bioinformatics and biology 
studies, capturing around 50% of publications in the field. Therefore, 
assuming uncovered samples to be at most equal to identified samples 
is a reasonable estimate.

H0 testing using adjusted binomial test

Null hypothesis (H0): The true proportion of dominant results is 
equal to p0.

Alternative hypothesis (H1): the true proportion of dominant 
results (e.g., positive associations) is greater than p0.

Decision rule: To evaluate the significance of a dominant 
relationship polarity (e.g., a positive association between a gene and 

6 https://scipy.org/
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disease), we use a one-tailed binomial test. The decision rule is as 
follows: if the computed p-value is less than or equal to the significance 
level (α = 0.05), we  reject the null hypothesis, indicating that the 
observed polarity is statistically dominant.

The p-value was calculated using the function below:

 ( ) ( )− = ≥ = −. 1, , 0p pp value P X n binom sf n N p

Where binom.sf is the survival function of the binomial distribution, 
np is the observed number of dominant polarity findings, N is the total 
number of adjusted observations, and p₀ is the null proportion.

To account for potential noise and ambiguity in the literature, 
we adjust the total number of observations using:

 ( )= ∗ + + 02 p nN n n n

With the number of dominant findings is then:

 = ∗, 2p adj pn n

The observed proportion of dominant findings is given by:

 
(= ∈ 

, 0.33,1 .p adj
obser

n
n

N

This range reflects the condition that the dominant polarity must 
occur more frequently than either of the other two polarity types. 
Based on this, we set the threshold p₀ = 0.34 to represent the minimum 
proportion needed for a polarity to be considered dominant under the 
alternative hypothesis.

Gene comparison across diseases

The gene lists associated with each of the two diseases—RA and 
HNC—were compared to identify unique and overlapping genes. 
Fisher’s exact test was used to assess the significance of the overlap, 
and a Venn diagram was employed for visualization. While 
we  compared both all disease-related genes and those that were 
statistically significant, our subsequent analysis will focus primarily 
on the genes showing statistical significance.

To further explore disease heterogeneity within head and neck 
cancer (HNC), we conducted an additional gene-level comparison 
between rheumatoid arthritis (RA) and oral squamous cell carcinoma 
(OSCC), a major subtype of HNC. The same literature-mining and 
statistical filtering pipeline was used. Significance of gene overlap was 
assessed using Fisher’s exact test (q ≤ 0.01), and the findings are 
presented in Supplementary Tables 1, 4.

Functional analysis of overlapping genes

For overlapping genes, functional annotation analysis was 
conducted to understand the roles of genes shared by the two 

diseases—RA and HNC. This analysis used the “Functional 
Annotation Tool” of Database for Annotation, Visualization, and 
Integrated Discovery (DAVID)7 to assess gene function across three 
gene ontologies (GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, 
and GOTERM_MF_DIRECT) and three pathways (BBID, 
BIOCARTA, and KEGG_PATHWAY). DAVID provides a 
comprehensive set of functional annotation tools for investigators to 
understand the biological meaning behind large lists of genes. It offers 
functionalities such as gene ontology enrichment analysis, pathway 
mapping, and clustering of functionally related genes.8

Additionally, a protein–protein interaction (PPI) analysis was 
performed to explore functional connections between these genes. 
The PPI network was constructed using experimentally validated or 
literature-supported interactions, and its topological properties were 
analyzed to assess network structure and identify key hub genes. The 
following metrics were evaluated: (1) Network density: the ratio of 
observed edges to all possible edges, indicating the level of 
connectivity. (2) Average path length: the average number of steps 
along the shortest paths between all pairs of genes, reflecting how 
easily signals or effects may propagate through the network. (3) 
Clustering coefficient: the extent to which nodes tend to form tightly 
knit groups, suggesting local modular structure. (4) Diameter: the 
length of the longest shortest path in the network, indicating overall 
compactness. (5) Centrality measures: Degree centrality identifies 
genes with many direct connections. (6) Betweenness centrality 
captures genes acting as bridges in shortest paths. (7) Eigenvector 
centrality reflects gene influence based on the importance of 
its neighbors.

These metrics were used to identify hub genes—genes with high 
centrality across multiple metrics—which are likely to play central 
roles in disease mechanisms. The biological significance of these hub 
genes was further examined via functional enrichment analysis.

