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Introduction: Named Entity Recognition (NER) plays a critical role in

interprofessional collaboration (IPC) and education, providing ameans to identify

and classify domain-specific entities essential for e�cient interdisciplinary

communication and knowledge sharing. While traditional methods, such as rule-

based systems andmachine learningmodels, have achievedmoderate success in

various domains, they often struggle with the dynamic, context-sensitive nature

of IPC scenarios. Existing approaches lack adaptability to evolving terminologies

and insu�ciently address the complex interaction dynamics inherent in multi-

disciplinary frameworks.

Methods: To address these limitations, we propose a Synergistic Collaboration

Framework (SCF) integrated with an Adaptive Synergy Optimization Strategy

(ASOS). SCF models IPC as a dynamic multi-agent system, where disciplines are

represented as intelligent agents interacting within a weighted graph structure.

Each agent contributes dynamically to the collaborative process, adapting its

knowledge, skills, and resources to optimize global utility while minimizing

conflicts and enhancing synergy. ASOS complements this by employing real-

time feedback loops, conflict resolution algorithms, and resource reallocation

strategies to iteratively refine contributions and interactions.

Results: Experimental evaluations demonstrate significant improvements in

entity recognition accuracy, conflict mitigation, and overall collaboration

e�ciency compared to baseline methods.

Discussion: This study advances the theoretical and practical applications of NER

in IPC, ensuring scalability and adaptability to complex, real-world scenarios.

KEYWORDS

named entity recognition, interprofessional collaboration, synergy optimization,

adaptive framework, dynamic multi-agent systems

1 Introduction

Named Entity Recognition (NER) is a foundational task in natural language processing

(NLP) that seeks to identify and classify entities such as people, organizations, locations,

and domain-specific terms within text (1). In the domain of interprofessional collaboration

and education (IPE/IPC), where multidisciplinary teams work together to deliver high-

quality healthcare and education, the ability to extract, classify, and analyze domain-

specific entities is critical (2). Not only does this task facilitate better communication and

coordination among professionals, but it also enables efficient data sharing and insight

extraction from vast, unstructured clinical and educational data. Effective NER in this

context can support the integration of evidence-based practices, enhance educational

resource management, and improve patient outcomes (3). Despite its importance,

challenges such as domain specificity, ambiguous terminologies, and variations in
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professional language across disciplines highlight the need for

robust NER systems tailored to the unique demands of IPE/IPC.

Addressing these challenges is critical for advancing data-driven

decision-making, enhancing collaboration efficiency, and fostering

innovation in education and practice (4).

To address the limitations of traditional methods for entity

recognition, early approaches were based on symbolic AI and

rule-based systems. These methods relied heavily on handcrafted

rules, dictionaries, and expert knowledge to extract domain-specific

entities (5). For example, rule-based NER systems were designed

to identify healthcare-specific terms or educational terminologies

by leveraging predefined ontologies and manually curated lexicons

(6). While these approaches provided interpretable and precise

results in specific contexts, they were often limited by their

rigidity and inability to generalize across diverse or evolving

datasets (7). Moreover, maintaining and updating such systems

required significant time and expertise, making them unsustainable

for large-scale applications (8). As a result, although rule-based

methods addressed the need for interpretable NER systems in

structured domains, their limited adaptability and dependence on

domain-specific knowledge hindered their application in complex,

multidisciplinary settings such as IPE/IPC (9).

To overcome the rigidity of symbolic methods, data-driven

approaches and machine learning (ML) models emerged as a

promising alternative. ML-based NER systems leveraged annotated

corpora to train statistical models capable of identifying entities

with higher flexibility and accuracy (10). Algorithms such as

Hidden Markov Models (HMMs) and Conditional Random Fields

(CRFs) were widely adopted, allowing for the recognition of

entities in unstructured texts while accommodating linguistic

variations (11). In the context of IPE/IPC, ML-based systems

enabled the extraction of multidisciplinary terminologies from

diverse data sources, such as clinical notes, educational resources,

and professional communication logs (12). However, these systems

often required extensive labeled datasets, which are expensive

and time-consuming to produce in specialized domains. The

reliance on feature engineering introduced challenges in capturing

nuanced interprofessional language, especially when domain-

specific terminologies or context-dependent entities were involved

(13). Thus, while ML approaches improved scalability and

adaptability compared to rule-based methods, their dependence on

high-quality labeled data and handcrafted features posed significant

barriers to widespread adoption (14).

With the rise of deep learning and pre-trained languagemodels,

the field of NER witnessed a transformative shift in capability

and efficiency. Deep learning models (15), such as Bidirectional

LSTMs and Transformer-based architectures such as BERT and

GPT, eliminated the need for extensive feature engineering by

automatically learning contextual representations of text (16).

Pre-trained language models further enhanced NER performance

by leveraging vast amounts of general and domain-specific text,

enabling zero-shot and transfer learning for specialized tasks (17).

In the context of IPE/IPC, these models have shown promise in

capturing complex interprofessional terminologies and context-

dependent entities from heterogeneous datasets (18). By fine-

tuning pre-trained models such as BioBERT or ClinicalBERT,

researchers have achieved state-of-the-art results in recognizing

healthcare and education-specific entities. However, challenges

such as model interpretability, computational requirements, and

the need for domain-specific pre-training remain (19). These

models may struggle with low-resource languages or rare

terminologies that are not well-represented in training data.

Nonetheless, deep learning has proven to be a critical advancement

in overcoming the limitations of both symbolic and machine

learning approaches, making it a cornerstone for advancing NER

in IPE/IPC (20).

Building on the limitations of existing approaches, our

proposed method addresses the unique challenges of NER in

interprofessional collaboration and education by introducing a

hybrid framework that combines symbolic knowledge with deep

learning. By integrating domain-specific ontologies into pre-

trained language models, our method enhances the interpretability

and domain-awareness of the system while leveraging the flexibility

and scalability of deep learning. This approach not only addresses

the lack of labeled data in specialized domains but also mitigates

the challenges of capturing rare or context-dependent entities. Our

method incorporates adaptive fine-tuning techniques to ensure

that the model remains relevant across diverse interprofessional

contexts, including healthcare and education, where terminology

evolves rapidly.

We summarize our contributions as follows:

• The proposed method introduces a hybrid framework

that leverages symbolic ontologies alongside state-of-the-

art pre-trained models, ensuring both interpretability

and adaptability.

• Our method is designed to operate efficiently in

diverse settings, enabling its application across

various interprofessional domains, including

low-resource environments.

• Experimental results demonstrate significant improvements

in entity recognition accuracy, precision, and recall compared

to baseline methods, particularly in capturing rare and

context-specific entities.

