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With a high frequency and a poor prognosis, combined pre-and post-capillary 
pulmonary hypertension (Cpc-PH) is a significant subtype of pulmonary hypertension 
linked to left-sided heart disease (PH-LHD). The complicated pathophysiology of 
Cpc-PH is primarily characterized by elevated pulmonary venous pressure leading 
to an increase in retrocapillary pressure, which is followed by elevated pulmonary 
artery pressure and a marked rise in pulmonary vascular resistance (PVR). There 
is currently no well-defined treatment plan for Cpc-PH, and there are numerous 
obstacles to overcome. In patients with Cpc-PH, the effectiveness of targeted 
medications for pulmonary hypertension is limited and debatable. Recent research 
has revealed that the prevalence and progression of Cpc-PH may be influenced by 
genetic factors, metabolic syndrome, oxidative stress, and fibrosis. To help doctors 
better manage and treat patients with Cpc-PH, this review provides a detailed 
description of the disease’s epidemiology, pathogenesis, diagnostic techniques, 
current treatment status, and potential therapeutic targets.
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Introduction

The 2022 European guidelines for the diagnosis and treatment of pulmonary hypertension 
(PH), the 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Arterial 
Hypertension, define PH as the mean pulmonary artery pressure (mPAP) measured by right 
heart catheterization (RHC) at sea level and at rest ≥20 mmHg, and pulmonary artery wedge 
pressure (PAWP) > 15 mmHg (1). Compared with the 2015 guidelines, the threshold for mPAP 
was lowered from 25 mmHg to 20 mmHg, and the threshold for PVR was lowered from 3 WU 
to 2 WU, which is more conducive to the early detection and diagnosis of patients with 
PH. Pulmonary arterial hypertension associated with left-sided heart disease (PH-LHD) is the 
most common form, accounting for approximately 68.5% of PH cases (2). PH-LHD is divided 
into two subtypes: Isolated postcapillary PH (Ipc-PH): mPAP>20 mmHg, PAWP>15 mmHg, 
PVR ≤ 2 WU; Combined pre-and post-capillary PH (Cpc-PH): mPAP>20 mmHg, 
PAWP>15 mmHg, PVR > 2 WU (3). Combined pre-and postcapillary pulmonary 
hypertension (Cpc-PH) is a specific phenotype of left-sided heart disease-associated 
pulmonary hypertension (PH-LHD, WHO category 2) characterized by the coexistence of 
retrocapillary hypertension (increased pulmonary venous pressure) and pulmonary vascular 
remodeling (precapillary hypertension) due to left-sided heart disease.
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In hemodynamics, Cpc-PH is usually associated with left heart 
disease or lung disease, which leads to elevated pulmonary venous 
pressure and subsequently affects pulmonary arterial pressure. In the 
early stage, the elevation of PAP is mainly due to the passive 
transmission of left atrial pressure. At this stage, PVR usually remains 
within the normal range and has not yet caused significant changes in 
pulmonary vascular structure. As the left atrial pressure continues to 
rise, changes begin to occur in the pulmonary vascular structure: veins 
become more permeable, with collagen deposition, leading to 
thickening of the vessel walls and narrowing of the lumen; capillaries 
and small arteries, under long-term high-pressure stimulation, 
develop intimal fibrosis and medial hypertrophy of the pulmonary 
arteries, ultimately resulting in an increase in PVR. When PVR 
exceeds 2 WU, Cpc-PH is established. The probability of 
hospitalization for heart failure or all-cause death increased by 2% for 
every 1 mmHg increase in mPAP, and by 7% for every 1 WU increase 
in PVR (4). According to the new definition, the ideal PVR threshold 
is nearly 2 WU, or 2.2 WU. Combined capillary pulmonary 
hypertension is difficult to diagnose and treat; a customized treatment 
strategy must be created, taking into account the effects of lung and 
left heart disease (Figure  1). This holds significant importance in 
comprehending the pathophysiological process of pulmonary 
hypertension and enhancing patient outcomes.

Epidemiology

About 1% of people worldwide have pulmonary hypertension, 
and among those 65 and older, the frequency rises to 10%. In 
developed countries (eg, Europe and the United States), the annual 
incidence of Cpc-PH is about 5–10 cases per 100,000 people, 
accounting for 5–10% of all new cases of pulmonary hypertension. 
The age of onset is more common in the elderly (> 65 years) (1–5), 
which is associated with a high incidence of left-sided heart disease, 

and the proportion of women is slightly higher. Hypertension (>70%), 
diabetes, and obesity (BMI > 30%) are major risk factors in patients 
with underlying medical conditions, and the incidence of Cpc-PH is 
higher in patients with valvular disease (eg, mitral regurgitation) and 
atrial fibrillation. Mortality is significantly higher in patients with 
Cpc-PH than in PH-LHD alone (2-year survival rate is about 50–60%, 
5-year survival rate is about 40–50%, vs. 70–80%), and the risk of 
death is increased by 20–30% for every 1 WU increase in PVR (3–6). 
In studies of various types of pulmonary hypertension, mildly elevated 
mPAP (21–24 mmHg) was significantly associated with increased 
mortality (3–7). Several studies of patients with systemic sclerosis have 
found that patients with 24 mmHg ≥ mPAP ≥ 21 mmHg not only 
have higher mortality but are more likely to progress to pulmonary 
hypertension (mPAP ≥ 25 mmHg) (3). A total of 5–12% patients with 
left-sided heart disease (PH-LHD) developed Cpc-PH. According to 
EU-US and US cohort studies, 1.5–3% of patients with heart failure 
with reduced ejection fraction (HFrEF) also developed Cpc-PH; and 
between 2 and 5% of patients with Heart Failure with Preserved 
Ejection Fraction (HFpEF) developed Cpc-PH (due to pulmonary 
vascular disease and common metabolic syndrome). Pulmonary 
hypertension is linked to a twofold increase in mortality in people 
with both HFrEF and HFpEF. The 3-and 5-year death rates for 
PH-LHD were 42.3 and 52.6%, respectively, in a cohort study of 4,621 
patients with the condition (8). However, all of these PH-LHD clinical 
cohort studies are from Western nations. From Ipc-PH to Cpc-PH, the 
annual conversion rate is about 3–6% (9). In certain groups of people 
with systemic sclerosis, left-sided heart disease and PAH may coexist, 
increasing the risk of Cpc-PH. The elderly, diabetic patients (30–40%) 
and patients with chronic kidney disease (GFR < 60 mL/min/1.73 m2) 
are more likely to have mixed pH (10).

China currently lacks representative data on PH-LHD, particularly 
in the form of long-term follow-up reports. Therefore, multi-center 
registration studies and the creation of a PH-LHD/Cpc-PH database 
based on RHC as the standard diagnosis in China are urgently needed.

FIGURE 1

WHO classification, etiological classification, and hemodynamic classification of pulmonary arterial hypertension.
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Pathophysiological mechanisms

Cpc-PH involves complex pathophysiological mechanisms. The 
increase of PAWP reflects left atrial dysfunction. This increase in 
pressure will be transmitted to the pulmonary circulation, leading to 
the increase of PAP and PVR, and the decrease of pulmonary artery 
compliance (PAC). It will eventually lead to endothelial dysfunction, 
pulmonary vascular remodeling and further increase the afterload of 
the right ventricle.

Pulmonary vascular remodeling and 
fibrosis mechanisms

Pulmonary vascular remodeling is the core pathological feature of 
Cpc-PH, characterized by intimal proliferation, medial hypertrophy, 
and adventitial fibrosis of the pulmonary arterioles. In the early stages, 
elevated left ventricular filling pressure leads to impaired pulmonary 
venous return, increased pulmonary vascular pressure, but no 
significant structural changes, termed IPC-PH (passive PH) (11). As 
the disease progresses, structural and functional changes in the 
pulmonary arteries occur, with thickening and hardening of the 
vascular walls, narrowing of the lumen, increased resistance, and 
persistent elevation of pulmonary vascular resistance leading to right 
heart failure, entering the Cpc-PH phase (12). Patients with Cpc-PH 
have a higher incidence of right ventricular dysfunction and 
pulmonary artery remodeling, with significant features of distal 
pulmonary artery hypertrophic remodeling, fibrosis, and luminal 
occlusion (13, 14).

