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Background: Acute upper gastrointestinal bleeding (AUGIB) is one of the 
most common critical diseases encountered in the intensive care unit (ICU), 
with a mortality rate ranging from 15 to 20%. Accurate stratification of acute 
gastrointestinal bleeding into acute variceal gastrointestinal bleeding (AVGIB) 
and acute non-variceal gastrointestinal bleeding (ANGIB) subtypes is clinically 
essential as distinct entities require markedly different therapeutic approaches 
and even divergent prognostic implications. AUGIB characterized by hemorrhagic 
shock, hypotension, multiple organ dysfunction (MODS), and even circulatory 
failure is life-threatening. Machine learning (ML) prediction model can be  an 
effective tool for mortality prediction, enabling the timely identification of high-
risk patients and improving outcomes.

Methods: A total of 3,050 acute upper gastrointestinal bleeding (AUGIB) patients 
were included in our research from the MIMIC-IV database, among which 
625 patients were classified as AVGIB and 2,425 patients were categorized 
as ANGIB. Patients’ clinical features, intervention methods, vital signs, scores, 
and important laboratory results were collected. The Synthetic Minority Over-
sampling Technique-Edited Nearest Neighbors (SMOTE-ENN) and Adaptive 
Synthetic Sampling (ADASYN) were adopted to address the imbalance of the 
dataset. As many as 12 machine learning (ML) algorithms, namely, logistic 
regression (LR), decision tree (DT), random forest (RF), gradient boosting (GB), 
AdaBoost, XGBoost, Naive Bayes (NB), support vector machine (SVM), light 
gradient-boosting machine (LightGBM), K-nearest neighbors (KNN), extremely 
randomized trees (ET), and voting classifier (VC), were performed. The model 
performance was evaluated using accuracy, precision, recall, F1-score, and 
area under the receiver operating characteristic curve (AUC). Shapley Additive 
exPlanations (SHAP) analysis was conducted to identify the most influential 
features contributing to mortality prediction.

Results: In terms of AVGIB patients, extremely randomized trees model 
demonstrated excellent predictive value among other ML models, with the 
AUC of 0.996 ± 0.007, accuracy of 0.996 ± 0.009, precision of 0.957 ± 0.024, 
recall of 0.988 ± 0.012, and F1 score of 0.972 ± 0.007. The top  10 primary 
feature variables of ET model were whether combined with acute kidney failure, 
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transfusion of albumin, vasoactive drugs, transfusion of plasma, transfusion of 
platelet, the max of international normalized ratio (INR), the max of prothrombin 
time (PT), and the max of activated partial thromboplastin time (APTT). In case 
of ANGIB patients, gradient boosting model proven to be the optimal machine 
learning models, with the AUC of 0.985 ± 0.002, accuracy of 0.948 ± 0.009, 
precision of 0.949 ± 0.009, recall of 0.968 ± 0.009, and F1 score of 0.959 ± 0.007. 
Similarly, the top 10 feature variables of GB model were Glasgow Coma Scale 
(GCS) score, vasoactive drugs, acute kidney failure, AIMS65 score, APACHE-II 
score, mechanical ventilation, the minimum of lactate, chronic liver disease, 
and the minimum and maximum of APTT. The SHAP visualization shows the 
weights of two ML models feature variables and the average sharp values of 
variables. Meanwhile, SHAP waterfall outputs the model prediction process with 
true positive and negative patients. Most importantly, two website prognostic 
prediction platforms were developed to enhance clinical accessibility: the ET 
model for AVGIB patients available at https://10zr656do5281.vicp.fun while the 
GB model for ANGIB patients accessible at http://10zr656do5281.vicp.fun.

Conclusion: The ET model provides a reliable prognostic tool for AVGIB 
patients, while the GB model serves as a robust tool for ANGIB patients in 
predicting in-hospital mortality. By systematically integrating clinical features, 
risk stratification scores, vital signs, and invention measures, the ML models may 
deliver comprehensive predictions that benefit for clinical decision-making and 
potentially enhance clinical outcomes in the near future.

KEYWORDS

acute variceal gastrointestinal bleeding, acute non-variceal gastrointestinal bleeding, 
extremely randomized trees, gradient boosting, artificial intelligence, mortality

1 Introduction

Acute upper gastrointestinal bleeding (AUGIB) is a life-
threatening disease frequently manifests as hemorrhagic shock, 
hypotension, multiple organ dysfunction (MODS), and even 
circulatory failure, with a mortality ranging from 15 to 20% (1). 
Approximately one-third of AUGIB patients require intensive care 
unit (ICU) admission, such as central venous catheterization, repaid 
liquid resuscitation, emergency tracheal intubation, endoscopy, and 
even vasoactive drugs (2). Due to the increasing aging population, 
numerous cardiovascular comorbidities, and the unhealthy lifestyles, 
the incidence of AUGIB patients has been rising significantly. 
According to the 2021 American College of Gastroenterology (ACG) 
guidelines, the estimated incidence ranges from 100 to 180 per 
100,000 individuals, with mortality between 10 and 15% (3).

Risk stratification is the key priority in AUGIB management, as 
emphasized by major international guidelines (3–5). Previously, 
existing scoring systems such as AIMS65 (6), Glasgow-Blatchford 
score (GBS) (7), and Rockall score (8) have been used for risk 
prediction and stratification but exhibit limited sensitivity and 
specificity in forecasting mortality, rebleeding, and the need for 
therapeutic intervention. The ICU physicians are unfamiliar with 
scores other than APACHE-II and GCS scores, which might not 
be optimized for AUGIB patients (9). The heterogeneity of AUGIB 
patients, with varying in ages, genders, etiologies, bleeding sites, and 
blood loss volumes, further complicates accurate outcome prediction. 
Previous studies on gastrointestinal bleeding have primarily focused 
on the emergency departments (10) and gastroenterology departments 
(11). The Ungureanu ML model is restricted to patients with 
non-variceal upper gastrointestinal bleeding (12). Given the high 

mortality risk associated with AUGIB, the majority of patients 
required ICU admission for more attention.