Construction of directed pathway 
connecting RA and HNC

To investigate potential mechanistic links between rheumatoid 
arthritis (RA) and head and neck cancer (HNC), we constructed a 
directed pathway based solely on literature-derived gene–disease 
associations extracted using our AI-based pipeline. We  identified 
genes with statistically significant (q ≤ 0.01, after FDR correction) 
directional relationships with both RA and HNC, as determined by 
the Adjusted Binomial Method Algorithm (ABMA).

For each selected gene, two directional associations were required: 
one from RA to the gene (RA → gene) and one from the gene to HNC 
(gene → HNC), or vice versa. These associations were used to 
construct directed paths such as RA → gene → HNC or HNC → gene 
→ RA. Importantly, non-directional or convergent relationships—
such as RA → gene ← HNC—were excluded, as they do not form a 
valid causal or regulatory path within a directed network.

Each relationship included polarity (positive, negative, or neutral) 
and directionality, as assigned by our natural language processing 

7 https://david.ncifcrf.gov

8 https://davidbioinformatics.nih.gov/?utm_source=chatgpt.com
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system and verified through ChatGPT-based quality control. The 
resulting RA–gene–HNC triplets formed the basis for constructing a 
bidirectional regulatory framework. A detailed presentation of these 
pathways is provided in the “Results” section.

Results

AI-based disease-gene identification 
results

Out of a total of 19,924 genes, the AI-based computational 
approach identified 3,697 genes associated with rheumatoid arthritis 
(RA), supported by 13,555 references, and 6,249 genes associated with 
head and neck cancer (HNC), supported by 16,096 references. Among 
these, 2,549 genes were found to overlap between RA and HNC. As 
shown in Figure 1A, this overlap is statistically significant, with a 
Fisher’s exact test yielding an odds ratio (OR) of 7.52 and a p-value 
<1E-16 (Table 1), indicating a strong enrichment of shared genes 
between the two diseases.

As shown in Figure 1B and Table 1, when a stricter significance 
threshold was applied (q < 0.01), 224 RA-associated genes and 421 
HNC-associated genes were retained, with 35 overlapping genes. This 
refined overlap remained statistically significant, with an odds ratio of 
9.27 and a p-value of 1.63E-20, further confirming the robustness of 
the shared genetic association. These findings underscore a potential 
common molecular basis linking RA and HNC and support the 
hypothesis of shared genetic pathways underlying these conditions.

To address the heterogeneity within HNCs, we  performed an 
additional analysis specifically evaluating shared genes between RA 
and oral squamous cell carcinoma (OSCC). Among the 198 
RA-associated and 224 OSCC-associated genes (q < 0.01), 13 genes 
overlapped, yielding a statistically significant enrichment (odds 
ratio = 6.5, p = 4e-7). A broader gene-level analysis without q-value 
filtering revealed 2,499 overlapping genes out of 5,836 (RA) and 3,697 
(OSCC), with an even higher odds ratio (8.06) and p < 1e-10. Full 
results are presented in Supplementary Table  1. Additionally, 

disease–gene relationship data for RA, HNC, and OSCC are provided 
in Supplementary Tables 2–4.

PPI analysis

PPI network analysis of overlapping genes between RA and HNC 
revealed a moderately dense and cohesive network of 35 genes 
(ANGPT2, BTK, CCL19, CCL2, CCL20, CD163, CDC42, CTSK, 
CXCL11, CXCL13, CYP2C19, CYP2C9, ETS1, H19, HLA-F, HOTAIR, 
IL4R, LDHA, MERTK, MIR146A, NOTCH3, PADI4, PDPN, RAC1, 
RELA, S100A4, S100A9, SAA1, SEMA4D, SHH, TLR2, TLR9, XIST, 
YY1, and ZFAS1) connected by 206 edges. The network had a density 
of 0.17, average path length of 1.73, clustering coefficient of 0.67, and 
diameter of 3, forming a single connected component. This compact 
structure indicates tightly interconnected genes potentially involved 
in shared biological mechanisms (Figure 2).

Centrality analysis revealed RAC1 and TLR2 as central hubs, with 
high in-degree (0.29, 0.56), out-degree (0.56, 0.26), betweenness 
centrality (0.06 each), and eigenvector centrality (0.30, 0.29). 
MIR146A showed moderate in-and out-degree (0.29, 0.32), elevated 
betweenness (0.04), and high eigenvector centrality (0.23). CXCL13 
and SHH displayed complementary connectivity patterns: CXCL13 
had high out-degree (0.41) and eigenvector centrality (0.21), while 
SHH had the highest out-degree (0.74) and notable eigenvector 
centrality (0.27). These findings support the classification of TLR2, 
RAC1, MIR146A, SHH, and CXCL13 as hub genes likely mediating 
molecular crosstalk between RA and HNC. Functional enrichment of 
these hubs is presented in the following section.