Macrophages interact with pulmonary vascular endothelial cells 
to drive pulmonary vascular remodeling, with an increase in CD68+ 
cells (M2 macrophage subtype) in the adventitial layer, and adventitial 
fibroblasts may be  the primary mediators of their activation and 
polarization. Fatty acid-binding protein 5 (FABP5) exacerbates 
pulmonary artery fibrosis by activating the Wnt/β-catenin signaling 
pathway, significantly upregulated in Cpc-PH mouse models, and 
closely related to pulmonary artery fibrosis. In vitro experiments have 
shown that inhibiting FABP5 (via siRNA or antagonists) can attenuate 
TGF-β1-induced fibrotic responses. Specific alveolar capillary 
endothelial cells (Plvap+) can transiently activate mesenchymal gene 
aSMA, affecting extracellular matrix remodeling, vascular integrity, 
and cell-to-cell interactions (15, 16).

SBFI-26 is a selective FABP5 inhibitor that can inhibit fibrosis by 
modulating the Wnt/β-catenin signaling pathway, significantly 
suppressing pulmonary artery fibrosis and remodeling in animal 
models, reducing pulmonary artery wall thickness and collagen 
deposition. Circular RNA circALMS1 is downregulated in patients 
with pulmonary arterial hypertension, and its overexpression can 
inhibit the proliferation and migration of pulmonary microvascular 
endothelial cells by suppressing the miR-17-3p/YTHDF2 pathway, 
improving right heart function (17, 18).

Neurohumoral mechanisms

These include sympathetic overactivation, activation of the renin-
angiotensin-aldosterone system (RAAS), inflammatory cell 
infiltration, and oxidative stress responses. Angiotensin II (Ang II) 

activates the RhoA/Rho kinase signaling pathway, inhibits myosin 
light chain phosphatase (MLCP) and endothelial nitric oxide synthase 
(eNOS) activity, leading to vasoconstriction and endothelial 
dysfunction (19). The ACE2-Ang (1–7)-Mas axis promotes the release 
of nitric oxide (NO) and prostaglandins, exerting vasodilatory, anti-
proliferative, and anti-inflammatory effects, with enhanced activity 
improving pulmonary hemodynamics (20). Recombinant human 
soluble ACE2 (rhACE2) can improve pulmonary artery pressure and 
reduce oxidative stress (21, 22).

Left atrial dysfunction

HFpEF, HFrEF, and VHD can lead to elevated left atrial pressure 
(LAP), increased volume, and subsequent left atrial enlargement, 
impaired contractility, and interstitial fibrosis as part of the remodeling 
process (23). Left atrial remodeling weakens its barrier function, 
passively transmitting pressure to the pulmonary vasculature, causing 
elevated pulmonary venous pressure and pulmonary congestion (24). 
Sudden increases in LAP can lead to “alveolar-capillary stress failure,” 
disrupting the alveolar-capillary barrier and causing pulmonary 
edema (25). Under the influence of endothelial dysfunction, 
neurohumoral factors, and inflammatory cell infiltration, persistent 
changes in LAP lead to structural abnormalities in the pulmonary 
vasculature and increased pulmonary vascular resistance (26–28).

Pulmonary vascular endothelial 
dysfunction

Endothelial cell injury leads to vasoconstriction, inflammatory 
responses, and fibrosis. Vasoreactive substances such as nitric oxide 
(NO), prostacyclin (PGI2), and endothelin-1 (ET-1) collectively 
regulate pulmonary vasodilation and constriction (29). NO is 
synthesized and released by eNOS, dilating blood vessels through the 
NO-sGC-cGMP-PKG pathway, inhibiting smooth muscle cell 
proliferation, and slowing pulmonary vascular remodeling (30). 
Elevated aldosterone levels can induce oxidative stress, impair ET-B 
receptor signaling, reduce NO synthesis and bioavailability, and 
simultaneously, excessive ET-1 production can inhibit eNOS 
expression, decreasing NO secretion (31, 32).

Inflammation and chemotaxis mechanisms

CXCL8 (IL-8) and its receptors CXCR1 and CXCR2 are 
upregulated in pulmonary arterial hypertension, with CXCL8 
promoting the recruitment and activation of inflammatory cells 
through binding to CXCR1/2, exacerbating pulmonary artery 
inflammation and remodeling. The interaction between CXCL10 and 
its receptor CXCR3 plays a significant role in the pathogenesis of PH, 
with CXCL10 inducing chemotaxis of T cells and natural killer cells, 
participating in pulmonary artery inflammatory responses. The 
signaling pathways of CXCL12 and its receptors CXCR4 and ACKR3 
also play important roles in PH, with the CXCL12-CXCR4 axis not 
only regulating the migration of inflammatory cells but also promoting 
the proliferation of PASMCs through the PI3K/Akt signaling pathway 
(33–36).
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Genetic factors and molecular signaling 
pathway mechanisms

BMPR-II is a member of the TGF-β superfamily, with 
heterozygous mutations present in 80% of familial PH patients and 
20% of sporadic PH patients, making it a key pathogenic gene for 
primary and hereditary PH (37–39). It influences cell proliferation, 
differentiation, tissue repair, inflammation, and angiogenesis through 
Smad1/5/8 and non-Smad signaling pathways. BMP9 gene mutation 
rates are as high as 6.7% in East Asian populations, with mutations 
reducing circulating BMP9 levels, weakening vascular anti-apoptotic 
and anti-damage capabilities, and increasing the risk of idiopathic PH 
by over 22 times (40–42). The PPARγ-p53 pathway regulates cell 
proliferation, apoptosis, and inflammatory responses, affecting 
pulmonary vascular remodeling (43–47). Other gene mutations (such 
as SMAD1, SMAD4, SMAD9, CAV1, and KCNK3) have also been 
identified in BMPR-II mutation-negative families (48–50). CLIC4 is 
highly expressed under stress conditions, promoting BMPR-II 
internalization and degradation, inhibiting the BMP signaling 
pathway, and inducing a phenotypic shift in endothelial cells toward 
anti-apoptotic and proliferative states (51–57).

With the in-depth study of the pathogenesis of Cpc-PH, more and 
more evidence suggests that mutations in multiple functional genes 
(such as BMPRII, ALK1, CAV1, TBX4, KCNK3, SMAD8, EIF2AK4, 
etc.) play an important role in the pathogenesis of the disease. At 
present, researchers generally believe that the occurrence of PH is 

similar to tumors, with a “secondary strike” mechanism, where genetic 
and environmental factors jointly promote the occurrence and 
development of the disease.

Gene therapy and molecular signaling 
pathway mechanisms

Experiments based on p53 nanoparticle delivery and AAV vector-
mediated delivery of normal BMPR2 genes have shown promising 
results. Lipid nanoparticles (LNPs) delivering CRISPR-Cas9 systems 
can repair gene mutations in PASMCs (58–60). Canagliflozin alleviates 
PH symptoms by activating PPARγ and inhibiting its S225 
phosphorylation, showing good protective effects in animal models. 
Maintaining pulmonary vascular homeostasis by deubiquitination to 
activate the ALK2-Smad1/5/9-PPARγ axis, with upregulation of 
BRCC3, can alleviate PH symptoms (61–64) (Figure 2).