The advent of artificial intelligence (AI) has transformed medical 
practice, particular in precision diagnosis, personalized therapy 
strategies, and prognostic prediction (13). Thus, we sought to develop 
dedicated ML models for mortality prediction for in ICU admitted 
AUGIB patients, incorporating with comprehensive variables. 
Recognizing the critical importance of disease stratification, 
we distinguished AUGIB into variceal and non-variceal subtypes, as 
these conditions demonstrate substantial differences in both clinical 
management and prognosis outcomes (14). To identify optimal 
predictive models, we  utilized the Medical Information Mart for 
Intensive Care (MIMIC)-IV, comprehensive critical care database 
from the United  States. Our methodology involved evaluating 12 
machine learning algorithms and implementing various data 
imbalance techniques to enhance the model’s performance. The 
rigorous approach enabled us to develop two distinct prediction 
models, one for variceal and another for non-variceal AUGIB patients. 
Ultimately, two separate prediction models offer improved 
comprehensive, precision, and highly accuracy, representing 
significant advancements in mortality risk stratification for high-risk 
patient population.

2 Materials and methods

2.1 Data resource and ethical issues

The MIMIC-IV database represents an open-access critical care 
repository developed and maintained by the Massachusetts 
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Institute of Technology (MIT) laboratory for computational 
physiology. It provides longitudinal clinical records for inpatients 
at the Boston-based Beth Israel Deaconess Medical Center 
spanning 2008 to 2019 (15). It encompasses a wide array of clinical 
parameters including demographics, continuous vital signs 
measurements, laboratory results, diagnostic codes, medication 
administration records, therapeutic interventions, and additional 
clinically relevant data.

Access to database was obtained through proper institutional 
channels, with authorized certification No. 12760266. All patient’s 
private information was anonymized to meet ethical regulations, and 
the study was granted exemption from requiring informed consent by 
the institution review board.

2.2 Inclusion and exclusion criteria

Patients were included based on the following criteria: (1) 
Diagnosis of AUGIB according to the American Gastroenterological 
Association (AGA) guidelines was enrolled (3). (2) Documented ICD 
codes confirming upper gastrointestinal etiology, including but not 
limited to esophageal varices with bleeding (4560), peptic ulcer 
hemorrhage (K25.0, K26.0, et  al.), acute hemorrhagic gastritis 
(K29.01), Mallory-Weiss syndrome (K22.6), acute gastrojejunal ulcer 
with hemorrhage (K280), and angiodysplasia of stomach and 
duodenum with bleeding (K31.811).

Patients were excluded if they met any of the following criteria: (1) 
age under 18 years old. (2) ICU hospitalization duration less than 24 h; 
(3) primary diagnosis of lower gastrointestinal bleeding; (4) 
incomplete clinical records, defined as more than 20% missing values. 
(5) pregnancy of postpartum status.

2.3 Data extraction and processing

The study utilized data from MIMIC-IV database, which was 
obtained through authorized access from PhysioNet. Get the access of 
downloaded, and subsequently installed and imported into PostGres 
12.0 software. All data retrieval and extraction were performed by 
Structured Query Language (SQL) to ensure precision 
and reproducibility.

Clinical risk scores, including the AIMS65 score, Rockall score, 
shock index, and GBS score, were calculated based on variables 
extracted from each patient’s initial medical record. Due to continuous 
monitoring and multiple dynamic follow-ups, we captured patient’s 
vital signs and laboratory parameters during the first 24 h of ICU 
admission: the minimum, the maximum, and average values. Acute 
variceal gastrointestinal bleeding (AVGIB) and acute non-variceal 
gastrointestinal bleeding (ANGIB) patients’ demographics, vital signs, 
laboratory results, medications, diagnoses, interventions, and other 
clinical data were included as possible related variables.

2.4 Machine learning models

The comprehensive analysis employed 12 distinct machine 
learning algorithms, each selected for unique strengths in 
predictive model.

 (1) Logistic Regression (LR) A fundamental classification 
algorithms particularly effective for binary problems, LR 
provides interpretable results by quantifying the contribution 
of each independent variable through odds ratios (16).

 (2) Decision Trees (DT) The intuitive algorithm utilizes 
hierarchical tree structure to model decision pathways, capable 
of capturing non-linear relationships without requiring feature 
scaling. The DT visual interpretability makes it particularly 
valuable in medical applications (17).

 (3) Random Forest (RF) The ensemble learning method that 
constructs multiple decision trees during the training. The RF 
aggregates predictions through either majority voting 
(classification) or averaging (regression), significantly 
improving prediction stability (18).

 (4) Gradient Boosting (GBoost) It involves a sequence of weak 
models (such as decision trees) in specific order to minimize 
given loss function, which automatically handle missing values, 
offering high accuracy and versatility across diverse tasks (19).

 (5) Adaptive Boosting (AdaBoost) The ensemble algorithm that 
specifically targets misclassification by adjusting the weights of 
misclassified instances and iteratively refining the model (20).

 (6) eXtreme Gradient Boosting (XGBoost) The optimized 
distributed gradient boosting algorithms designed to be highly 
efficient, flexible, and portable, XGBoost minimizes the 
objective function through iterative training and perform 
regularization to prevent overfitting (21).

 (7) Naive Bayes (NB) The probabilistic algorithm based on Bayes’ 
theorem, assuming feature independence, is particularly 
effective for multiple classification tasks and lower dimensional 
data (22).