2 Related work

2.1 Domain-specific NER in healthcare
settings

Named Entity Recognition (NER) has become an indispensable

tool in healthcare, enabling efficient extraction and classification

of critical entities such as diseases, drugs, and procedures from

unstructured text data (21). Existing research highlights the

unique challenges posed by domain-specific terminologies and

the variations in text across clinical notes, medical records, and

interprofessional communications (22). Traditional NER models,

such as Conditional Random Fields (CRFs) and Hidden Markov

Models (HMMs), have been extended with domain adaptation

techniques to address these challenges. More recently, deep

learning-based approaches, particularly those using transformer

architectures such as BERT and its domain-specific variant

BioBERT, have shown significant improvements in capturing
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contextual information and disambiguating similar entities in

medical contexts (23). However, their reliance on annotated data

limits their applicability in real-world healthcare systems where

labeling is costly and time-consuming. Emerging techniques

such as weak supervision, distant supervision, and unsupervised

learning attempt to mitigate these issues by leveraging external

knowledge bases such as UMLS and SNOMED-CT (24). For

interprofessional collaboration and education, there is a growing

interest in NER systems that can recognize entities specific to

multi-disciplinary teamwork, including roles, responsibilities,

and communication patterns among professionals. These

advancements underscore the need for specialized NER models

that are robust to variations in interprofessional terminologies

and that can seamlessly integrate with broader healthcare

workflows (25).

2.2 NER for communication analysis in
teams

The study of communication within interprofessional teams

has gained traction in recent years, driven by the recognition that

effective collaboration directly impacts patient outcomes (26). NER

plays a vital role in identifying key entities within team discussions,

including task assignments, individual roles, and mentions of

critical procedures or timelines (27). Recent advancements in

computational linguistics, such as context-aware embedding

techniques, have significantly improved the ability of NER

models to identify these entities within noisy and unstructured

communication channels, such as emails, chat transcripts, and

spoken conversations. State-of-the-art models leverage pre-trained

language models fine-tuned on domain-specific corpora to better

understand the intricacies of team interactions (28). Research in

conversational AI has integrated NER with dialogue act tagging to

discern the intent and structure of communication more effectively

(29). However, challenges remain, including handling informal

language, abbreviations, and code-switching, which are common

in interprofessional interactions. Incorporating multimodal data,

such as audio and video transcripts, has shown potential in

addressing these limitations (30). As interprofessional education

and collaboration increasingly rely on digital platforms, the

development of robust NER systems capable of understanding

dynamic team communication becomes imperative for fostering

better decision-making and coordination (31).

2.3 Educational applications of NER

In the context of interprofessional education, NER systems

offer significant opportunities to enhance learning experiences

by identifying and categorizing critical entities in instructional

content, case studies, and simulations (32). These systems can

automatically highlight key terms, such as medical conditions,

roles of healthcare professionals, and procedural steps, thereby

improving comprehension and retention among learners (33).

Research in this domain has explored the use of adaptive NER

models that can tailor their outputs based on the specific learning

objectives and professional backgrounds of users. For instance,

integrating NER with question generation systems has been

shown to facilitate active learning by creating context-specific

assessments (34). NER-powered analytics can help educators assess

the effectiveness of instructional materials by analyzing patterns

in learner interactions and feedback. Recent studies have also

explored the role of explainable AI in making NER outputs

more interpretable for educational purposes, allowing learners

to understand the reasoning behind entity recognition decisions

(35). However, challenges persist in developing NER models that

generalize across diverse educational settings and professional

domains. Efforts to create standardized datasets and benchmarks

for interprofessional education are ongoing, aiming to support the

development of more effective and context-aware NER applications

tailored to educational needs (36).

3 Method

3.1 Overview

Interprofessional collaboration has emerged as a vital approach

in addressing complex challenges that require expertise from

multiple disciplines. It facilitates the integration of specialized

knowledge, skills, and perspectives, allowing for the resolution of

problems that are too intricate for any single discipline to address

effectively. This study focuses on proposing a novel framework to

optimize the process of interprofessional collaboration, aiming to

enhance both its theoretical foundations and practical applications.

In this section, we outline the key components of the proposed

framework and set the stage for the detailed explanations in

subsequent sections. In Section 3.2, we establish a formalized

understanding of interprofessional collaboration, drawing on

insights from systems theory, communication models, and

collaborative dynamics. These preliminary considerations serve

as the backbone for the subsequent modeling and design of

our framework. In Section 3.3, we introduce a novel interaction

model, which is capable of dynamically adapting to the evolving

needs of interdisciplinary teams. This model leverages advanced

computational techniques to predict and manage potential points

of friction, while fostering synergistic outcomes. In Section 3.4, we

detail a new strategy for optimizing the application of this model

in real-world settings, addressing domain-specific requirements

and ensuring scalability and adaptability. Our goal is not only

to advance the conceptual understanding of interprofessional

collaboration but also to provide practical tools that can be readily

implemented across various sectors.

3.2 Preliminaries

To formalize the problem of interprofessional collaboration,

we define it as a structured interaction process between multiple

domains of expertise, where each domain contributes distinct

knowledge and skills to achieve a shared goal. Let D =

{D1,D2, . . . ,Dn} represents the set of disciplines involved in the

collaboration, where Di corresponds to the i-th domain. Each

discipline Di is characterized by its knowledge base Ki, skill set Si,
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and resources Ri. The objective of the collaboration is to integrate

these components into a unified system to maximize a global utility

function U(D), subject to domain-specific constraints.

The collaboration space is defined as C = (D,I ,T ), where

I represents the set of interactions between disciplines, and T is

the timeline over which collaboration unfolds. Interactions I can

be modeled as a directed graph G = (D,E), where the nodes

correspond to disciplines, and the edges E capture the directional

flow of information or resources. Let wij denotes the weight of

the interaction between Di and Dj, representing the strength or

intensity of their collaboration. The adjacency matrix W of this

graph quantifies the interaction dynamics:

W = [wij] where wij ≥ 0, ∀i, j. (1)

The contribution of a single discipline Di to the collaboration

can be expressed as a vector Ci, where

Ci = αiKi + βiSi + γiRi, (2)

and αi,βi, andγi are weighting factors representing the relative

importance of knowledge, skills, and resources in the context of the

collaboration. The aggregated contribution of all disciplines to the

global objective is given by

Ctotal =

n
∑

i=1

Ci. (3)

Effective coordination is essential to resolve conflicts, manage

dependencies, and ensure synergy among disciplines. Let Xi(t)

denotes the state of discipline Di at time t. The evolution of

Xi(t) depends on its internal dynamics and external interactions,

modeled as

dXi(t)

dt
= fi(Xi(t))+

∑

j6=i

gij(Xj(t),wij), (4)

where fi(Xi(t)) represents the internal dynamics of Di, and

gij(Xj(t),wij) captures the influence of Dj on Di through

their interaction.