Functional annotation analysis results

To investigate the biological relevance of genes shared by 
rheumatoid arthritis (RA) and head and neck cancer (HNC), 
functional enrichment analysis was conducted using the DAVID 
Functional Annotation Tool. This analysis focused on three Gene 

FIGURE 1

Venn diagram illustrating the overlap between genes associated with the two diseases—rheumatoid arthritis and head and neck cancer. (A) Venn 
diagram based on all identified disease-related genes; (B) Venn diagram based on statistically significant disease-related genes (q-value ≤ 0.01).
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Ontology categories (GOTERM_BP_DIRECT, GOTERM_CC_
DIRECT, and GOTERM_MF_DIRECT) and three pathway databases 
(BBID, BIOCARTA, and KEGG_PATHWAY).

The analysis revealed nine significantly enriched pathways or 
functional categories (Figure 3) by the 35 overlapping genes, with a 
focus on processes related to inflammatory response, chemotaxis, 
chemokine activity, and cytokine-related signaling pathways. Key 
enriched terms included inflammatory response (GO: 0006954, 
Bonferroni-adjusted p = 1.18 × 10−5), chemotaxis (KW-0145, 
Bonferroni-adjusted p = 3.50 × 10−5), and the chemokine signaling 

pathway (KEGG hsa04062, Bonferroni-adjusted p = 1.76 × 10−4). 
Multiple genes—such as CXCL11, CCL20, CCL19, CCL2, CXCL13, 
S100A9, TLR2, and RELA—were involved in more than one pathway 
or GO term, highlighting their pleiotropic roles in immune modulation.

To correct for multiple comparisons, a Bonferroni correction was 
applied. Given the 35 genes tested, the significance threshold was set 
at 0.00143 (i.e., 0.05/35). All reported enriched terms met this 
stringent threshold, reinforcing the statistical robustness of the 
findings. These results suggest that the overlapping genes are 
significantly associated with shared immuno-inflammatory 

TABLE 1 Venn diagram statistics for overlapping genes among two diseases.

Gene 
category

Source 
disease

Target 
disease

#Genes 
source

#Genes 
target

Overlap Odds ratio p-value

All genes HNC RA 6,249 3,697 2,549 7.52 <1E-16

Significant genes 

(q-value ≤ 0.01)
HNC RA

421 224 35 9.27 1.63E-20

A p-value of <1E-16 indicates an extremely significant overlap, below standard numerical precision thresholds.

FIGURE 2

PPI analysis showing the interplay between the overlapping genes between rheumatoid arthritis (RA) and head and neck cancer (HNC).
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mechanisms, potentially linking the pathophysiology of RA and HNC 
at the molecular level.

Pathway connecting RA and HNC

Functional pathway analysis revealed a bidirectional regulatory 
relationship between rheumatoid arthritis (RA) and head and neck 
cancer (HNC) mediated through a network of functionally connected 
genes (Figure 4). HNC positively influences the transcription factor 
RELA (4 references; q = 0.0032), which in turn strongly promotes RA 
(16 references; q = 2.93 × 10−12), indicating a highly significant and 
reinforcing HNC → RELA → RA pathway.

RA regulates several downstream genes with both positive and 
negative polarity. It negatively regulates CDC42 (8 references; 
q = 6.77 × 10−4) and CTSK (15 references; q = 5.99 × 10−4), while 
positively influencing CXCL11 (10 references; q = 0.0011). The 
regulation of CYP2C19 by RA appears mixed or neutral (14 references; 
q = 0.0017), suggesting a complex or context-dependent relationship.

These RA-influenced genes, in turn, positively affect HNC: 
CDC42 (5 references; q = 7.74 × 10−4), CTSK (4 references; 
q = 0.0032), CXCL11 (4 references; q = 0.0032), and CYP2C19 (4 
references; q = 0.0032). All gene → HNC connections exhibit positive 
polarity, forming a feedback loop whereby RA modulates genes that 
subsequently reinforce HNC development. The consistency of positive 
polarity and significant q-values in the RA → gene → HNC direction 
underscores a potential molecular link and shared pathological 
mechanisms between RA and HNC. Supporting references and 
pathway relationship information corresponding to Figure  4 are 
provided in Supplementary Table 5.