 (8) Support Vector Machine (SVM) The SVM with RBF kernel 
uses the “kernel trick” maps to implicitly features into a higher-
dimensional space for non-linear decision bound with high 
sensitivity (23).

 (9) Light Gradient-Boosting Machine (LightGBM) The gradient 
boosting framework using tree-based learning algorithms 
could hand large datasets and categorical features effectively 
with leaf-wise growth strategy (24).

 (10) K-Nearest Neighbors (KNN) The simple and instance-based 
learning algorithm that classifies a data point based on the 
majority vote of its neighbors, where the distance metric 
significantly impacts performance and requires normalization 
for consistent results (25).

 (11) Extra Trees (ET) The ensemble algorithm by creating multiple 
decision trees through randomizing feature splits and dataset 
sampling, which not only reduced variance but also improved 
model robustness (26).

 (12) Voting Classifier (VC) The ensemble of multiple models that 
reduces the bias and standard deviation of individual models, 
resulting in a more robust and reliable performance (27).

2.5 Model evaluation

To effectively mitigate the challenges posed by dataset imbalance, 
we implemented two advanced resampling techniques, namely, Edited 
Nearest Neighbors (SMOTE-ENN) technique and Adaptive Synthetic 
Sampling (ADASYN) technique to enhance model accuracy (28, 29). 
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For robust model validation, we employed dual validation strategy: 
5-fold cross-validation (CV) and independent validation (IV) to 
minimize overfitting risk (30).

The model evaluation incorporated multiple complementary 
metrics: classification metrics and discriminatory performance. The 
key classification metrics contained accuracy, precision, recall, and 
F1-score. The critical parameter of discriminatory performance 
included receiver operating characteristic (ROC) curve analysis. The 
area under the curve (AUC) analysis was conducted to evaluate the 
predictive performance among different models.

2.6 Model explainability

The SHAP algorithm was used to analyze the importance of 
features and present the contribution of feature variables based on ML 
model predictions to explain the model’s prediction process (31). To 
enhance model interpretability and trustworthiness, summary and 
waterfall plots were constructed to understand the decision-making 
process better. The ML models randomly generated positive and 
negative analysis of prediction process.

2.7 Statistical analysis

Descriptive statistics were presented as means with standard 
deviations (SDs), medians with interquartile ranges, or counts with 
frequencies, depending on the data type and distribution. 
Comparisons between groups were conducted using Fisher’s exact test 

for categorical data and the t-test, Wilcoxon rank-sum test, analysis of 
variance, or Kruskal–Wallis test for continuous data as appropriate. 
Patients were divided into two groups according to the in-hospital 
outcome. The ML models ultimately included variables with p-value 
less than 0.001. Python programming software (version 3.9) was used 
in data processing and model evaluation.

3 Results

3.1 Study research design process

The prediction model construction comprises three core 
components, namely, data preprocessing and standardization, ML 
models development and validation, models explainability analysis 
(Figure  1). Initial screening of the MIMIC-IV database identified 
3,519 patients, 101 patients were excluded due to less than 24 h ICU 
duration, 97 patients were excluded for lower gastrointestinal 
bleeding, and 271 patients were removed for insufficient data more 
than 20% missing. Ultimately, a total of 3,050 patients were included 
in the cohort, 625 patients (20.5%) were stratified into AVGIB, and the 
remaining 2,425 patients (79.5%) were defined as ANGIB, described 
in Supplementary Table. The cohort of 3,050 AUGIB patients 
demonstrated an overall mortality rate of 19.15% (n = 584), aligning 
with established epidemiological data from prior studies (32). The 
study included 3,050 AUGIB patients with numerous variables, 
including demographic characteristics, medication history, special 
interventions, vital signs, medical history, blood transfusions, severity 
scores, and laboratory results (Table 1).

FIGURE 1

Technical roadmap for constructing machine learning model. SMOTE-ENN: Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors; 
ADASYN: Adaptive Synthetic Sampling; LR: logistic regression; DT: decision tree; RF: random forest; GBoost: gradient boosting; AdaBoost: adaptive 
boosting; XGBoost: eXtreme Gradient Boosting; NB: Naive Bayes; SVM: support vector machine; LightGBM: light gradient-boosting machine; KNN: 
K-nearest neighbors; ET: extra trees; VC: voting classifier.
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The ML models were separately developed according to the 
AVGIB and ANGIB subgroups. To address data imbalance and 
enhance model generalizability, we employed advanced data balancing 
techniques including SMOTE-ENN and ADASYN. Twelve machine 
learning algorithms were systematically evaluated through 5-fold 
cross validation and independent validation. The optimal models were 
selected based on comprehensive performance metrics including 
AUC, accuracy, precision, recall, and F1-score.

The Shapley Additive exPlanations (SHAP) algorithms were 
introduced to identify the top 20 most influential features through 
SHAP summary plots, mean SHAP value analysis, and visualize 
prediction mechanism via decision plots for representative cases and 
force plots illustrating positive and negative predictions.

3.2 Acute variceal gastrointestinal bleeding 
patients machine learning model

3.2.1 Clinical characteristic and predictor 
screening

The study identified 625 patients with acute variceal 
gastrointestinal bleeding through ICD code verification. Based on 
clinical outcomes, 497 patients (79.5%) were stratified into survival 
group and 128 patients (20.5%) were classified into non-survival 
group. The clinical characteristic of demographics, medical history, 
previous history, intervention measures, vital sign, related scores, and 
laboratory results were collected.

The variceal bleeding study initially evaluated 92 candidate 
variables, with 59 demonstrating statistically significant associations 
(p < 0.001) upon rigorous screening. The feature variable selection 
results are presented in Table 2. To enhance the sensitivity of the ML 
model, we only incorporated 59 variables with p < 0.001.