Diagnostic methods

Diagnosis of Cpc-PH is based on a combination of hemodynamic, 
radiographic, and clinical findings. Right Heart Catheterization 
(RHC) remains the gold standard for distinguishing PH-LHD/
Cpc-PH from other forms of PH, with direct measurement of mPAP, 
PAWP, PVR, and DPG were directly measured to determine the 

FIGURE 2

Chemokine signaling pathways: Chemokines bind to their cognate chemokine receptors expressed on different cell types. Upon receptor activation, 
the G protein dissociates into Gα and Gβγ subunits. Depending on the specific Gα subunit(s) to which the chemokine receptor is coupled, various 
downstream signaling pathways are regulated. Gαs protein activates adenylate cyclase (AC) to produce cAMP, which activates cAMP-dependent PKA. 
Gαi/o inactivates AC limiting cAMP levels and PKA activity. Gαi/o proteins activate PI3Ks, which converts phosphatidylinositol 4,5-bisphosphate (PIP2) 
to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which in turn activates PKB (Akt). Gαi/o and Gα12 proteins activate Ras, which further activates 
various MAPKs. Gαi/o and Gαq proteins activate PLCβ, which catalyzes PIP2 to IP3 and DAG. IP3 further regulates intracellular free calcium (Ca2+) levels, 
while DAG activates PKC. Gαq and Gα12 proteins also activates Rho family of GTPases (Rho), which further activates Rho-associated PK (ROCK). GPCR 
kinases (GRK) phosphorylate GPCRs, which enable β-arrestins to bind and internalize GPCRs, which can result in receptor recycling, if receptor 
phosphorylation is reversed by protein phosphatase 2 (PP2A) or degradation in lysosomes. β-arrestin bound to GPCRs can also activate MAPK 
pathways such as JNK and ERKs 1 and 2 (ERK1/2).
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hemodynamic classification. Diastolic Pressure Gradient (DPG) =  
Pulmonary Diastolic Blood Pressure-PAWP, DPG ≥ 7 mmHg 
indicates mixed pulmonary hypertension; Transpulmonary Pressure 
Gradient (TPG) = mPAP-PAWP, TPG ≥ 12 mmHg may indicate a 
mixed form. A growing body of data suggests that the ratio of stroke 
volume to pulmonary artery pulse pressure, a surrogate measure of 
pulmonary artery compliance (PAC), is associated with poor 
outcomes in patients with heart failure (65), suggesting that PACs 
should be given greater attention in the evaluation of early pulmonary 
vascular disease (66) (Figure 3).

Although right heart catheterization is the gold standard for 
diagnosing PH, it is invasive. Future research will focus on the 
development of more precise noninvasive diagnostic techniques, such 
as the use of advanced imaging techniques (eg, electrocardiogram, 
magnetic resonance imaging, computed tomography) and biomarker 
testing, to more accurately assess the hemodynamic status and 
pulmonary vascular architecture of patients (67). Transthoracic 
echocardiography (TTE) is the most important screening item used 
to measure the severity of PH. TTE identifies right ventricular 
dilation, the presence of valvular regurgitation, and the presence of 
valvular regurgitation Left ventricular systolic or diastolic dysfunction 
(68). Ventilation/perfusion scans are also recommended when heart 
failure (HF) presents with hypercoagulability. Ventilation-perfusion 
scans remain essential in the clinical workflow, as chronic 
thromboembolic pulmonary hypertension is unlikely if perfusion is 
normal (69). Chestx-ray may show cardiomegaly and dilated 
pulmonary arteries, as well as lung parenchyma or chest wall 
abnormalities. Chest CT angiography, although considered less 
sensitive than ventilation-perfusion scanning, may reveal signs of 
chronic thromboembolic disease, such as filling defects or wedge-
shaped or irregular linear opacities due to previous thrombosis. Used 
to determine the presence of pulmonary artery stenosis or occlusive 
lesions (70). Serum amino-terminal natriuretic peptide (BNP) levels 

can be included in risk stratification because they correlate strongly 
with the severity of pulmonary hypertension and can be  used to 
predict survival (71). The 6MWT reflects the overall exercise tolerance 
and daily activity ability, and is suitable for assessing functional status 
and rehabilitation effect. BNP quantifies cardiac stress and the degree 
of injury, and is suitable for assessing pathophysiological severity and 
treatment efficacy. The combination of the two can improve the 
comprehensiveness of the evaluation of patients with Cpc-PH. In 
patients with PH, elevated BNP reflects right ventricular pressure 
overload and progression of right heart failure (72, 73).

CardioMEMS is an implantable pressure monitoring system that 
is implanted into the pulmonary artery via a catheter to monitor PAP, 
CO, mPAP, PAWP, and others in real time to guide the treatment of 
heart failure and PH (74). The doctor can remotely monitor the 
patient’s condition and promptly modify the treatment plan thanks to 
the data being wirelessly transferred to an external device. This is 
essential for the evaluation of the condition. In one study, patients 
treated with CardioMEMS experienced a significant reduction in 
hospitalization and a significant improvement in quality of life. The 
CHAMPION study is a multicenter, randomized, controlled trial 
evaluating CardioMEMS in patients with heart failure (75). The results 
showed that patients using CardioMEMS had a significant reduction 
in hospitalization and a significant improvement in quality of life 
within 6 months. The PULSAR study further explored the use of 
CardioMEMS in patients with pulmonary hypertension. CardioMEMS 
was found to significantly improve 6-min walking distance (6MWD) 
and NT-proBNP levels (76). In a long-term follow-up study, patients 
treated with CardioMEMS demonstrated sustained improvement in 
pulmonary artery pressure and cardiac function over 2 years of 
follow-up, with no device-related serious adverse events (77).

In a study of 208 patients with chronic heart failure, BNP was 
significantly inversely associated with 6MWD (r = −0.61), and the 
combined predictive efficacy of the two measures was superior to that 

FIGURE 3

The mechanism of action of soluble guanylate cyclase (sGC) stimulants and activators. α, SGC α subunit; β value, sGC β subunit; cGMP, Cyclic 
guanosine monophosphate; Fe2+, Iron ions oxidize in a + 2 state; NO, Nitric oxide; O2-, Superoxide anion; ONO2-, Peroxynitrite.
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of a single measure (78). In patients with PH, 6MWD < 300 m and 
BNP > 300 pg./mL indicate very high risk and require intensive 
therapy. Studies have shown that for every 50 m reduction in 6MWD, 
the risk of death in patients with PH is significantly increased; A 
decline of >50 m in 6 MWD over 24 weeks is associated with at least 
a four-fold increase in mortality (79). 6MWT is widely used to 
evaluate the efficacy of targeted drugs (e.g., Sotatercept), surgery, or 
exercise rehabilitation. As an example, a mean increase of 40.8 m in 6 
MWD followed by pharmacotherapy was accompanied by 
simultaneous improvement in pulmonary vascular resistance and 
BNP levels (80). An improvement of 30–50 m in 6MWD is considered 
the threshold for clinical benefit in patients with PH and is referred to 
as the minimum clinically important difference (MCID) (81). The 
peak oxygen uptake cannot be directly measured by 6MWT, and the 
results are easily affected by factors such as age, gender, and corridor 
length, so it needs to be comprehensively judged in combination with 
other indicators. BNP levels were shown to increase significantly with 
NYHA cardiac function class (Grade I: 186 ± 22 pg./mL; Grade IV: 
266 ± 165 picograms/mL) (82). ROC Curve analysis showed that BNP 
predicted adverse events in patients with chronic heart failure with an 
area under the curve of 0.914 (sensitivity 0.778, specificity 0.977) 
(83, 84).