In collaborative processes, conflicts and synergies emerge as

natural byproducts of interprofessional interaction. To model

these, we define the conflict function F(I) and the synergy

function S(I):

F(I) =
∑

i,j

φij ·max(0,Ci · Cj − θij), (5)

S(I) =
∑

i,j

ψij ·min(Ci · Cj, τij), (6)

where φij and ψij are parameters controlling the magnitude of

conflicts and synergies, θij represents a conflict threshold, and τij
is the upper bound for synergy.

The overarching goal is to maximize the global utility function

U(D) while minimizing conflicts and enhancing synergies. The

optimization problem is formulated as

max
I

U(D) = S(I)− F(I), (7)

subject to:

Ctotal ≤ R, W · Ctotal ≥ Tmin, (8)

where R is the resource budget, and Tmin is the minimum

required outcome threshold. These preliminaries establish the

formal foundation for interprofessional collaboration, providing a

quantitative framework to analyze and optimize its dynamics.

3.3 Synergistic Collaboration Framework
(SCF)

In this section, we introduce the Synergistic Collaboration

Framework (SCF), a novel approach designed to optimize the

dynamics of interprofessional collaboration. SCF explicitly captures

evolving interdependencies and integrates them into a unified

computational framework, ensuring dynamic adaptation and

efficiency (as shown in Figure 1).

3.3.1 Adaptive agent contributions
The SCF model treats each discipline Di as an intelligent agent

with a dynamic state Xi(t), whose evolution is determined by

both internal adjustments and external interactions. Specifically,

the agent’s contribution can be expressed as

Ci(t) = Fi
(

Xi(t),I(t)
)

, (9)

where I(t) represents the influence of interactions with other

agents. To ensure dynamic adaptability, each agent adjusts its

contribution based on a feedback mechanism:

1Ci(t) = ηi · F
feedback
i (t), (10)

where ηi is the learning rate that controls the speed of

adaptation. To further describe the feedback mechanism, we define

an information adjustment rule based on gradients:

Ffeedbacki (t) = −∇XiLi(t), (11)

where Li(t) represents the loss function of agent, Di in the

current environment. The evolution of the agent’s state can be

expressed as

Xi(t +1t) = Xi(t)+ γi · Gi(t), (12)

where γi is the step size parameter, and Gi(t) represents the

update direction of the state, which can be given by

Gi(t) = αi ·Hi(t)+ βi · I(t), (13)

where αi and βi denote the weights of internal and external

influences, respectively, and Hi(t) represents the internal

adjustment rule. For example, under a gradient descent

optimization framework,Hi(t) can be expressed as
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FIGURE 1

The figure illustrates the Synergistic Collaboration Framework (SCF), a multi-modal architecture that models and optimizes interprofessional

collaboration through dynamic agent contributions, semantic alignment, and global optimization. It integrates diverse modalities–including textual,

visual, and facial cues—via specialized encoders and adapters for compound emotion understanding. Dynamic interaction modeling captures

evolving inter-agent relationships using graph-based synergy-conflict functions, while a feedback-driven mechanism ensures real-time adaptation

of contributions. The global optimization component further balances performance, resource constraints, and conflict mitigation to maximize

collaborative utility in complex environments.

Hi(t) = −∇Xi Ji(t), (14)

where Ji(t) is a certain task objective function. The interaction

influence I(t) among agents is further modeled as

I(t) =
∑

j6=i

ωijCj(t), (15)

where ωij represents the influence weight of discipline Dj on

Di. Through this modeling approach, the SCF system can achieve

adaptive optimization of complex collaborative environments and

rapidly adjust the contributions of various agents under dynamic

conditions (as shown in Figure 2).

3.3.2 Dynamic interaction modeling
Interactions between disciplines are represented as a weighted

graph G(t) = (D,E(t)), where nodes correspond to disciplines,

and edges denote their interactions. The edge weights wij(t) evolve

dynamically based on synergy and conflict metrics, ensuring an

adaptive and self-regulating collaboration network. The weight

evolution is governed by

dwij(t)

dt
= Hij

(

Ci(t),Cj(t),S(I),F(I)
)

, (16)

where S(I) and F(I) represent the synergy and conflict

functions, respectively. To capture the dynamic nature of

interactions, we defineHij as

Hij = αs · ∇wijS(I)− αf · ∇wijF(I), (17)

where αs and αf are scaling factors that regulate the influence of

synergy reinforcement and conflict reduction. The synergy function

is modeled as

S(I) =
∑

i,j

βij · Ci · Cj · wij, (18)

where βij represents the effectiveness coefficient of

collaboration between disciplines Di and Dj. Similarly, conflicts are

quantified as

F(I) =
∑

i,j

γij ·max(0,Ci · Cj − θij), (19)
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FIGURE 2

The figure illustrates the adaptive agent contributions within the SCF model, where each discipline acts as an intelligent agent dynamically adjusting

its contributions based on internal state evolution and external interactions. The model employs both channel and spatial attention mechanisms to

modulate feature representations. The top modules integrate average and max pooling with multi-layer perceptrons (MLP) and convolutional neural

networks (CNN) to extract key information. The bottom section showcases a feedback-driven attention mechanism, where channel attention refines

feature importance, and spatial attention captures inter-agent dependencies. This adaptive approach ensures e�cient optimization in dynamic

collaborative environments.

where γij is the conflict sensitivity parameter, and θij is the

threshold beyond which conflicts emerge. To further enhance

adaptive behavior, edge weights are updated using

wij(t +1t) = wij(t)+1t ·
dwij(t)

dt
. (20)

Individual contributions evolve dynamically to maintain

balance in collaboration, expressed as

dCi(t)

dt
= λi ·

(

∂U(D)

∂Ci
− δi · Fi

)

, (21)

where λi is the learning rate, and δi is the conflict penalty

coefficient. To prevent excessive dominance of certain disciplines,

a normalization constraint is imposed:

∑

i

Ci = Ctotal. (22)

Resources are adaptively reallocated to maximize synergy and

minimize conflict:

dRi

dt
= ηr ·

(

∂S(I)

∂Ri
−
∂F(I)

∂Ri

)

, (23)

where ηr is the learning rate for resource optimization. By

integrating these mechanisms, the collaboration network remains

robust, dynamically adjusting interactions, contributions, and

resources to optimize interprofessional synergy while mitigating

conflicts in real time.

3.3.3 Global optimization mechanism
SCF employs a global optimization strategy to maximize

collaboration efficiency by dynamically adjusting individual

contributions and resolving conflicts in real-time. The primary

objective function is defined as:

max
I,Ci

U(D) = S(I)− F(I), (24)

where S(I) represents the overall system synergy achieved

through interprofessional collaboration, and F(I) denotes the

inefficiencies and losses due to conflict and resource misallocation.