3.2.2 Machine learning model construction and 
evaluation

Hybrid approaches combining SMOTE-ENN and ADASYN 
techniques were employed to simultaneously address data imbalances. 
Subsequently, 12 ML algorithms were adopted to select the optimal 
ML models. The dual validation strategy incorporating both 5-fold 
cross validation (Table 3) and independent validation (Table 4) serves 
as robust safeguard against overfitting by providing multiple 
performance estimates and maintaining completely unseen data for 
final evaluation.

Through comprehensive evaluation of key parameters (including 
accuracy, precision, recall, and F1-score), the ET model exhibited 
excellent prediction performance with AUC ranking the first with 
0.996 ± 0.007, accuracy of 0.966 ± 0.009, precision of 0.957 ± 0.024, 
recall of 0.988 ± 0.012, and F1-score of 0.972 ± 0.007, respectively. 
Thus, ET model demonstrated superior performance and was 
consequently selected as the excellent predictive framework.

3.2.3 Machine learning model performance
As represented in Table 3, the SMOTE-ENN imbalance-handling 

technique achieves superior performance across nearly all metrics. 
Consequently, SMOTE-ENN was finally selected as the optimal 
algorithm, outperforming the ADASYN technique. The consistency 
performance observed in both 5-CV and IV confirmed that 
SMOTE-ENN effectively mitigates class imbalance issue without 

TABLE 1 Clinical characteristics of AUGIB patients in MIMIC-IV database.

No. Feature variable Overall (n = 3,050)

Demographics

1 Age, y 64.81 (54.07, 77.31)

2 Male, n (%) 1883 (61.74)

Medical history

3 Anticoagulants, n (%) 507 (16.62)

4 Antiplatelet agents, n (%) 1,002 (32.85)

5 Proton pump inhibitors, n (%) 2,941 (96.43)

Intervention measures

6 Vasoactive drugs, n (%) 1,030 (33.77)

7 CRRT, n (%) 209 (6.85)

8 Mechanical ventilation, n (%) 1,319 (43.25)

Vital signs

9 Heart rate_min, bmp 72.00 (63.00, 84.00)

10 Heart rate_max, bmp 105.00 (91.00, 119.00)

11 Heart rate_mean, bmp 86.88 (75.93, 98.21)

12 Respiratory rate_min, bmp 12.00 (10.00, 15.00)

13 Respiratory rate_max, bmp 27.00 (24.00, 31.00)

14 Respiratory rate_mean, bmp 18.59 (16.43, 21.33)

15 SPB_min, mmHg 90.00 (80.00, 100.00)

16 SPB_max, mmHg 143.00 (128.00,160.00)

17 SPB_mean, mmHg 113.74 (104.07,126.71)

18 DBP_min, mmHg 45.00 (38.00, 53.00)

19 DBP_max, mmHg 86.00 (75.00, 99.00)

20 DBP_mean, mmHg 61.48 (54.70, 69.67)

21 MBP_min, mmHg 58.00 (50.00, 65.00)

22 MBP_max, mmHg 100.00 (88.00, 113.00)

23 MBP_mean, mmHg 75.28 (68.80, 83.39)

24 SpO2_min, % 93.00 (90.00, 95.00)

25 SpO2_max, % 100.00 (100.00,100.00)

26 SpO2_mean, % 97.42 (96.08, 98.65)

Previous history

27 Myocardial infarction, n (%) 472 (15.48)

28 Congestive heart failure, n (%) 911 (29.87)

29 Hypertension, n (%) 803 (26.33)

30 Diabetes, n (%) 973 (31.90)

31 Atrial fibrillation, n (%) 788 (25.84)

32 Chronic kidney disease, n (%) 851 (27.90)

33 COPD, n (%) 321 (10.52)

34 Chronic liver disease, n (%) 1,350 (44.26)

Blood transfusion

35 Red blood cells, n (%) 1912 (62.69)

36 Plasma, n (%) 752 (24.66)

37 Platelets, n (%) 548 (17.97)

38 Albumin, n (%) 612 (20.1)

(Continued)
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generalizing overfitting, making it the most reliable resampling  
approach.

Regarding the ML model performance, the AUC values varied 
significantly across different algorithms when using the ADASYN and 
SMOTE-ENN techniques, as evaluated through both 5-CV and IV in 
Figure 2. The ET model emerged as the optimal choice due to its 
highest AUC values and overall excellent performance, as detailed in 
Section 3.2.2.

3.2.4 Machine learning model SHAP explainable
To directly display the weights of each feature variable and its 

predictive values of the ET model, SHAP (Shapley Additive 
exPlanations) algorithms were performed to visualize variables. The 
SHAP summary plot contained average SHAP values of variables and 
a representation of each feature’s contribution with SHAP values. The 
top 20 feature variables were acute kidney failure, transfusion albumin, 
vasoactive drugs, transfusion plasma, transfusion platelet, INR_max, 
PT_max, AIMS65 score, PT_mean, APTT_max, APACHE-II score, 
bilirubin_max, diabetes, INR_mean, bilirubin_mean, GCS score, 
APTT_min, INR_min, APTT_mean, and bilirubin_min.

The SHAP feature importance plot indicated top  20 feature 
variables weight of the optimal ET model in mortality prediction 
(Figure 3A). In the SHAP summary plot, each point represents the 
SHAP value of corresponding feature variable for given sample 
(Figure  3B). Similarly, points trending toward red color indicate 
higher feature values, while those approaching blue color denote lower 
feature values.