Current medical and surgical 
treatments

Based on existing evidence, PH-LHD targeted therapy does not 
have significant effectsin Cpc-PH patients. Conventional treatment 
modalities include strengthening the control of underlying diseases, 
targeted drug therapy, and surgical intervention. Its complexity 
requires precise hemodynamic assessment and risk stratification, 
while being alert to the potential risks of targeted drugs. It is 
recommended to use first-line drugs, including beta blockers, RAAS 

inhibitors, soluble guanylate cyclase stimulants, and sodium glucose 
cotransporter 2 inhibitors, in a reasonable combination to improve 
patient symptoms, delay disease progression, and reduce mortality. 
For Cpc-PH patients with metabolic syndrome and other diseases, 
they should also be managed. Although there is limited evidence for 
the targeted drug application of Cpc-PH, targeted drugs should still 
be  considered in specific situations. The trial outcomes of several 
medication classes that may be utilized to treat Cpc-PH are reviewed 
in the sections that follow (Tables 1–3). For Ipc-PH, targeted drug 
therapy may be harmful because its pulmonary vascular remodeling 
has not yet occurred, and the increase in pulmonary artery pressure 
is passive. For Cpc-PH, although targeted drugs may be beneficial for 
some patients, there is still a lack of clear screening criteria. Future 
research should focus on screening PH-LHD patients who are 
sensitive to targeted drugs, especially Cpc-PH patients with high 
pulmonary artery pressure even after improvement in left heart 
function (85).

Endothelin receptor antagonists

So far, four types of ERAs have been clinically tested, namely 
bosentan, anlisentan, Masitentan, and Sitaxentan. Among them, 
Sitaxentan has been withdrawn from the market worldwide due to 
fatal liver injury (75). Endothelin-1 (ET-1) participates in vascular 
constriction and cell proliferation by activating endothelin receptors 
(ET-A and ET-B) (86). Cochrane studies have shown that using 
endothelin receptor antagonists for 3–6 months significantly improves 
patients’ exercise capacity, symptoms, and cardiorespiratory 
hemodynamic indicators (87). However, it is currently unclear 
whether these drugs can significantly reduce the mortality rate of 
patients (88). In PH-LHD, increased expression of endothelin-β1 is 
associated with disease progression, making it a potential therapeutic 
target (89). However, ERA has limited efficacy in PH-LHD and is 

TABLE 1 Endothelin receptor antagonists and PDE 5 inhibitor.

The trial Drug Duration Primary and secondary 
endpoints

Treatment effects and adverse events

Endothelin receptor antagonists

MELODY-1 Macitentan 12 weeks PVR, PAWP, Average right atrial 

pressure

No significant improvement in PVR, PAWP or Average right atrial pressure, 

fluid retention, NYHA functional grading worsening.

HEAT Darusentan 3 weeks CI, PVR, mPAP, PAWP, Average 

right atrial pressure

No significant reduction in PVR, mPAP, PAWP or right atrial pressure. The 

incidence of adverse events in the high-dose group is higher.

EARTH Darusentan 24 weeks Cardiac remodeling, clinical status, 

echocardiography parameters, etc.

No improvement in cardiac remodeling or clinical status, and no obvious 

benefit was seen in patients with echocardiography suggesting PH.

PDE 5 inhibitor

RELAX Sildenafil 24 weeks 6MWD, PVR, NT-proBNP, WHO-

FC

6MWD significantly increased by 40.8 meters, PVR significantly decreased, 

NT-proBNP level decreased significantly, and WHO functional grading 

improved.

SOVIAC Sildenafil 12 weeks mPAP, mPCWP, CO, peak VO₂ Sildenafil leads to worse clinical outcomes such as death and heart failure 

hospitalization in patients with persistent PH after valve surgery.

Macitentan/

Tadalafil 

combination 

study

Macitentan/

Tadalafil

16 weeks PVR The reduction of PVR in the M/T FDC group was significantly higher than 

that in the monotherapy group.

Adverse events leading to discontinuation, serious AEs, and special 

concerns (anemia, hypotension, and edema) are more common.
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TABLE 2 Soluble guanylate cyclase stimulator.

The trial Type Study object Number Time Target Drugs Endpoints Conclusion

PATENT-1 Multi-center double blind 

random placebo

PH 341 12 weeks NO-sGC-

cGMP

Riociguat 6MWD, PVR, NT-proBNP, 

WHO-FC, TTP, QOL

Improve the exercise capacity and functional indexes of 

patients with PH, improve the clinically relevant primary 

and secondary endpoints, delay the occurrence of clinical 

deterioration, and significantly reduce NT-proBNP.

PATENT-2 Double-blind Random placebo PH 396 24 months NO-sGC-

cGMP

Riociguat 6MWD, AE, TTP, NT-proBNP, 

WHO-FC

It is a well-tolerated and effective treatment with 

sustained improvement in 6MWD and WHO-FC.

CHEST-1 Multi-center open label double 

blind placebo

CTEPH 243 16 weeks NO-sGC-

cGMP

Riociguat 6MWD, PVR, NT-proBNP, 

WHO-FC, TTCW, Borg, EQ-

5D, LPH

It is effective in improving exercise capacity and cardiac 

function in patients with inoperable or postoperative 

recurrent/persistent CTEPH.

CHEST-2 Multi-center opening label 

double-blind placebo

CTEPH 237 24 months NO-sGC-

cGMP

Riociguat 6MWD, LPH, PVR, EQ-5D, 

NT-proBNP, WHO-FC, TTCW, 

Borg,

It can sustainably improve exercise capacity and cardiac 

function in patients with persistent/recurrent CTEPH 

after inoperable or PEA, and is clinically and well 

tolerated.

VICTORIA Multi-center random double-

blind parallel placebo phase III

NYHA II-IV, EF < 45%, 

BNP ≥ 300 pg./ml, 

NT-proBNP ≥ 

1,000 pg./mL

5,050 10.8 months sGC-cGMP Vericiguat CV Death, First HF, 

Hospitalization, All-cause 

Death

Reduce the composite endpoint risk of cardiovascular 

death or HF hospitalization in patients with HFrEF by 

reducing recent heart failure exacerbation events.

VITALITY-

HFpEF

Multi-center double-blind 

placebo phase II.b

HFpEF, NYHA II-III, 

EF ≥ 45%

789 24 weeks sGC-cGMP Vericiguat KCCQ-PLS, 6MWD There was no improvement in KCCQ-PLS in patients 

with HFpEF.

DILATE-1 Double blind random placebo 

control parallel groups stage II.a

LVEF>50%, mPAP ≥ 

25 mmHg, PAWP > 

15 mmHg

36 30 days NO-sGC-

cGMP

Riociguat mPAP, SV, SBP, PVR Riociguat was well tolerated, with 2 mg of riociguat 

significantly increasing SV and cardiac index CI and 

decreasing systolic blood pressure, SVR, and RVED area 

without altering HR, TPG, or PVR

LEPHT Phase II.b, multi-center double 

blind random placebo

HFpEF, LVEF ≤ 40%, 

mPAP ≥ 25 mm Hg

201 16 weeks NO-sGC-

cGMP

Riociguat mPAP, CI, SV, PVR Riociguat was well tolerated in patients with PH-1 HFrEF 

and did not significantly improve mPAP, but significantly 

improved cardiac index, stroke volume index, and 

pulmonary vascular resistance in the highest dose group

SOCRATES-

PRESERVED

Forward-looking, random 

double blind placebo phase II.b

HFpEF, LVEF > 45% 477 12 weeks sGC-cGMP Vericiguat NT-proBNP, LAV, KCCQ Failed to change NT-proBNP, LAV.

The KCCQ score improved significantly.