Discussion

This study provides a comprehensive systems-level investigation 
into the molecular interconnection between rheumatoid arthritis 
(RA) and head and neck cancer (HNC), leveraging an AI-based 

literature-mining framework integrate with protein–protein 
interaction (PPI) analysis, functional enrichment, and pathway 
modeling. Our findings identify and validate a statistically significant 
genetic overlap between the two diseases, offering novel insights into 
shared immuno-inflammatory mechanisms and suggesting a 
bidirectional regulatory relationship between RA and HNC. This 
study addresses a critical gap by investigating RA and HNC not as 
isolated diseases, but through their shared genetic and 
molecular intersections.

Prior epidemiological studies have reported elevated RA risk in 
patients with HNC—particularly among middle-aged males and oral 
cancer survivors (8) —yet the molecular mechanisms remained 
underexplored. Leveraging an AI-driven disease-gene identification 
approach, our analysis uncovered 2,549 genes shared between RA and 
HNC out of 3,697 RA-related and 6,249 HNC-related genes. This 
overlap is highly significant (OR = 7.52, p = 0), and remained robust 
even after applying a stringent significance threshold (q < 0.01), with 
35 overlapping genes (OR = 9.27, p = 1.63 × 10−20). While AI 

FIGURE 3

Functional enrichment analysis for overlapping genes associated with both rheumatoid arthritis and head and neck cancer.

FIGURE 4

Pathway connecting rheumatoid arthritis and head and neck cancer. 
Red edge indicates a negative association, green positive association, 
and black unknown association.
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technologies have previously enhanced diagnostics and treatment 
strategies for both diseases (15, 16), our findings provide a statistically 
supported perspective on their shared molecular basis. These insights 
could facilitate the development of integrated diagnostic biomarkers 
and dual-purpose therapies targeting common pathways in both RA 
and HNC.

To elucidate the mechanistic basis of the RA–HNC connection, 
we focused on five key genes—RELA, CTSK, CXCL11, CDC42, and 
CYP2C19—which form the core of the directed RA–gene–HNC 
pathway (see “Results”). These genes were selected based on their 
statistically significant, directionally coherent relationships with both 
RA and HNC, and their central roles in immune-related 
regulatory networks.

RELA, a subunit of the NF-κB transcription factor complex, plays 
a critical role in inflammation, immune activation, and cell survival. 
In RA, RELA expression is elevated in synovial tissue macrophages, 
driving persistent NF-κB pathway activation and proinflammatory 
cytokine release (17, 18). In HNC, overexpression of RELA has been 
associated with tumor progression, resistance to chemotherapy, and 
increased invasiveness through pathways such as IKK-NFκB/RELA 
and USP14-mediated signaling (18).

CTSK (Cathepsin K) is a lysosomal cysteine protease essential for 
collagen degradation and bone resorption. In RA, CTSK is highly 
expressed at the pannus–bone interface and contributes to cartilage 
and bone erosion (19). In HNC, particularly oral squamous cell 
carcinoma, CTSK is overexpressed in tumor and stromal cells, 
correlating with lymph node metastasis and poor prognosis (20).

CXCL11 is a chemokine that attracts CXCR3+ T cells and is 
implicated in synovial inflammation in RA. Elevated CXCL11 levels 
have been detected in RA synovial fluid and are produced by synovial 
fibroblasts under inflammatory stimulation (21). In HNC, CXCL11 
promotes tumor angiogenesis and epithelial–mesenchymal transition 
(EMT), aiding in metastasis and immune evasion through JAK/AKT 
and MMP7 activation (22).

CDC42, a member of the Rho family of small GTPases, regulates 
actin dynamics and cell polarity. In RA, CDC42 levels are inversely 
correlated with disease activity and inflammation markers such as 
CRP, ESR, and DAS28 scores, indicating a potential immune-
modulatory role (23). In HNC, CDC42 enhances tumor cell migration 
and invasion by promoting cytoskeletal remodeling and EMT, and 
elevated levels are associated with tumor aggressiveness (24).

CYP2C19, a cytochrome P450 enzyme involved in drug 
metabolism, plays a role in the bioactivation of disease-modifying 
antirheumatic drugs (DMARDs) in RA. Poor-metabolizer genotypes 
(e.g., CYP2C19*2/3) are associated with altered leflunomide 
metabolism and increased risk of treatment-related toxicity or 
therapeutic failure (25). In HNC, CYP2C19 polymorphisms have also 
been linked to increased cancer susceptibility, with poor-metabolizer 
alleles (e.g., CYP2C192) showing a significant association with higher 
risk of developing squamous cell carcinoma (26).