3.2.5 Machine learning explainability for patients
The SHAP explains model predictions by quantifying feature 

contributions, visualized via waterfall plots. The positive patient was 
randomly selected in Figure 3C. The base value of the ET model is E 
f(x) = 0.05, the patient transfusion albumin, corresponding to 
f(x) = 0.11; patient had acute kidney failure, corresponding to 
f(x) = 0.09. Similarly, other feature variables correspond to f(x) values. 
As described in Figure 3C, the final f(x) was 0.936; therefore, the 
patient was positive case representative.

Similarly, the negative patient was randomly selected in 
Figure 3D. The base value of the ET model is E f(x) = −0.25, and the 

TABLE 1 (Continued)

No. Feature variable Overall (n = 3,050)

Related scores

39 APACHE-II 12.00 (9.00, 16.00)

40 GBS 13.00 (10.00, 15.00)

41 AIMS65 2.00 (1.00, 3.00)

42 Rockall score 7.00 (6.00, 7.00)

43 Shock index 0.76 (0.63, 0.92)

44 GCS score 13.00 (10.00, 15.00)

Laboratory Result

45 WBC_min, 109/L 8.20 (5.50, 12.00)

46 WBC_max, 109/L 11.70 (7.80, 17.10)

47 WBC_mean, 109/L 10.02 (6.73, 14.35)

48 RBC_min, 1012/L 2.74 (2.35, 3.22)

49 RBC_max, 1012/L 3.28 (2.90, 3.77)

50 RBC_mean, 1012/L 3.00 (2.67, 3.47)

51 Hb_min, mg/dL 8.20 (7.00, 9.70)

52 Hb_max, mg/dL 9.90 (8.70, 11.30)

53 Hb_mean, mg/dL 9.03 (7.97, 10.37)

54 PLT_min, 109/L 134.00 (76.00, 210.00)

55 PLT_max, 109/L 180.00 (111.00, 265.00)

56 PLT_mean, 109/L 155.63 (94.07, 231.67)

57 ALT_min,U/L 23.00 (14.00, 42.00)

58 ALT_max,U/L 25.00 (15.00, 50.00)

59 ALT_mean,U/L 24.00 (15.00, 46.94)

60 AST_min,U/L 35.00 (21.00, 77.00)

61 AST_max,U/L 40.00 (22.00, 91.00)

62 AST_mean,U/L 38.00 (21.75, 84.95)

63 Albumin_min, mg/dL 3.00 (2.60, 3.43)

64 Albumin_max, mg/dL 3.10 (2.67, 3.50)

65 Albumin_mean, mg/dL 3.05 (2.60, 3.50)

66 TBIL_min, mg/dL 0.92 (0.50, 2.44)

67 TBIL_max, mg/dL 1.10 (0.53, 3.00)

68 TBIL_mean, mg/dL 1.05 (0.50, 2.79)

69 BUN_min, mg/dL 25.00 (15.00, 42.00)

70 BUN_max, mg/dL 30.00 (18.00, 52.00)

71 BUN_mean, mg/dL 27.50 (17.00, 47.33)

72 Creatinine_min, mg/dL 1.00 (0.70, 1.70)

73 Creatinine_max, mg/dL 1.20 (0.80, 2.10)

74 Creatinine_mean, mg/dL 1.12 (0.77, 1.90)

75 Lactate_min, mmol/L 1.60 (1.10, 2.30)

76 Lactate_max, mmol/L 1.60 (1.20, 2.45)

77 Lactate_mean, mmol/L 1.60 (1.10, 2.50)

78 Potassium_min, mmol/L 3.90 (3.50, 4.30)

79 Potassium_max, mmol/L 4.40 (4.00, 5.00)

80 Potassium_mean, mmol/L 4.15 (3.80, 4.60)

(Continued)

TABLE 1 (Continued)

No. Feature variable Overall (n = 3,050)

81 Sodium_min,mmol/L 137.00 (134.00, 140.00)

82 Sodium_max,mmol/L 140.00 (137.00, 143.00)

83 Sodium_mean,mmol/L 138.78 (135.50, 141.50)

84 PT_min, sec 14.60 (12.80, 18.10)

85 PT_max, sec 16.00 (13.40, 21.20)

86 PT_mean, sec 15.40 (13.17, 19.69)

87 APTT_min, sec 30.20 (26.40, 36.00)

88 APTT_max, sec 33.90 (28.60, 46.20)

89 APTT_mean, sec 32.42 (27.84, 41.06)

90 INR_min 1.30 (1.20, 1.70)

91 INR_max 1.45 (1.20, 2.00)

92 INR_mean 1.40 (1.20, 1.80)
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TABLE 2 Feature characteristics of AVGIB patients in survival and non-survival groups.

Variables Total (n = 625) Survival (n = 497) Non-survival 
(n = 128)

p-value

Demographics

Age, y 57.08 (47.63, 63.58) 57.46 (48.06, 63.37) 53.54 (45.70, 64.51) 0.211

Male, n(%) 444 (71.04%) 353 (71.03%) 91 (71.09%) 0.999

Medical history

Anticoagulants, n(%) 19 (3.04%) 17 (3.42%) 2 (1.56%) 0.422

Antiplatelet agents, n(%) 60 (9.60%) 49 (9.86%) 11 (8.59%) 0.791

Proton pump inhibitors, n(%) 624 (99.84%) 497 (100.00%) 127 (99.22%) 0.464

Intervention measures

Vasoactive drugs, n(%) 214 (34.24%) 126 (25.35%) 88 (68.75%) <0.001

CRRT, n(%) 40 (6.40%) 12 (2.41%) 28 (21.88%) <0.001

Mechanical ventilation, n(%) 375 (60.00%) 276 (55.53%) 99 (77.34%) <0.001

Vital sign

Heart rate_min, bmp 72.00 (63.00, 84.00) 71.00 (62.00, 81.00) 78.00 (65.75, 89.00) <0.001