SOCRATES-

REDUCED

Multi-center double-blind 

random placebo control

HFrEF, LVEF≤40% 2,707 12 weeks sGC-cGMP Vericiguat NT-proBNP, Echocardiographic 

Parameters, All-cause mortality, 

Cardiac death, Heart failure 

hospitalization

Vericiguat was well tolerated but did not significantly 

reduce NT-proBNP levels and did not improve 

echocardiographic parameters or primary clinical 

endpoints

CTEPH, Chronic thromboembolic pulmonary hypertension; PH, Pulmonary hypertension; PVR, pulmonary vascular resistance; NT-proBNP, N-terminal brain sodium peptide precursor; EF, Left ventricular ejection fraction; LAV, Left atrial volume; NYHA, New York heart 
function classification; WHO-FC, WHO heart function classification; QOL, Quality of life; KCCQ-PLS, Kansas City Cardiomyopathy questionnaire activity restricted score; EQ-5D, Quality of life score; LPH, Pulmonary hypertension quality of life; AE, Adverse events; TTP, 
Time to clinical deterioration; TTCW, Clinical deterioration events; Borg, Changes in dyspnea score; CV Death, cardiovascular death; CI, cardiac index; CO, cardiac output; 6MWD, 6-min walking distance; VO2, peak oxygen uptake; LHD, left heart disease; NT-proBNP, 
N-terminal pro-B-type natriuretic peptide; LVEF, left ventricular ejection fraction; HF, heart failure; Cpc-PH, Combined post-and pre-capillary pulmonary hypertension; HFpEF, heart failure with preserved ejection fraction; LAV, left atrial volume; LVESV, left ventricular end 
systolic volume; mPAP, mean pulmonary artery pressure; NYHA, New York Heart Association; PH, pulmonary hypertension; SBP, systolic blood pressure; PAWP, pulmonary artery wedge pressure; SPAP, systolic pulmonary artery pressure.
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associated with a high risk of adverse reactions (90). Common adverse 
events include headaches, anemia, and edema, which are usually dose-
dependent (91). Bosentan may cause liver dysfunction, but it can 
usually be  restored after reduction or discontinuation of the 
medication (92). New ERAs, such as Masitentan, have reduced the 
incidence of these adverse reactions by optimizing their 
pharmacokinetic properties (93). In the study of patients with 
advanced HFrEF, bosentan failed to improve NYHA functional 
grading, systolic pulmonary artery pressure (PAP), tricuspid 
regurgitation velocity, etc., causing fluid retention and peripheral 
edema, and increasing the hospitalization rate of heart failure (94). 
Macitentan did not significantly improve PVR, PAWP, or mRAP after 
12 weeks of treatment for Cpc-PH patients, according to the 
MELODY-1 trial; however, the difference was not statistically 
significant (95). Although daluxostane therapy did not significantly 
lower PAWP, mPAP, PVR, or RAP, it did improve cardiac index in HF 
patients after 3 weeks in the HEAT study. In the high-dose group, 
adverse events were more common. The EARTH trial also showed 
that, even in individuals with echocardiographic evidence of PH, 
Darusentan treatment for 24 weeks did not improve clinical status or 
cardiac remodeling in patients with chronic HF. In clinical trials of 
PH-LHD, ERA has generally demonstrated a high incidence of side 
events; several trials were prematurely stopped because of safety 
concerns. Therefore, currently ERA is not recommended for the 
treatment of PH-LHD/Cpc-PH.

Phosphodiesterase (PDE 5 inhibitor)

PDE5 inhibitors can improve PH and right ventricular function by 
inhibiting PDE5 enzymes, leading to vasodilation. A Cochrane review 
suggests that PDE5 inhibitor treatment can increase patients’ average 
6-min walking distance by 48 meters, while improving their functional 
level and reducing the risk of hospitalization associated with PAH. The 
AMBITION trial showed that the initial combination of Ambrisentan 

(ERA) and Tadalafil (PDE5 inhibitor) significantly reduced the risk of 
clinical failure. In HFrEF patients, multiple early small-scale studies have 
shown that sildenafil significantly reduces pulmonary artery systolic 
pressure (PASP), mPAP, PVR, 6MWT, and improves right ventricular 
function (96, 97). Sildenafil did not increase exercise capacity, left 
ventricular mass, or clinical composite endpoints (death, cardiac/renal 
hospitalization, increased heart failure symptoms, etc.) as compared to 
placebo treatment in a large randomized controlled trial (n = 216). The 
sildenafil group saw a modest increase in vascular adverse events, 
including headache, flushing, and hypotension, however these were not 
statistically significant (98, 99). The efficacy of PDE5 inhibitors in 
HFpEF patients is not yet clear, especially in patients without right 
ventricular dysfunction. Right ventricular dysfunction may be  an 
important predictor of the benefit of PDE5 inhibitor therapy (98). 
HFpEF patients with concomitant right ventricular failure may benefit 
from PDE5 inhibitor therapy, such as reducing right atrial pressure and 
improving right heart function. HFpEF patients without right ventricular 
dysfunction did not show significant benefits (100). Multiple meta-
analyses have summarized the efficacy of PDE5 inhibitors (including 
sildenafil) in PH-LHD. In HFrEF patients, PDE5 inhibitors significantly 
improved mPAP PVR, LVEF, physical ability and quality of life (101, 
102). PDE5 inhibitors, such as sildenafil, have shown certain clinical 
benefits in HFrEF patients, particularly in improving hemodynamics 
and exercise capacity (103). In the SOVIAC study, sildenafil even led to 
worse clinical outcomes such as death and hospitalization for heart 
failure in patients with persistent PH after valve surgery (104). The 
TRITON study evaluated the efficacy of triple combination therapy 
(Masitentan, Tadalafil, and Selexipag) versus dual combination therapy 
(Masitentan and Tadalafil) in newly diagnosed, untreated PH patients, 
and the results showed no significant difference in the primary endpoint 
of PVR between the two. A cohort analysis of the Spanish PH registry 
investigated the predictive factors of PDE5 inhibitor treatment response. 
The results showed that male gender, diagnosis of portal pulmonary 
hypertension (PoPH), or HIV-PAH were independent predictors of 
favorable response to PDE5 inhibitors (105). And carbon monoxide 

TABLE 3 PGI2 Drugs.

The trial Drug Number Duration Endpoints Conclusion

FREEDOM-C Treprostinil 350 16 weeks WHO functional class, 

Borg dyspnea score, 

dyspnea fatigue index score

Oral Treprostinil for 16 weeks could not significantly 

improve the activity tolerance, but could significantly 

change the dyspnea fatigue index and Borg dyspnea 

classification.

TRIUMPH-I Treprostinil 235 12 weeks 6MWD, Borg dyspnea 

score, WHO functional 

class

Inhaled Treprostinil combined with bosentan or sildenafil 

treatment significantly improved the 6-min walking 

distance (6MWD) at 12 weeks.

FIRST Epoprostenol 471 1 year Survival, clinical events, 

congestive heart failure 

symptoms, 6MWD, 

quality-of-life measures

CI increased significantly (from 1.81 to 2.61 L/min/m2), 

while PAWP and PVR decreased significantly. However, in 

patients with heart failure, the survival rate of the 

Epoprostenol treatment group decreased.

STEP Iloprost 34 16 weeks NYHA Functional Class, 

6MWD

The combined use of bosentan and iloprost significantly 

improved the exercise tolerance (6MWD increase) and 

delayed the disease progression.

GRIPHON Selexipag 1,156 63 weeks Survival, clinical events, 

6MWD, PVR

The incidence of pulmonary hypertension related events 

(such as hospitalization, disease progression, death) was 

significantly reduced, and 6MWD increased by 12.62 

meters on average.
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dispersibility (DLco) ≤ 40% of the predicted value is associated with 
adverse reactions. For patients who have received PDE5 inhibitors but 
have not achieved the desired clinical efficacy, conversion to soluble 
guanylate cyclase (sGC) stimulants may be considered.