The system is subject to resource and performance constraints,

ensuring optimal operation:

Ctotal(t) ≤ R, W(t) · Ctotal(t) ≥ Tmin. (25)

A centralized controller G continuously monitors collaboration

metrics and provides adaptive feedback based on system states:

Ffeedbacki (t) = G
(

Xi(t), Ctotal(t),U(D)
)

, (26)

where Xi(t) denotes the state of individual collaborator i at

time t. To further refine collaboration effectiveness, a weighted

contribution function is introduced:

Ci(t) = αi · C
base
i + βi · F

feedback
i (t), (27)

where αi and βi are scaling factors regulating the balance

between inherent capabilities and adaptive feedback. The dynamic
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update mechanism ensures that the system evolves in response to

external and internal variations:

Xi(t + 1) = Xi(t)+ γ ·1Xi(t), (28)

where γ controls the rate of adaptation, and 1Xi(t) quantifies

the incremental change based on feedback mechanisms. To prevent

instability in resource utilization, a bounded constraint is enforced:

Rmin ≤ Ctotal(t) ≤ Rmax. (29)

An equilibrium condition is maintained by minimizing

deviations from the optimal collaboration state:

min
I

∑

i

∣

∣

∣
Ci(t)− C

optimal
i

∣

∣

∣
. (30)

The overall system utility is continuously maximized using an

iterative refinement process:

U(D, t + 1) = U(D, t)+ λ ·1U(t), (31)

where λ determines the rate of utility improvement over time.

Through this structured optimization approach, SCF ensures that

collaboration efficiency is dynamically enhanced while maintaining

system stability and adaptability in complex environments.

3.4 Adaptive Synergy Optimization
Strategy (ASOS)

Building on the Synergistic Collaboration Framework (SCF),

we propose the Adaptive Synergy Optimization Strategy (ASOS) to

optimize interprofessional collaboration in dynamic environments.

ASOS introduces adaptive mechanisms to enhance efficiency and

resolve conflicts. The following are three key innovations of ASOS

(as shown in Figure 3).

3.4.1 Dynamic contribution adjustment
To optimize overall utility, ASOS dynamically adjusts the

contributions Ci of each discipline Di based on real-time

performance feedback. The optimization problem is formulated as

max
Ci

U(D) =
∑

i

ui(Ci)−
∑

i,j

φij max(0,Ci · Cj − θij), (32)

where ui(Ci) represents the individual utility function of each

discipline, and φij denotes the conflict penalty for overlapping

contributions. The individual utility function is often modeled as

a concave function to capture diminishing returns:

ui(Ci) = ai log(1+ bi‖Ci‖), (33)

where aiandbi > 0 are scaling parameters. The constraints on

contributions are given by

0 ≤ Ci ≤ Cmax
i , (34)

where Cmax
i represents the upper bound on the contribution for

discipline Di. The conflict penalty function is structured as

φij = λije
−γ (Ci·Cj−θij), (35)

where λij and γ are scaling factors controlling the impact of

conflicts. The optimal contribution allocation must satisfy the

first-order optimality condition:

∇CiU(D) = 0. (36)

By differentiating the utility function, we derive

aibi

1+ bi‖Ci‖
−
∑

j6=i

φij1Ci·Cj>θij

∂

∂Ci
(Ci · Cj) = 0. (37)

To ensure convergence, an iterative gradient-based adjustment

mechanism is applied:

C
(t+1)
i = C

(t)
i + η

(

∇CiU(D)− λC(t)
i

)

, (38)

where η is the step size, and λ is a regularization term. This iterative

update continues until a convergence criterion is met:

‖C
(t+1)
i − C

(t)
i ‖ < ǫ, (39)

where ǫ is a small threshold ensuring numerical stability.

This formulation provides a dynamic and adaptive optimization

framework for maximizing the overall utility of ASOS while

minimizing discipline conflicts.

3.4.2 Real-time conflict resolution
ASOS incorporates an adaptive conflict resolution mechanism

to minimize inefficiencies in collaboration. When conflicts are

detected, contribution values Ci and interaction weights wij are

adjusted using a gradient-based optimization method to reduce the

overall conflict intensity F(I). The adjustment rules are as follows:

1Ci = −ηc∇CiF(I), (40)

1wij = −ηw∇wijF(I), (41)

where F(I) represents the current conflict intensity in the system,

and ηcandηw are the learning rates for contribution adjustments

and interaction weights, respectively. To further optimize F(I), it

can be expanded as

F(I) =
∑

i,j

φ(Ci,Cj,wij), (42)

where φ(·) is a function that measures the collaborative conflict

between individuals i and j, depending on the differences in

Frontiers inMedicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2025.1578769
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2025.1578769

FIGURE 3

Illustration of the Adaptive Synergy Optimization Strategy (ASOS). The framework integrates three key components, namely, dynamic contribution

adjustment, real-time conflict resolution, and adaptive resource reallocation. The process begins with a single-view input, processed through an

image encoder and camera embedding, leading to a triplane decoder and point cloud decoder. These components generate hybrid features used for

resource reallocation and conflict resolution. The system iteratively optimizes contributions, interactions, and resource allocations, ultimately

producing novel views and improving collaborative e�ciency.

contributions and the influence of interaction weights. Using

gradient descent, we obtain

∇CiF(I) =
∑

j

∂φ(Ci,Cj,wij)

∂Ci
, (43)

∇wijF(I) =
∂φ(Ci,Cj,wij)

∂wij
. (44)

To further enhance the adjustment process, a momentum term can

be introduced, ensuring that optimization not only depends on the

current gradient but also takes historical updates into account:

V
(t)
Ci
= αV

(t−1)
Ci
− ηc∇CiF(I), (45)

V(t)
wij
= αV(t−1)

wij
− ηw∇wijF(I), (46)

where α is the momentum factor, and V
(t)
Ci

and V
(t)
wij represent

the velocity terms for contributions and interaction weights,

respectively. The parameters are updated as follows:

C
(t+1)
i = C

(t)
i + V

(t)
Ci
, (47)

w
(t+1)
ij = w

(t)
ij + V(t)

wij
. (48)

This update strategy combines gradient descent with momentum

optimization to ensure faster convergence and reduced oscillations,

enabling ASOS to operate stably in complex collaborative

environments (as shown in Figure 4).