Heart rate_max, bmp 105.00 (90.00, 117.00) 103.00 (89.00, 116.00) 110.00 (97.50, 120.00) <0.001

Heart rate_mean, bmp 86.82 (75.29, 97.43) 84.88 (74.12, 96.26) 92.24 (79.23, 103.64) <0.001

Respiratory rate_min, bmp 12.00 (9.00, 14.00) 11.00 (9.00, 14.00) 13.00 (9.75, 15.00) 0.006

Respiratory rate_max, bmp 26.00 (22.50, 30.00) 25.00 (22.00, 30.00) 28.00 (23.00, 32.00) 0.007

Respiratory rate mean, bmp 17.61 (15.48, 20.03) 17.35 (15.35, 19.44) 19.19 (16.34, 23.14) <0.001

SBP_min, mmHg 89.00 (81.00, 99.00) 91.00 (82.00, 101.00) 83.00 (75.00, 91.25) <0.001

SBP_max, mmHg 141.00 (126.00, 156.00) 143.00 (129.00, 157.00) 132.00 (120.00, 146.00) <0.001

SBP_mean, mmHg 111.97 (103.00, 122.82) 114.04 (105.17, 124.54) 103.78 (97.10, 111.74) <0.001

DBP_min, mmHg 46.00 (40.00, 54.00) 47.00 (41.00, 55.00) 43.00 (37.00, 49.25) <0.001

DBP_max, mmHg 86.00 (76.00, 97.00) 87.00 (77.00, 97.00) 81.00 (70.00, 92.25) <0.001

DBP_mean, mmHg 62.84 (56.78, 70.00) 64.00 (57.60, 70.90) 59.35 (53.22, 64.09) <0.001

MBP_min, mmHg 58.00 (51.00, 66.00) 59.00 (53.00, 67.00) 54.00 (48.00, 60.00) <0.001

MBP_max, mmHg 98.00 (89.00, 111.00) 100.00 (90.00, 112.00) 94.00 (85.00, 109.00) 0.015

MBP_mean, mmHg 75.78 (69.40, 82.81) 77.00 (70.30, 83.93) 70.83 (66.16, 77.18) <0.001

SpO2_min, % 93.00 (91.00, 96.00) 93.00 (92.00, 96.00) 93.00 (90.00, 96.00) 0.029

SpO2_max, % 100.00 (100.00, 100.00) 100.00 (100.00, 100.00) 100.00 (100.00, 100.00) 0.594

SpO2_mean, % 97.53 (96.36, 98.79) 97.58 (96.47, 98.79) 97.43 (95.87, 98.83) 0.253

Previous history

Myocardial infarction, n (%) 30 (4.80%) 11 (2.21%) 19 (14.84%) <0.001

Congestive heart failure, n (%) 53 (8.48%) 35 (7.04%) 18 (14.06%) 0.018

Hypertension, n (%) 71 (11.36%) 67 (13.48%) 4 (3.12%) 0.002

Diabetes, n (%) 158 (25.28%) 143 (28.77%) 15 (11.72%) <0.001

Atrial fibrillation, n (%) 46 (7.36%) 35 (7.04%) 11 (8.59%) 0.682

Chronic kidney disease, n (%) 73 (11.68%) 55 (11.07%) 18 (14.06%) 0.431

COPD, n (%) 32 (5.12%) 24 (4.83%) 8 (6.25%) 0.670

Chronic liver disease, n (%) 584 (93.44%) 458 (92.15%) 126 (98.44%) 0.018

Blood transfusion

i_RBC 413 (66.08%) 314 (63.18%) 99 (77.34%) 0.004

i_FFP 233 (37.28%) 142 (28.57%) 91 (71.09%) <0.001

i_PLT 173 (27.68%) 105 (21.13%) 68 (53.12%) <0.001

i_ALB 213 (34.08%) 137 (27.57%) 76 (59.38%) <0.001

(Continued)
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TABLE 2 (Continued)

Variables Total (n = 625) Survival (n = 497) Non-survival 
(n = 128)

p-value

Related scores

APACHE-II 10.00 (8.00, 15.00) 10.00 (8.00, 13.00) 15.00 (11.00, 19.00) <0.001

GBS 13.00 (10.00, 15.00) 13.00 (10.00, 15.00) 14.00 (10.75, 15.00) <0.001

AIMS65 2.00 (1.00, 3.00) 2.00 (1.00, 2.00) 3.00 (2.00, 3.00) <0.001

Rockall 7.00 (6.00, 7.00) 7.00 (6.00, 7.00) 7.00 (6.00, 8.00) 0.034

Shock Index 2.00 (1.00, 3.00) 2.00 (1.00, 2.00) 3.00 (2.00, 3.00) <0.001

GCS 13.00 (10.00, 15.00) 13.00 (10.00, 15.00) 14.00 (10.75, 15.00) <0.001

Laboratory results

WBC_min, 109/L 6.90 (4.20, 10.40) 6.60 (4.00, 9.50) 9.00 (5.90, 14.50) <0.001

WBC_max, 109/L 10.20 (6.70, 15.90) 9.30 (6.30, 14.00) 14.15 (10.00, 22.00) <0.001

WBC_mean, 109/L 8.45 (5.47, 12.70) 7.80 (5.20, 11.38) 11.89 (7.47, 18.03) <0.001

RBC_min, 1012/L 2.68 (2.30, 3.10) 2.77 (2.36, 3.16) 2.50 (2.08, 2.75) <0.001

RBC_max, 1012/L 3.25 (2.89, 3.67) 3.27 (2.92, 3.71) 3.14 (2.76, 3.43) 0.002

RBC_mean, 1012/L 2.98 (2.64, 3.35) 3.05 (2.67, 3.41) 2.82 (2.51, 3.03) <0.001

Hemoglobin_min, mg/dL 8.30 (7.20, 9.60) 8.40 (7.30, 9.70) 7.80 (6.70, 8.93) <0.001