Soluble guanyl cyclase stimulators

Soluble guanyl cyclase stimulators promote vasodilation by 
enhancing the production of cyclic guanosine monophosphate 
(cGMP), complementing the PDE5 inhibitor (which works by 
reducing cGMP degradation) mechanism, and have received extensive 
attention in the field of heart failure (HF) and pulmonary hypertension 
(PH) in recent years. Vericiguat was well tolerated in patients with 
HFrEF in the SOCRATES-REDUCED study, but did not significantly 
reduce NT-proBNP levels or improve echocardiographic parameters 
(106–109). In the SOCRATES-PRESERVED study, vericiguat did not 
significantly reduce NT-proBNP levels, but it was well tolerated and 
associated with improved quality of life (110). In the VICTORIA 
study, vericiguat significantly reduced the composite endpoint of 
cardiovascular death or hospitalization for heart failure in patients 
with symptomatic worsening HFrEF (111). In the LEPHT trial, 
riociguat was well tolerated in patients with HFrEF, significantly 
improving cardiac index, stroke volume index, and PVR in the high-
dose group (112). In the DILATE-1 trial, Riociguat improved stroke 
volume and systolic blood pressure, but had no significant effect on 
mPAP and PVR (113). The LEPHT study evaluated the safety and 
efficacy of riociguat in patients with HFrEF and pulmonary 
hypertension (PH) (114). The study showed that after 16 weeks of 
treatment with riociguat (2 mg, TID), patients had an increase in 
cardiac index and a significant decrease in pulmonary vascular 
resistance (PVR) and systemic vascular resistance (SVR) compared 
with the placebo group. The DILATE-1 study was in patients with 
HFpEF and PH (LVEF > 50%, mPAP ≥ 25 mmHg, PAWP > 
15 mmHg). The results showed that after 6 h of treatment, the 
levociguat 2 mg group showed improvements in stroke volume and 
right ventricular end-diastolic area, although there was no significant 
decrease in mean pulmonary artery pressure (mPAP) (115). The 
COMPERA 2.0 study evaluated the safety and efficacy of riociguat in 
patients with pulmonary hypertension and cardiometabolic 
comorbidities. The PASSION study is planned to evaluate the effects 
of riociguat on exercise tolerance, cardiac function indexes, and WHO 
functional classification in patients with heart failure and pulmonary 
hypertension. Riociguat has shown potential benefits in patients with 
HF-related Pulmonary Hypertension in some studies, such as 
improved PVR, SVR, 6MWD, suggesting that it may have a positive 
effect on exercise tolerance (116). In a study of 61 patients with 
pulmonary hypertension (PH) who had an inadequate response to 
PDE-5 inhibitors, switching to riociguat resulted in an increase in 6 
MWD at 24 weeks, an improvement in WHO grade, and a decrease 
in NT-proBNP levels (117, 118). In patients with heart failure, 
vericiguat has shown significant clinical benefit in patients with 
HFrEF, particularly in reducing the risk of cardiovascular events, but 
has limited effect in patients with HFpEF (119–121). Higher doses of 
riociguat improve PVR and systemic vascular resistance in patients 
with Cpc-PH, but have limited efficacy in patients with Ipc-PH (122, 
123). The study, which included data from PATENT-1, PATENT-2, 

PATENT PLUS and REPLACE, showed that the incidence and 
severity of adverse events were similar to those in the placebo group 
in the riociguat group (124).

PGI2 drugs

Prostacyclin is mainly produced by endothelial cells and has 
vasodilation, antithrombotic and antiproliferative effects, which can 
improve hemodynamics and cardiac function. Prostacyclin drugs 
include prostacyclin analogs (such as Epoprostenol, Treprostinil, 
Iloprost, Beraprost) and prostacyclin IP receptor agonists (such as 
Selexipag). Eprostol works by reducing PVR and improving right 
ventricular function, but long-term use may activate harmful 
neurohormonal systems (such as the renin-angiotensin system), 
leading to worsening of heart failure. In the FIRST trial, although 
epprostol significantly improved cardiac index, pulmonary wedge 
pressure (PAWP) and systemic vascular resistance (SVR), the trial 
was terminated early due to the decline in patient survival. 
Treprolinil is a novel prostacyclin analog that may improve 
metabolism and cardiac function by activating the AMPK pathway 
in skeletal muscle and right ventricle. In animal models, Trepronnier 
improved metabolic syndrome and reduced pulmonary arterial 
pressure, showing potential to prevent the development of heart 
failure (HFpEF) with ejaculation fractions. Unlike heart failure 
(HFrEF), which has reduced ejection fraction, HFpEF is often 
accompanied by metabolic syndrome and diabetes, and the 
beneficial effects of prostacyclin analogs on metabolism and 
pulmonary blood vessels make it possible that it is more suitable for 
the treatment of PH-HFpEF. In patients with Cpc-PH, targeted 
pulmonary hypertension therapy (such as phosphodiesterase 5 
inhibitors and endothelin receptor antagonists) fails to improve 
symptoms, but instead increases morbidity and death Rate. A meta-
analysis showed that although PH-targeted therapy may improve 
exercise capacity in patients with left heart disease (LHD), the risk 
of adverse events is higher. A meta-analysis showed that although 
pH targeted therapy can improve the exercise ability of patients with 
left heart disease (LHD), the risk of adverse events is higher, but the 
efficacy of human pH HFPEF patients still needs further clinical 
trials to verify, and the treatment strategy of skeletal muscle and 
right ventricular AMPK pathway may be a potential direction for the 
prevention of PH-LHD (125–131).

Ralinepag, as a novel prostacyclin receptor (IP receptor) agonist, 
exhibits significant vasodilation effects, which can effectively reduce 
PVR while inhibiting vascular smooth muscle cell proliferation and 
platelet aggregation. Its drug has a half-life of up to 24 h, which gives 
it a potential advantage in the treatment of PH. In Phase II clinical 
trials, Ralinepag has shown good efficacy, and common adverse 
reactions include headache, nausea and diarrhea. At present, the Phase 
III clinical trial of Ralinepag is being promoted, and the preliminary 
long-term data of the ADVANCE EXTENSION study have been 
released at relevant academic conferences (132). At present, 
prostacyclin drugs have limited their widespread use in clinical 
practice due to their poor stability and many side effects. Therefore, 
the development of novel prostacyclin drugs with higher receptor 
selectivity, fewer side effects, more stable, easier to preserve and more 
easily accepted by patients has become the research direction (133).
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Sotatercep

Sotatercept is a fusion protein of the type IIA activin receptor 
(ActRIIA). Results from the PULSAR study show that Sotatercept 
significantly outperforms placebo in reducing PVR and improving 
6MWD, as well as in secondary endpoints such as NT-proBNP levels, 
WHO functional classification, and clinical worsening events. Results 
from the STELLAR study indicate that after 24 weeks of treatment, 
patients in the Sotatercept group saw an increase of 40.8 meters in 
6MWD compared to a mere 1.0 - meter increase in the placebo group. 
Other secondary endpoints, including reductions in NT-proBNP 
levels, improvements in WHO functional classification, and decreases 
in PVR, were also significantly better in the Sotatercept group. With a 
median follow - up of 32.7 weeks, Sotatercept reduced the risk of 
clinical worsening or death by 84%. Additionally, Sotatercept 
improved right - heart function by lowering mPAP and reducing the 
workload on the right side of the heart. In terms of safety, adverse 
events in the Sotatercept group mainly included capillary dilation, 
epistaxis, gingival bleeding, and thrombocytopenia, but most of these 
events were mild. In the post-hoc analysis of the STELLAR study, 
Sotatercept was found to reduce the size of the right side of the heart 
and improve right  - ventricular function and hemodynamic 
parameters after 24 weeks of treatment. Ongoing trials such as 
SOTERIA, HYPERION, ZENITH, CADENCE, MK - 7962-020, and 
MOONBEAM will further explore the long  - term safety and 
effectiveness of Sotatercept in diverse patient populations, providing 
more comprehensive clinical evidence for the future treatment of 
pulmonary arterial hypertension. Compared with traditional small - 
molecule compounds, Sotatercept has higher efficacy and fewer 
adverse effects. By rebalancing the BMPR2 signaling pathway and 
inhibiting the Smad2/3 signaling pathway, Sotatercept reduces the 
proliferation of pulmonary vascular smooth muscle cells and collagen 
deposition, thereby reversing pulmonary vascular remodeling. This 
goal is not achievable by most currently available targeted drugs. 
Moreover, Sotatercept’s dosing schedule of once every 3 weeks and its 
subcutaneous injection route are more convenient than those of 
traditional medications (Table  4). With its unique mechanism of 
action and significant clinical benefits, Sotatercept offers a new 
treatment option for Cpc-PH patients and has the potential to 
transform the current treatment landscape (134–138).