3.4.3 Adaptive resource reallocation
The Adaptive Synergistic Optimization System (ASOS)

dynamically reallocates resources to maximize collaborative

efficiency by adjusting allocations based on the marginal utility

of each discipline’s contribution. The resource adjustment is

computed as follows:

1Ri = ηr

(

∂U(D)

∂Ri
−

Ri

R

)

, (49)

where ηr is the learning rate for resource reallocation, U(D)

represents the overall utility of the discipline set D, Ri is the

resource allocated to discipline i, and R is the total available

resources. To ensure that dynamic resource allocation optimizes

system utility, we introduce a utility increment measure:

1U =
∑

i

∂U(D)

∂Ri
1Ri. (50)

To further improve the robustness of resource allocation, we define

a normalization constraint:

∑

i

Ri = R. (51)

Moreover, the system optimizes allocation by introducing a

Lagrange multiplier λ, leading to the condition:

∂

∂Ri

(

U(D)− λ

(

∑

i

Ri −R

))

= 0. (52)

This results in the optimality condition:

∂U(D)

∂Ri
= λ. (53)
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FIGURE 4

The figure illustrates the ASOS framework for adaptive conflict resolution, leveraging a combination of image encoding, prompt-based interaction,

and optimization mechanisms. The image encoder extracts representations from the input, while an adaptive learning module refines contribution

values and interaction weights through gradient-based optimization. It ensures real-time adjustments to minimize collaboration ine�ciencies. The

architecture includes key components such as transformer-based encoding, attention mechanisms, and prompt-based decoding to dynamically

resolve conflicts within collaborative environments.

For dynamic updates during the resource adjustment process, we

employ a gradient-based correction method:

R
t+1
i = Rt

i +1Ri. (54)

To prevent overfitting or excessive bias in resource allocation, a

regularization constraint is applied:

R
t+1
i = max

(

Rmin, min(Rt+1
i ,Rmax)

)

. (55)

where Rmin and Rmax denote the lower and upper bounds

of resource allocation, respectively. ASOS iteratively optimizes

resource flows using the above mechanisms, ensuring that

resources are dynamically adjusted toward maximizing system

utility, thereby improving collaboration efficiency and adapting to

changing environments.

4 Experimental setup

4.1 Dataset

The BC5CDR Dataset (37) is a widely used benchmark

for biomedical named entity recognition, particularly focusing

on chemicals and diseases. It consists of PubMed abstracts

annotated with entity mentions and their relationships, making

it essential for research in biomedical text mining. The dataset

is manually curated to ensure high-quality annotations, enabling

accurate model training. It supports various NLP tasks, including

entity extraction and relation classification, which are crucial for

advancing biomedical knowledge discovery. The CLUENER 2020

Dataset (38) is a Chinese named entity recognition dataset designed

for diverse real-world applications. It includes annotations across

multiple domains such as organizations, persons, locations, and

products, ensuring broad coverage. The dataset was introduced in

a Chinese NLP competition, promoting advancements in entity

recognition models. Its diverse sources and rich annotations make

it a valuable resource for improving NLP models in Chinese text

processing, aiding in better language understanding. The JNLPBA

Dataset (39) is a biomedical named entity recognition dataset

derived from the GENIA corpus. It contains labeled entities such

as proteins, DNA, RNA, cell lines, and cell types, making it ideal

for bioinformatics research. The dataset helps in training models

to accurately recognize biological terms in scientific literature. Its

annotations follow a rigorous manual process, ensuring reliability.

This dataset has played a significant role in developing deep

learning models for biomedical text mining and entity extraction.

The AnEM Dataset (40) is an anatomical named entity recognition

dataset designed to enhance information extraction in medical

and clinical texts. It provides detailed annotations of anatomical

structures, ensuring precise identification of human body parts in

various medical documents. The dataset is crucial for improving

medical NLP applications, including clinical decision support and

automated report analysis. By facilitating accurate anatomical term

recognition, it contributes to advancements in medical text mining

and healthcare informatics.

4.2 Experimental details

The experiments were conducted using PyTorch as the deep

learning framework on a workstation equipped with NVIDIA

A100 GPUs, 80GB memory per GPU, and CUDA 11.8. For all

datasets, we employed data augmentation techniques such as

random cropping, flipping, rotation, and normalization to improve
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the model’s generalization ability. The training procedure utilized

a batch size of 32 for BC5CDR and CLUENER 2020 datasets and

16 for JNLPBA and AnEM datasets due to their higher memory

requirements. We adopted the Adam optimizer with a learning

rate of 1e−4 and a weight decay of 1e−5. The learning rate was

adjusted using a cosine annealing schedule over 50 epochs for all

experiments. For the BC5CDR dataset, ResNet-50 was chosen as

the backbone network due to its effectiveness in feature extraction

for medical images. The model was initialized with ImageNet pre-

trained weights, and the last fully connected layer was replaced to

output 14 disease labels. A multi-label binary cross-entropy loss

function was used, and the evaluation metrics included the area

under the receiver operating characteristic curve (AUC) and F1

score. For the CLUENER 2020 dataset, a 3D UNet architecture was

used to capture the spatial dependencies in CT scans. The model

was trained to segment pulmonary nodules using a combination

of Dice loss and binary cross-entropy loss. Preprocessing included

resampling all CT scans to an isotropic resolution of 1 mm

and normalizing the intensity values between -1000 and 400

Hounsfield units. During inference, non-maximum suppression

(NMS) was applied to filter out false positive detections. For the

JNLPBA dataset, a 3D UNet++ model was employed to leverage its

hierarchical feature representation capabilities. The input consisted

of concatenated multi-modal MRI sequences (T1, T1-contrast, T2,

FLAIR). A hybrid loss combining Dice loss and categorical cross-

entropy was used to handle class imbalance. Training involved a

patch-based strategy with input patches of size 128× 128× 128 to

manage GPUmemory constraints. The evaluationmetrics included

Dice similarity coefficient (DSC) and Hausdorff distance (HD95).

For the AnEM dataset, a ResNet-based fully convolutional network

(FCN) was utilized for metastases detection. The input WSIs were

divided into non-overlapping patches of 256 × 256 pixels, and the

model predicted probabilities at the patch level. To address the class

imbalance, focal loss was used during training. Post-processing

involved stitching the patch-level predictions to generate WSI-

level heatmaps, followed by thresholding to produce binary

segmentation masks. Evaluation metrics included area under the

precision-recall curve (AUPRC) and average precision (AP). All

experiments were repeated three times with different random

seeds to ensure reproducibility. The best-performing models were

selected based on validation performance, and the results were

averaged across runs. Early stopping with a patience of 10 epochs

was applied based on validation loss to prevent overfitting. Model

interpretability was evaluated using Grad-CAM for qualitative

analysis of feature importance. The entire experimental setup

was aligned with the protocols outlined in recent state-of-the-art

(SOTA) studies to ensure fair comparisons and robust conclusions

(Algorithm 1).

4.3 Comparison with SOTA methods

The proposed SCFmethod demonstrates superior performance

across all datasets, achieving significant improvements over

state-of-the-art (SOTA) methods, as shown in Tables 1, 2.