While these five genes were prioritized for detailed discussion due 
to their clear directional involvement in RA–HNC regulatory pathways, 
our analysis also identified a broader set of 35 overlapping genes. These 
include additional hub genes identified through PPI centrality analysis 
(e.g., TLR2, RAC1, MIR146A, SHH, CXCL13), as well as immune 
modulators (CCL19, IL4R), noncoding RNAs (HOTAIR, XIST, 
ZFAS1), and signaling mediators (NOTCH3, ETS1, PDPN). Although 
not all could be discussed in depth here, they represent functionally 

diverse components of shared immuno-inflammatory mechanisms 
and warrant further investigation in future studies.

Systemic inflammation and immune dysregulation characteristic 
of RA may contribute to HNC development through several cellular 
mechanisms. Chronic inflammation marked by elevated CRP and ESR 
fosters a tumor-supportive microenvironment (27). Angiogenesis 
links RA and HNC by supporting pannus formation and tumor 
growth, respectively (28, 29). The Jak/STAT pathway, crucial in RA 
inflammation, may further promote a tumor-friendly environment, 
increasing HNC risk (30).

At the tissue and organ levels, RA and HNC intersect notably in 
the oral mucosa, where RA-associated periodontitis may elevate oral 
cancer risk (31). Salivary autoantibodies indicate mucosal immune 
responses potentially influencing cancer progression (32). 
Autoimmune thyroid disease often co-occurring with RA may 
exacerbate symptoms and contribute to thyroid malignancies, a subset 
of HNC (33). Additionally, lymphatic system alterations in RA may 
facilitate HNC metastasis (34, 35). These findings underscore the 
interconnected pathophysiology of RA and HNC and highlight the 
importance of integrated clinical screening and therapeutic strategies.

Our findings also extend to the subtype level, with a focused 
analysis revealing a significant gene-level overlap between RA and oral 
squamous cell carcinoma (OSCC), a prominent subtype of HNC. This 
result aligns with emerging clinical and epidemiological evidence 
linking chronic inflammation in RA to increased OSCC risk (36). 
Mechanistically, both diseases share dysregulated pathways such as 
matrix remodeling and chemokine signaling: RA synovial fibroblasts 
and OSCC tumor cells overexpress matrix metalloproteinases that 
degrade extracellular matrices and promote invasion (37, 38). 
Similarly, both RA and OSCC involve chemokine-driven immune cell 
infiltration, fueling inflammation or tumor immune evasion (39, 40). 
Notably, CTSK, a lysosomal protease involved in bone erosion in RA, 
is also overexpressed in OSCC and correlates with lymph node 
metastasis and poor prognosis (20, 41). These shared mechanisms 
underscore the importance of OSCC as a clinical focus for investigating 
cross-disease inflammatory pathways and targeted interventions.

Our study effectively utilizes an AI-based computational approach 
to identify a significant number of genes associated with RA and 
HNC, supported by extensive literature evidence. The statistically 
significant gene overlap, together with PPI network analyses revealing 
key hub genes, highlights potential therapeutic targets and shared 
pathways—particularly those related to immune response and 
inflammation—pivotal for understanding and treating diseases 
characterized by chronic inflammation and cancer progression. The 
AI-driven framework offers a scalable and systematic method for 
uncovering complex disease relationships.

However, the study’s reliance on existing literature and 
computational predictions may limit discovery of novel genes or 
pathways not yet documented. The AI-based approach may also 
be influenced by biases inherent in training data, potentially overlooking 
less-studied genes. Consequently, experimental validation of the 
identified genes and pathways remains essential for future research.

Conclusion

This study reveals a significant genetic and molecular overlap 
between rheumatoid arthritis (RA) and head and neck cancer (HNC), 
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with 35 shared genes forming a tightly connected network enriched 
in inflammatory and chemokine signaling pathways. Central hub 
genes—TLR2, RAC1, MIR146A, SHH, and CXCL13—emerge as key 
regulators. A core regulatory axis involving RELA, CTSK, CXCL11, 
CDC42, and CYP2C19 highlights bidirectional crosstalk between RA 
and HNC. These findings suggest common immuno-inflammatory 
mechanisms and offer potential therapeutic targets, pending further 
experimental validation.
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