Ongoing clinical trials

Many patients with cardiovascular diseases often have metabolic 
syndrome (MS), such as obesity, dyslipidemia, insulin resistance, 
and diabetes (Table  5). MS can induce systemic inflammatory 
responses, and inflammatory factor infiltration and imbalance in 
immunomodulation are key pathogenic drivers of vascular 
remodeling. Therefore, immunotherapy may become a new 
therapeutic strategy for PH-LHD/Cpc-PH (139–142) (Table 6).

Potential new therapeutic targets

Stem cell therapy, as an emerging therapeutic approach, has 
attracted much attention for its ability to self-renew, proliferate and 
differentiate into a variety of specific cells. Stem cells commonly used 

to treat pulmonary hypertension (PH) include endothelial progenitor 
cells (EPCs) and mesenchymal stem cells (MSCs). Among them, EPCs 
are oligona stem cells that tend to differentiate into endothelial cells 
(EC), but may promote the occurrence and development of PH in a 
pathological state. For example, EPCs in hypoxic newborn calves 
showed stronger migration and ductal capacity. To correct the defects 
of EPCs, cell infusion becomes a direct approach. However, in PH 
progression, EPCs may reactivate their hematopoietic tendencies by 
abnormally expressing hematopoietic transcription factors, resulting 
in excessive infiltration of immune cells. Liang et  al. successfully 
blocked the EHT process and reversed the decline in EPCs levels using 
the endothelial-hematopoietic transition (EHT) inhibitor Runx1 in a 
single-dose monoclonal toxin (MCT). In addition, erythropoietin 
(EPO) has also been shown to have vascular protection effects, which 
restores the number of circulating EPCs and reverses vascular 
remodeling by promoting the expression of heme oxygenase-1 
(HO-1). Mesenchymal stem cells (MSCs) are pluripotent stem cells 
that tend to differentiate into mesenchymal cells such as osteoblasts, 
adipocytes, chondrocytes and myocytes. MSCs show significant 
potential in the treatment of PH, especially in rat models induced by 
chronic hypoxia and single-dose monoclonal toxin (SuHx), where 
MSCs are able to reverse collagen deposition and reduce 
peripulmonary vasculo-hemophilia factors (vWF) and α-smooth 
muscle actin (α-SMA). In addition, MSCs also improve PH symptoms 
by regulating intestinal flora. Studies have shown that both SuHx and 
MCT can destroy the homeostasis of the intestinal microbiota in mice, 
while MSCs treatment can restore the anti-inflammatory bacterial 
level and improve the immune-regulating functional bacterial 
population (147–151).

Progress in interventional treatment

An emerging interventional therapy technique called pulmonary 
artery denervation (PADN), which is based on catheter ablation, 
reduces pulmonary artery resistance, improves right heart function, 
and delays pulmonary artery disease by inhibiting sympathetic nerve 
activity by ablation of nerve-intensive areas in or near the pulmonary 
artery. High pressure (PH) progress. Clinical research and animal 
experimentation have both produced positive outcomes. According 
to recent research, PADN can reverse the downregulation of 
β-adrenergic receptors and the overexpression of α-adrenergic 
receptors in rat lung tissues in the preclinical model of pulmonary 
hypertension-left heart disease (PH-LHD). PADN significantly 
decreased mean pulmonary arterial pressure (mPAP) and 6-min 
walking distance in a phase II trial of mixed etiology PH, including 
PH-LHD. In addition, multi-center trials for Cpc-PH also showed that 
PADN can reduce systolic and diastolic pulmonary artery pressure, 
increase cardiac output and 6-min walking distance, while significantly 
reducing clinical deterioration and hospitalization. Rate. A clinical 
study in 98 patients with Cpc-PH further confirmed that PADN 
significantly reduces pulmonary vascular resistance (PVR) and 
improves exercise tolerance. Although PADN shows good prospects 
in different types of PH, further studies are needed to evaluate its long-
term safety and clinical outcomes (152–155).

In the management of heart failure, ARB is one of the standard 
treatment drugs, which can indirectly have a positive effect on Cpc-PH 
by reducing cardiac load and improving cardiac function. In the 
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TABLE 4 Sotatercept.

Trial name Clinical 
Trials.gov 
ID

Type Trial population Primary 
endpoint

Secondary endpoints Trial results Number Duration

PULSAR NCT04811092

Randomized, double-

blind, placebo-

controlled, Phase III

Newly diagnosed 

intermediate- and high-

risk PAH patients

PVR
6MWD, NT-proBNP levels, WHO 

FC, Clinical worsening events

Sotatercept significantly reduced 

PVR, increased 6MWD, improved 

NT-proBNP and WHO functional 

classification

106 24 weeks

STELLAR NCT04896008

Randomized, double-

blind, placebo-

controlled, Phase III

WHO functional class III 

or IV high-risk PAH 

patients

Change in 6MWD at 

24 weeks

Multicomponent improvement, 

PVR, NT-proBNP, WHO 

functional classification, clinical 

worsening events

Sotatercept significantly increased 

6MWD, reduced PVR, improved 

NT-proBNP and WHO functional 

classification

323 24 weeks

HYPERION NCT04811092

Randomized, double-

blind, placebo-

controlled, Phase III

Newly diagnosed 

intermediate- and high-

risk PAH patients

Time to clinical 

worsening

6MWD, NT-proBNP levels, WHO 

functional classification

Terminated early due to significant 

interim results
662

Estimated 

completion in 

January 2030

ZENITH NCT04896008

Randomized, double-

blind, placebo-

controlled, Phase III

WHO FC III or IV high-

risk PAH patients

Time to clinical 

worsening

Overall survival, transplant-free 

survival

Interim analysis showed significant 

reduction in clinical worsening 

events, terminated early

166

Estimated 

completion in 

November 2025

SOTERIA NCT04796337
Open-label, long-term 

extension study

Adult PAH patients who 

completed a sotatercept 

parent study

Number of adverse 

events and time to 

treatment 

discontinuation

Long-term safety, tolerability, and 

efficacy

Ongoing, expected to enroll 700 

participants
700 Long-term (ongoing)

CADENCE NCT04945460

Randomized, double-

blind, placebo-

controlled, Phase II

PH patients with heart 

failure and preserved 

ejection fraction

Change in PVR Change in 6MWD
Ongoing, expected to enroll 150 

participants
150

Estimated 

completion in 

February 2027

MK-7962-020 NCT05818137
Non-randomized, 

open-label, Phase III
Japanese PAH patients Efficacy and safety –

Ongoing, expected to enroll 35 

participants
35

Estimated 

completion in August 

2025

MOONBEAM NCT05587712 Open-label, Phase II
PAH children aged 

1–18 years

Safety, tolerability, 

pharmacokinetics, and 

pharmacodynamics

–
Ongoing, expected to enroll 42 

children
42

Estimated 

completion in 2028
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TABLE 5 Ongoing clinical trials.

Drug name Drug type Mechanism of action Development stage

TX45 Long-acting Fc-Relaxin fusion protein Improves pulmonary hemodynamics and left ventricular function Phase Ib: Single intravenous infusion significantly reduced PCWP by 

17.9% and PVR by 30%.

Phase II APEX Trial: Ongoing, with topline data expected in 2026.