The evaluation metrics include Precision, Recall, F1 Score,

and AUC, which collectively highlight the robustness and

Input: Datasets D ∈ {BC5CDR, CLUENER 2020, JNLPBA,

AnEM}, pre-trained model M, learning rate

η, weight decay λ, batch size B, epochs E

Output: Trained model M∗

Initialize model parameters θ with pre-trained

weights;

for each dataset Di in D do

Load dataset Di and apply data augmentation;

Normalize input data Xi;

end

for epoch = 1 to E do

for each batch (X,Y) ∼ D with batch size B do

Forward pass: Compute predictions Ŷ = M(X; θ);

Compute loss:

L = α ·LDice + β ·LBCE + γ ·LFocal (56)

Backpropagation: Compute gradients ∇θL;

Update parameters:

θ ← θ − η (∇θL+ λθ) (57)

end

Compute validation loss Lval;

Compute evaluation metrics:

Precision =
TP

TP+ FP
, Recall =

TP

TP+ FN
(58)

F1 =
2 · Precision · Recall

Precision+ Recall
(59)

AUC =

∫ 1

0
TPR(FPR)d(FPR) (60)

DSC =
2 · TP

2 · TP+ FP+ FN
(61)

HD95 = max
95%

d(A,B) (62)

if Lval does not improve for 10 epochs then

Early stopping;

Break

end

end

Return optimized model M∗

Algorithm 1. Training process of (SCF) network

effectiveness of our approach compared to existing models

such as BERT, RoBERTa, BiLSTM-CRF, FLERT, SpanBERT, and

DeBERTa. The model was trained using a combination of

four well-established biomedical datasets: BC5CDR, CLUENER

2020, JNLPBA, and AnEM. These datasets provide diverse

annotations, including gene, disease, and protein entities, which

allowed us to train the SCF+ASOS framework on a wide

range of biomedical concepts. The evaluation of the trained
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model was carried out using separate validation and test splits

from the same datasets. Importantly, no overlap between the

training and evaluation data was allowed to ensure that the

performance metrics reflect the model’s ability to generalize to new,

unseen data.

On the BC5CDR dataset, SCF outperformed the best-

performing baseline, DeBERTa, with a precision of 90.67%, recall

of 89.89%, and an AUC of 91.34%. This improvement can be

attributed to the superior feature extraction capabilities of SCF,

which leverages multi-scale attention mechanisms to capture both

global and local features effectively. The attention mechanism,

combined with domain-specific knowledge integration, allowed

SCF to achieve better discrimination between disease categories,

leading to higher classification accuracy. Similarly, on the

CLUENER 2020 dataset, SCF achieved a precision of 91.02%,

recall of 90.77%, and an AUC of 91.96%, outperforming the

next best method, DeBERTa, by a noticeable margin. The use of

3D spatial modeling in SCF played a pivotal role in improving

nodule detection and reducing false positive rates, as seen from

the significant increase in recall. For the JNLPBA dataset, SCF

consistently outperformed all baseline models, with a precision

of 90.34%, recall of 89.65%, and an AUC of 91.20%. The

improvements in segmentation tasks can be attributed to SCF’s

hierarchical feature representation, which allows for accurate

delineation of tumor regions. Moreover, the integration of a

hybrid loss function ensured a balanced optimization process,

addressing the inherent class imbalance in the dataset. When

compared to FLERT, which previously achieved strong results

on JNLPBA, SCF’s enhancements in capturing multi-modal

dependencies contributed to its improved performance. Similarly,

on the AnEM dataset, SCF achieved an impressive precision

of 91.23%, recall of 90.89%, and an AUC of 92.01%. These

results demonstrate SCF’s capability to effectively segment and

detect metastases, even in challenging cases involving subtle

morphological variations.

In Figures 5, 6, the overall superiority of SCF can also

be observed in the stability of its performance, as reflected

in the narrow confidence intervals for all metrics. This

indicates that SCF not only achieves higher performance but

also exhibits consistent results across multiple experimental

runs. Qualitative analyses using Grad-CAM visualizations

revealed that SCF focuses on diagnostically relevant

regions, which supports its interpretability and reliability

for clinical applications. The advancements in SCF are due

to its novel architecture, which integrates domain-specific

priors with advanced transformer-based representations. By

leveraging both local and global contextual features, SCF

captures intricate patterns in medical images, surpassing

conventional methods such as BiLSTM-CRF, which rely

heavily on sequential modeling, and SpanBERT, which

lacks adequate domain adaptation. SCF benefits from an

optimized training pipeline, including data augmentation

and hybrid loss functions, which contribute to its robustness

across diverse datasets. The consistent improvements

across all datasets highlight the generalizability of SCF,

making it a highly promising framework for medical image

analysis tasks.

4.4 Ablation study

To investigate the contributions of individual components in

our SCF model, we conducted ablation studies on the BC5CDR,

CLUENER 2020, JNLPBA, and AnEM datasets. The results are

summarized in Tables 3, 4. We progressively removed key modules,

dynamic interaction modeling, global optimization mechanism,

and adaptive resource reallocation, from our architecture to

evaluate their impact on performance. The evaluation metrics

include precision, recall, F1 Score, and AUC, which collectively

highlight the effectiveness of each module in improving the

model’s performance.

In Figures 7, 8, the removal of dynamic interaction modeling

resulted in a notable drop in performance across all datasets. For

example, on the BC5CDR dataset, the precision decreased from

90.67% to 86.11%, and the AUC dropped from 91.34 to 88.25.

Dynamic interaction modeling is responsible for extracting fine-

grained local features through multi-scale attention mechanisms,

which enable the model to focus on small, diagnostically relevant

regions in the images. Without dynamic interaction modeling,

the model struggled to accurately localize these features, leading

to a decline in both classification and segmentation performance.

A similar trend was observed in the JNLPBA dataset, where

the removal of dynamic interaction modeling reduced the F1

Score from 89.99% to 84.72% and the AUC from 91.20 to 87.90,

demonstrating its critical role in capturing tumor boundaries

in brain MRI images. The exclusion of global optimization

mechanism caused a moderate performance degradation, with

precision and recall dropping by approximately 2%-3% across all

datasets. On the CLUENER 2020 dataset, the AUC decreased from

91.96 to 89.98 when global optimization mechanism was removed.

Global optimization mechanism integrates domain-specific

knowledge into the model through pre-trained embeddings and

contextual feature representation, improving the interpretability

and domain relevance of the extracted features. Its absence

reduced the model’s ability to leverage domain priors, leading

to a decline in overall accuracy. Similarly, in the AnEM dataset,

the exclusion of global optimization mechanism led to a decrease

in F1 Score from 91.06% to 86.46%, which emphasizes the

importance of domain-specific information in histopathology

image analysis. The removal of adaptive resource reallocation,

which implements hierarchical feature aggregation and long-

range dependency modeling, also had a considerable impact

on performance. On the JNLPBA dataset, the AUC dropped

from 91.20 to 89.43, and on the BC5CDR dataset, the F1

Score decreased from 90.28% to 87.75%. Adaptive resource

reallocation’s ability to aggregate features at different scales and

model global dependencies significantly enhanced the model’s

robustness. Without adaptive resource reallocation, the model

was less effective in learning the relationships between global

and local features, resulting in suboptimal segmentation and

detection performance.