Hemoglobin_max, mg/dL 10.00 (8.80, 11.20) 10.00 (8.80, 11.20) 10.00 (8.88, 11.03) 0.929

Hemoglobin_mean, mg/dL 9.15 (8.05, 10.36) 9.20 (8.06, 10.40) 8.91 (8.05, 10.00) 0.077

Platelets_min, 109/L 77.00 (50.00, 120.00) 80.00 (51.00, 127.00) 67.00 (45.00, 104.25) 0.004

Platelets_max, 109/L 116.00 (77.00, 168.00) 116.00 (78.00, 174.00) 113.00 (76.75, 154.00) 0.218

Platelets_mean, 109/L 96.00 (64.75, 140.50) 97.50 (65.00, 149.00) 85.50 (63.38, 118.05) 0.058

ALT_min, U/L 30.00 (19.00, 51.00) 28.00 (18.00, 45.00) 37.50 (23.00, 76.25) <0.001

ALT_max, U/L 35.00 (22.00, 63.00) 32.00 (21.00, 55.00) 45.50 (26.00, 114.50) <0.001

ALT_mean, U/L 32.50 (21.00, 57.00) 31.00 (20.00, 51.50) 41.50 (24.75, 97.67) <0.001

AST_min, U/L 57.00 (35.00, 111.00) 54.00 (33.00, 96.00) 88.50 (38.75, 177.75) <0.001

AST_max, U/L 68.00 (40.00, 140.00) 65.00 (40.00, 125.00) 106.00 (44.00, 295.50) <0.001

AST_mean, U/L 62.50 (38.00, 126.00) 59.00 (37.50, 113.00) 101.25 (39.88, 231.88) <0.001

ALB_min, mg/dL 2.99 ± 0.62 3.02 ± 0.60 2.87 ± 0.70 0.019

ALB_max, mg/dL 3.10 (2.70, 3.50) 3.13 (2.70, 3.50) 2.90 (2.50, 3.46) 0.027

ALB_mean, mg/dL 3.00 (2.62, 3.41) 3.05 (2.70, 3.46) 2.88 (2.50, 3.40) 0.014

TBIL_min, mg/dL 2.40 (1.10, 6.00) 1.90 (0.90, 4.10) 7.40 (3.20, 16.82) <0.001

TBIL_max, mg/dL 3.10 (1.40, 7.40) 2.40 (1.20, 5.00) 8.50 (4.30, 20.38) <0.001

TBIL_mean, mg/dL 2.80 (1.25, 6.75) 2.10 (1.10, 4.55) 7.86 (4.04, 17.75) <0.001

BUN_min, mg/dL 24.00 (15.00, 40.00) 22.00 (14.00, 36.00) 36.50 (23.00, 50.00) <0.001

BUN_max, mg/dL 29.00 (18.00, 47.00) 27.00 (17.00, 43.00) 42.00 (28.00, 60.75) <0.001

BUN_mean, mg/dL 26.45 (16.52, 44.19) 24.50 (15.94, 38.50) 40.00 (25.40, 55.63) <0.001

Creatinine_min, mg/dL 0.90 (0.60, 1.40) 0.80 (0.60, 1.20) 1.40 (0.90, 2.40) <0.001

Creatinine_max, mg/dL 1.00 (0.80, 1.80) 0.90 (0.70, 1.40) 1.95 (1.00, 3.00) <0.001

Creatinine_mean, mg/dL 0.95 (0.70, 1.62) 0.90 (0.69, 1.29) 1.70 (1.00, 2.59) <0.001

Lactate_min, mmol/L 1.60 (1.30, 2.60) 1.60 (1.20, 2.30) 2.30 (1.60, 4.20) <0.001

Lactate_max, mmol/L 1.60 (1.30, 2.70) 1.60 (1.20, 2.35) 2.35 (1.60, 4.10) <0.001

Lactate_mean, mmol/L 1.60 (1.20, 2.70) 1.60 (1.10, 2.34) 2.00 (1.40, 3.95) <0.001

Potassium_min, mmol/L 4.00 (3.60, 4.30) 4.00 (3.60, 4.30) 3.95 (3.58, 4.40) 0.994

Potassium_max, mmol/L 4.40 (4.00, 5.20) 4.40 (4.00, 5.10) 4.65 (4.00, 5.60) 0.076

Potassium_mean, mmol/L 4.20 (3.83, 4.70) 4.20 (3.83, 4.65) 4.25 (3.77, 5.08) 0.265

(Continued)
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TABLE 2 (Continued)

Variables Total (n = 625) Survival (n = 497) Non-survival 
(n = 128)

p-value

Sodium_min, mmol/L 137.00 (133.00, 140.00) 137.00 (134.00, 140.00) 135.00 (129.00, 141.00) 0.052

Sodium_max, mmol/L 140.00 (136.00, 143.00) 140.00 (137.00, 143.00) 138.00 (132.00, 145.00) 0.279

Sodium_mean, mmol/L 138.40 (135.00, 141.50) 138.50 (135.67, 141.00) 137.00 (131.38, 142.37) 0.126

PT_min, sec 16.70 (14.70, 19.70) 16.20 (14.10, 18.50) 20.00 (16.65, 23.25) <0.001

PT_max, sec 18.70 (15.80, 23.40) 17.60 (15.20, 21.20) 24.65 (20.95, 32.77) <0.001