Seralutinib Tyrosine kinase inhibitor Inhibits relevant signaling pathways to improve pulmonary arterial hypertension TORREY trial (phase II trial): PVR decreased by 14% (p = 0.0310), 

and in patients with more severe symptoms, PVR decreased by 21% 

(p = 0.0427)

PROSERA trial (Phase III trial) is currently underway

Imatinib Tyrosine kinase inhibitor Non-vasodilator, mechanism not fully elucidated Inhalation formulation undergoing Phase II and III clinical trials.

Macitentan Endothelin receptor antagonist Blocks endothelin signaling pathways, reducing pulmonary arterial pressure Approved, better efficacy when used in combination with Tadalafil.

MK-5475 Soluble guanylate cyclase activator Activates guanylate cyclase, increases cGMP levels, and relaxes vascular smooth 

muscle

INSIGNIA-PAH Phase II clinical trial results published in September 

2024.

Inhaled Treprostinil Prostacyclin analog Vasodilation, improvement of pulmonary arterial hypertension Post-hoc analysis and extension studies of the INCREASE trial show 

improved survival in patients with IPF and pulmonary arterial 

hypertension.

MRE-269 Selective IP receptor agonist Main metabolite of Selexipag, activates IP receptors to increase intracellular cAMP 

levels, leading to pulmonary vasodilation

Under investigation.

T26A Prostaglandin transporter (PGT) inhibitor Reduces intracellular concentration of PGE2, targeting pulmonary vasodilation Under investigation.

MN-08 Nitrate ester derivatives of memantine Antagonism of N-methyl-D-aspartate (NMDA) receptors and release of NO Approved for clinical trials by China’s NMPA in January 2025, Phase 

II clinical trial to commence soon.

KER-012 ACVR2B ligand trapper Blocks signaling of TGF-β superfamily members, reversing pulmonary vascular 

remodeling

Ongoing Phase II clinical trial.

Recombinant MPB9 Recombinant protein Targets BMP9, modulates bone morphogenetic protein In development stage.

Letrozole, Tamoxifen, DHEA Sex hormones Regulates sex hormone levels, potentially beneficial for PH Under investigation.

Metformin, Trimetazidine Metabolic targeting drugs Modulates metabolic processes, potentially beneficial for PH Under investigation.

Canagliflozin SGLT-2 inhibitor Inhibits SGLT-2 receptor, reduces right ventricular systolic pressure, improves PH Under investigation.

Empagliflozin SGLT-2 inhibitor Inhibits SGLT-2 receptor EMBRACE-HF study showed a reduction in pulmonary artery 

diastolic pressure by 1.7 mmHg compared to placebo at Week 12.

Celastramycin Benzoylpyrrole compound Reduces secretion of inflammatory factors and reactive oxygen species, targets 

anti-proliferative effects on PH-PASMC

Not yet in clinical trials, but animal experiments have shown 

potential for improving symptoms of pulmonary arterial 

hypertension.
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TABLE 6 Studies uncovering potential therapeutic targets.

Author Title Result Date Potential therapeutic target

Hou et al. (143)

Targeting Fibroblast Activation Protein for Molecular 

Imaging of Fibrotic Remodeling in Pulmonary Arterial 

Hypertension

18F-FAPI PET/CT imaging is feasible for visualizing the 

remodeling of the PA and the RV in PAH. Although it offers 

promise for assessing disease-related changes, its role in 

evaluating disease severity and monitoring therapeutic efficacy 

requires further investigation.

2025 fibroblast activation protein inhibitor (FAPI)

Zhang et al. (144)

Endogenous hydrogen sulfide persulfidates endothelin type 

A receptor to inhibit pulmonary arterial smooth muscle cell 

proliferation

Endogenous H2S persulfidated ETAR at Cys69 to inhibit

the binding of ET-1 to ETAR, subsequently suppressed PASMC 

proliferation, and antagonized pulmonary vascular structural 

remodeling.

2025 ETAR over sulfurization modification

Li et al. (63)
Genetic recording of transient endothelial activation in 

distinct alveolar capillary cells during pulmonary fibrosis

Transient EndoMT activation of specific endothelial cells 

(Plvap+) during pulmonary arterial hypertension and pulmonary 

fibrosis may affect extracellular matrix remodeling and vascular 

integrity.

2024 EndoMT

Shen et al. (145)
BRCC3 Regulation of ALK2 in vascular smooth muscle cells 

implication in pulmonary hypertension

BRCC3 regulates the BMP signaling pathway and maintains 

pulmonary vascular homeostasis by deubiquitinating K472 and 

K475 sites of ALK2.BRCC3 deficiency exacerbates pulmonary 

arterial hypertension, and PPARγ agonists can partially alleviate 

its effects.

2024 BRCC3-ALK2-Smad1/5/9-PPARy

Harvey et al. (146)
Lysosomal dysfunction and inflammatory sterol metabolism 

in pulmonary arterial hypertension

NCOA7 regulates lysosome function and cholesterol metabolism, 

inhibits endothelial cell immune activation, and alleviates 

pulmonary arterial hypertension. Small molecule compound 

958ami can activate NCOA7 and improve the pathological 

phenotype of PAH model.

2025 NCOA7
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PADN-5 study, the efficacy of PADN combined with standard drug 
therapy for heart failure (including ARB) was evaluated in Cpc-PH 
patients, with significant effects in reducing the incidence of clinical 
deterioration, improving hemodynamic indicators (such as PVR, 
PAWP), and enhancing patient exercise endurance. Although there 
have been studies exploring the potential role of ARB in the treatment 
of heart failure and related pulmonary arterial hypertension (PH), 
there is currently no clear clinical research directly confirming the 
effectiveness and safety of ARB combined with targeted drugs in the 
treatment of post capillary pulmonary hypertension (Cpc-PH).

In the management of Cpc-PH patients, it is crucial to expand the 
range of management strategies. A comprehensive assessment should 
be conducted for each patient, including medical history, physical 
examination, imaging studies, and hemodynamic monitoring. 
Existing risk stratification models should be used to rigorously assess 
the risk level of each patient. A variety of treatment options, such as 
pharmacological therapy and surgical interventions, should be tailored 
to the individual patient’s condition. Surgical interventions include 
pulmonary endarterectomy (PEA), atrial septostomy, pulmonary 
balloon angioplasty (PBAV), atrial septal defect closure, ventricular 
septal defect closure, patent ductus arteriosus closure, and lung 
transplantation. For patients with more complex conditions, emerging 
treatment technologies, such as PADN or stem cell and other 
biological therapies, can be explored. A multidisciplinary team should 
be organized to jointly participate in the diagnosis and treatment 
process of the patient. By strengthening follow-up, the patient’s 
condition changes can be monitored in a timely manner, and the 
treatment plan can be  adjusted accordingly. Through this 
comprehensive management strategy, we  can better address the 
complexity of Cpc-PH and provide more comprehensive treatment 
support for patients.

Future

The most prevalent kind of PH is Cpc-PH, and unfavorable 
prognoses rise in tandem with the patient population’s increased risk 
of morbidity and mortality. Although there are clear similarities to PH 
in many areas, the current guidelines do not advocate targets for PH 
because there are currently no clinical trials that can demonstrate the 
safety and efficacy of these targeted medications in patients with 
Cpc-PH. In order to identify novel therapeutic targets, create targeted 
treatment plans for Cpc-PH, and implement evidence-based strategies 
to keep HF patients from developing PH, we must thereby expand our 
understanding of the pathophysiology, etiology, and genetic 
components of the condition. In order to make sure that treatment 
approaches can do more than just support physiological processes, 
we will conduct patient-centered clinical trials as new treatments are 
developed. These trials should assess the beneficial effects of treatment 

on patient survival, readmission, and quality of life. Significant clinical 
improvement can also result from recovery.
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