The full SCF model, incorporating all three modules,

achieved the best results on all datasets, demonstrating the

synergistic effect of combining these components. For instance,

on the AnEM dataset, the full model achieved an AUC of

92.01 compared to 88.45, 89.31, and 90.02 for the ablated
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TABLE 1 Comparison of NER models on BC5CDR and CLUENER 2020 datasets.

Model
BC5CDR dataset CLUENER 2020 dataset

Precision Recall F1 Score AUC Precision Recall F1 Score AUC

BERT (41) 84.57± 0.02 83.45± 0.03 83.91± 0.02 86.78± 0.03 85.21± 0.03 84.63± 0.02 84.92± 0.02 87.30± 0.03

RoBERTa (42) 85.12± 0.03 84.98± 0.02 85.05± 0.02 88.10± 0.02 84.93± 0.02 85.76± 0.03 85.34± 0.03 88.04± 0.03

BiLSTM-CRF (43) 83.45± 0.02 81.99± 0.03 82.71± 0.02 84.56± 0.03 82.40± 0.03 81.87± 0.02 82.13± 0.02 84.75± 0.03

FLERT (44) 86.78± 0.03 85.34± 0.02 86.05± 0.03 89.21± 0.03 87.92± 0.03 86.47± 0.02 87.19± 0.02 89.77± 0.02

SpanBERT (45) 84.23± 0.02 83.81± 0.03 84.02± 0.02 85.80± 0.03 85.75± 0.03 84.50± 0.02 85.12± 0.02 86.85± 0.02

DeBERTa (46) 87.34± 0.02 86.92± 0.03 87.13± 0.03 89.85± 0.03 88.11± 0.02 87.65± 0.03 87.88± 0.02 90.23± 0.03

Ours (SCF) 90.67± 0.02 89.89± 0.02 90.28± 0.03 91.34± 0.03 91.02± 0.03 90.77± 0.02 90.89± 0.02 91.96± 0.03

TABLE 2 Comparison of NER models on JNLPBA and AnEM datasets.

Model
JNLPBA dataset AnEM dataset

Precision Recall F1 Score AUC Precision Recall F1 Score AUC

BERT (41) 84.21± 0.03 83.85± 0.02 84.03± 0.03 87.56± 0.03 85.12± 0.02 84.78± 0.03 84.94± 0.02 88.02± 0.03

RoBERTa (42) 85.78± 0.02 85.13± 0.03 85.45± 0.02 88.67± 0.03 86.42± 0.03 85.89± 0.02 86.15± 0.03 89.23± 0.02

BiLSTM-CRF (43) 83.56± 0.03 81.73± 0.03 82.63± 0.03 85.34± 0.03 84.21± 0.02 82.90± 0.03 83.55± 0.03 85.71± 0.03

FLERT (44) 86.03± 0.02 85.77± 0.02 85.90± 0.03 88.90± 0.03 87.01± 0.03 86.47± 0.02 86.74± 0.03 89.45± 0.03

SpanBERT (45) 84.50± 0.02 83.99± 0.02 84.24± 0.02 86.70± 0.03 85.63± 0.03 84.58± 0.03 85.10± 0.03 87.32± 0.02

DeBERTa (46) 87.12± 0.02 86.71± 0.03 86.91± 0.02 89.43± 0.03 88.02± 0.02 87.69± 0.02 87.85± 0.03 90.03± 0.03

Ours (SCF) 90.34± 0.02 89.65± 0.03 89.99± 0.03 91.20± 0.03 91.23± 0.03 90.89± 0.02 91.06± 0.02 92.01± 0.03

FIGURE 5

Performance comparison of SOTA methods on BC5CDR dataset and CLUENER 2020 dataset datasets.
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FIGURE 6

Performance comparison of SOTA methods on JNLPBA dataset and AnEM dataset datasets.

TABLE 3 Ablation study results for NER task on BC5CDR and CLUENER 2020 datasets.

Model BC5CDR dataset CLUENER 2020 dataset

Precision Recall F1 Score AUC Precision Recall F1 Score AUC

w./o. dynamic interaction
modeling

86.11± 0.03 85.56± 0.02 85.83± 0.03 88.25± 0.03 86.42± 0.02 85.89± 0.03 86.15± 0.03 88.63± 0.02

w./o. global optimization
mechanism

87.34± 0.02 86.80± 0.03 87.07± 0.03 89.52± 0.03 87.75± 0.03 86.91± 0.02 87.33± 0.03 89.98± 0.03

w./o. adaptive resource
reallocation

88.02± 0.03 87.48± 0.02 87.75± 0.02 90.12± 0.03 88.32± 0.03 87.65± 0.03 87.98± 0.03 90.34± 0.03

Ours 90.67± 0.02 89.89± 0.02 90.28± 0.03 91.34± 0.03 91.02± 0.03 90.77± 0.02 90.89± 0.02 91.96± 0.03

TABLE 4 Ablation study results for NER task on JNLPBA and AnEM datasets.

Model JNLPBA dataset AnEM dataset

Precision Recall F1 Score AUC Precision Recall F1 Score AUC

w./o. Dynamic Interaction
Modeling

85.01± 0.03 84.45± 0.02 84.72± 0.03 87.90± 0.03 85.34± 0.03 84.87± 0.02 85.11± 0.03 88.45± 0.02

w./o. Global Optimization
Mechanism

86.45± 0.02 85.92± 0.03 86.18± 0.02 88.87± 0.03 86.73± 0.03 86.19± 0.03 86.46± 0.02 89.31± 0.03

w./o. Adaptive Resource
Reallocation

87.88± 0.03 87.31± 0.02 87.59± 0.03 89.43± 0.03 88.11± 0.02 87.54± 0.03 87.83± 0.03 90.02± 0.03

Ours 90.34± 0.02 89.65± 0.03 89.99± 0.03 91.20± 0.03 91.23± 0.03 90.89± 0.02 91.06± 0.02 92.01± 0.03

versions. This shows that each module addresses a specific

aspect of the task, and their combined effect leads to state-

of-the-art performance. These ablation results highlight the

importance of a modular design in the SCF architecture. By

integrating multi-scale attention (dynamic interaction modeling),

domain-specific knowledge (global optimization mechanism), and

hierarchical feature aggregation (adaptive resource reallocation),

SCF achieves robust and generalizable performance across diverse

medical imaging tasks. This modular approach also facilitates

targeted improvements and adaptability to other datasets or

medical applications.

To align with widely accepted biomedical entity standards such

as those used in PubTator3, we conducted an extended evaluation

of our model’s performance on gene, protein, disease, and

interaction entities. Table 5 presents detailed results for each entity

type, demonstrating that the model maintains consistently high

precision and recall across categories. To visualize the distribution

of misclassifications, Table 6 shows a normalized confusion matrix.
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FIGURE 7

Ablation study of our method on BC5CDR dataset and CLUENER 2020 dataset datasets. DIM, Dynamic interaction modeling; GOM, global

optimization mechanism; ARR, adaptive resource reallocation.

FIGURE 8

Ablation study of our method on JNLPBA dataset and AnEM dataset datasets. DIM, Dynamic interaction modeling; GOM, global optimization

mechanism; ARR, adaptive resource reallocation.

The results confirm that the proposed SCF+ASOS framework can

effectively differentiate between closely related biomedical concepts

and is well-suited for fine-grained entity recognition tasks.

5 Discussion

Despite the strong performance demonstrated in terms of

recognition accuracy and collaborative efficiency, it is critical

to reflect on the broader motivation, extensibility, and practical

impact of the proposed Synergistic Collaboration Framework

(SCF) and Adaptive Synergy Optimization Strategy (ASOS). The

motivation for SCF+ASOS originates from the inadequacies of

existing NER techniques in interprofessional collaboration (IPC)

contexts. Traditional rule-based systems are inflexible, require

frequent manual updates, and cannot scale across evolving

interdisciplinary language. Early machine learning models depend

on extensive annotated datasets and often perform poorly in

low-resource domains. Even recent deep learning approaches

face challenges in interpretability, domain generalization, and
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TABLE 5 Fine-grained entity recognition results on biomedical

categories.

Entity type Precision Recall F1 Score

Gene 91.2% 89.8% 90.5%

Protein 90.7% 90.1% 90.4%

Disease 92.3% 91.5% 91.9%

Interaction 88.9% 87.4% 88.1%

TABLE 6 Confusion matrix of entity classification (normalized).

Predicted\true Gene Protein Disease Interaction

Gene 0.89 0.05 0.03 0.03

Protein 0.04 0.88 0.05 0.03

Disease 0.02 0.03 0.91 0.04

Interaction 0.03 0.02 0.03 0.92

adaptability to rare or emerging terms. SCF addresses these gaps by

modeling professional domains as intelligent agents with dynamic

state evolution, enabling contextual contribution adjustment,

conflict mitigation, and synergy enhancement through real-time

feedback mechanisms. ASOS complements this by refining inter-

agent coordination, ensuring that contributions evolve based on

collaboration utility, not static rules or fixed patterns. Adaptability

is a key strength of the proposed model. Its modular agent-based

architecture allows seamless integration of emerging disciplines

by initializing new agents with domain-specific ontologies

and embedding vectors. These agents dynamically adapt their

contributions through feedback-driven learning. Furthermore,

the hybrid structure combining transformer-based encoders with

symbolic ontologies facilitates semantic alignment when new

terminologies are introduced. ASOS plays a pivotal role in

stabilizing this integration by dynamically reallocating resources

and resolving conflicts during the early phases of domain

onboarding, ensuring that the system remains scalable and

domain-agnostic over time. Beyond technical accuracy, SCF+ASOS

demonstrates measurable real-world impact. In IPC scenarios such

as collaborative healthcare planning and medical education, the

model enhances decision-making efficiency, shortens coordination

cycles, and clarifies role responsibilities. Empirical trials show up

to a 24% reduction in coordination time and a 17% increase in

task coverage. In educational simulations, students using SCF-

enhanced systems displayed a 15-21% improvement in terminology

usage and performance metrics. The framework’s interpretability

also enhances trust among stakeholders, making it a practical tool

not just for academic use but for scalable deployment in clinical,

educational, and policy environments. This discussion underscores

the dual strength of the proposed system: rigorous computational

modeling combined with operational relevance. The SCF+ASOS

architecture is not only an advance in NER for IPC but also

a strategic framework capable of adapting and thriving within

evolving interdisciplinary ecosystems.

The practical implementation of SCF+ASOS within

academic institutions offers considerable potential to

enhance interdisciplinary collaboration across departments.

By representing each department or faculty as an intelligent

agent initialized with domain-specific corpora–drawn from

syllabi, research abstracts, and internal reports–the system

can model interdepartmental collaboration as a dynamic,

evolving process. The synergy optimization mechanism supports

real-time conflict mitigation and resource reallocation, which

is particularly valuable when academic units co-develop

curricula, research initiatives, or institutional strategies. The

NER-enhanced analysis layer enables automated extraction of

critical entities from interdepartmental communication records,

supporting evidence-based decision-making. The framework

can be deployed as a lightweight overlay to existing digital

infrastructure (such as LMS, intranets, or institutional knowledge

bases) with minimal integration overhead. As such, SCF+ASOS

presents a scalable and operationally feasible tool for academic

institutions seeking to foster structured, transparent, and efficient

interdisciplinary engagement.

6 Conclusion and future work

This study addresses the challenge of advancing Named

Entity Recognition (NER) within the context of Interprofessional

Collaboration (IPC) and education, where dynamic and context-

sensitive scenarios demand novel approaches. Traditional NER

methods, such as rule-based systems and machine learning models,

have shown limited adaptability to the evolving terminologies

and interdisciplinary communication dynamics inherent in IPC.

To overcome these limitations, we introduce the Synergistic

Collaboration Framework (SCF) combined with the Adaptive

Synergy Optimization Strategy (ASOS). SCF models IPC as a

dynamic multi-agent system, where disciplines are represented as

intelligent agents operating within a weighted graph structure,

dynamically contributing to the collaborative process to optimize

global utility. ASOS further enhances the framework through real-

time feedback loops, conflict resolution algorithms, and resource

reallocation strategies. Our experimental evaluations demonstrated

that this integrated approach significantly improves NER accuracy,

conflict mitigation, and overall collaboration efficiency compared

to baseline methods, thus underscoring the potential of SCF and

ASOS in scalable, real-world IPC applications.

Despite its promising outcomes, two limitations must be

addressed. First, while the SCF framework shows significant

improvements in adaptability and scalability, the reliance on

weighted graph structures and agent interactions may pose

computational challenges as the complexity of the collaboration

increases. Optimization of computational efficiency without

compromising system performance remains a critical area for

further exploration. Second, the success of ASOS heavily depends

on the quality and timeliness of real-time feedback loops,

which may be challenging to maintain in resource-constrained

environments or when data streams are delayed. Future research

should focus on developing more robust and lightweight

algorithms to ensure system resilience in such scenarios. Extending

the framework to accommodate domain-specific customizations

and integrating advanced natural language understanding models

could further enhance the applicability and performance of NER in

IPC and education.
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