PT_mean, sec 17.77 (15.50, 21.50) 16.90 (14.85, 19.87) 22.58 (18.85, 26.68) <0.001

APTT_min, sec 32.70 (28.60, 38.10) 31.70 (28.10, 36.20) 39.35 (34.15, 46.28) <0.001

APTT_max, sec 36.20 (31.20, 46.10) 34.30 (30.40, 41.50) 50.80 (38.72, 72.30) <0.001

APTT_mean, sec 34.60 (30.22, 41.70) 33.15 (29.30, 38.51) 45.37 (36.27, 57.61) <0.001

INR_min 1.50 (1.30, 1.80) 1.50 (1.30, 1.70) 1.85 (1.50, 2.20) <0.001

INR_max 1.70 (1.40, 2.20) 1.60 (1.40, 2.00) 2.30 (1.90, 3.10) <0.001

INR_mean 1.61 (1.40, 2.00) 1.55 (1.35, 1.85) 2.10 (1.73, 2.50) <0.001

TABLE 3 5-fold cross-validation of ML models prediction performance for AVGIB patients.

Models Mean AUC Mean accuracy Mean precision Mean recall Mean F1 score

ADASYN

Logistic regression 0.852 ± 0.042 0.790 ± 0.032 0.491 ± 0.051 0.731 ± 0.080 0.586 ± 0.056

Decision tree 0.699 ± 0.013 0.760 ± 0.029 0.446 ± 0.044 0.641 ± 0.056 0.521 ± 0.013

Random forest 0.867 ± 0.047 0.826 ± 0.032 0.676 ± 0.202 0.373 ± 0.122 0.458 ± 0.106

Gradient boosting 0.843 ± 0.036 0.831 ± 0.030 0.634 ± 0.113 0.427 ± 0.085 0.505 ± 0.086

AdaBoost 0.847 ± 0.044 0.833 ± 0.038 0.662 ± 0.175 0.471 ± 0.051 0.539 ± 0.068

XGBoost 0.858 ± 0.057 0.840 ± 0.029 0.695 ± 0.159 0.439 ± 0.067 0.528 ± 0.069

Naive Bayes 0.850 ± 0.035 0.796 ± 0.031 0.513 ± 0.060 0.618 ± 0.097 0.552 ± 0.032

SVM (RBF Kernel) 0.874 ± 0.033 0.810 ± 0.045 0.541 ± 0.082 0.741 ± 0.104 0.616 ± 0.053

LightGBM 0.856 ± 0.030 0.831 ± 0.037 0.614 ± 0.112 0.575 ± 0.078 0.582 ± 0.050

KNN 0.784 ± 0.057 0.842 ± 0.031 0.800 ± 0.194 0.314 ± 0.065 0.449 ± 0.097

Extra trees 0.877 ± 0.030 0.842 ± 0.013 0.678 ± 0.073 0.461 ± 0.099 0.538 ± 0.057

Voting classifier 0.881 ± 0.038 0.847 ± 0.027 0.687 ± 0.130 0.529 ± 0.100 0.582 ± 0.063

SMOTE-ENN

Logistic regression 0.993 ± 0.010 0.968 ± 0.007 0.965 ± 0.023 0.982 ± 0.018 0.973 ± 0.006

Decision tree 0.913 ± 0.026 0.929 ± 0.013 0.924 ± 0.019 0.957 ± 0.030 0.940 ± 0.011

Random forest 0.994 ± 0.008 0.956 ± 0.015 0.953 ± 0.020 0.972 ± 0.025 0.962 ± 0.013

Gradient boosting 0.982 ± 0.015 0.942 ± 0.024 0.940 ± 0.019 0.960 ± 0.023 0.950 ± 0.021

AdaBoost 0.990 ± 0.017 0.970 ± 0.021 0.973 ± 0.018 0.975 ± 0.029 0.974 ± 0.018

XGBoost 0.992 ± 0.012 0.970 ± 0.023 0.964 ± 0.020 0.985 ± 0.024 0.974 ± 0.020

Naive Bayes 0.953 ± 0.021 0.887 ± 0.028 0.938 ± 0.018 0.862 ± 0.063 0.897 ± 0.031

SVM (RBF Kernel) 0.995 ± 0.010 0.975 ± 0.014 0.962 ± 0.022 0.997 ± 0.006 0.979 ± 0.012

LightGBM 0.993 ± 0.011 0.973 ± 0.011 0.971 ± 0.020 0.985 ± 0.014 0.977 ± 0.009

KNN 0.983 ± 0.011 0.959 ± 0.023 0.936 ± 0.036 1.000 ± 0.000 0.966 ± 0.019

Extra trees 0.996 ± 0.007 0.966 ± 0.009 0.957 ± 0.024 0.988 ± 0.012 0.972 ± 0.007

Voting classifier 0.995 ± 0.008 0.970 ± 0.014 0.967 ± 0.019 0.982 ± 0.018 0.974 ± 0.012

https://doi.org/10.3389/fmed.2025.1580094
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1580094

Frontiers in Medicine 10 frontiersin.org

TABLE 4 Independent validation of ML models prediction performance for AVGIB patients.

Models Mean AUC Mean accuracy Mean precision Mean recall Mean F1 score

ADASYN

Logistic regression 0.849 ± 0.031 0.805 ± 0.043 0.525 ± 0.074 0.738 ± 0.113 0.611 ± 0.083

Decision tree 0.692 ± 0.084 0.757 ± 0.027 0.440 ± 0.046 0.615 ± 0.081 0.512 ± 0.056

Random forest 0.852 ± 0.033 0.832 ± 0.018 0.642 ± 0.071 0.446 ± 0.062 0.524 ± 0.055

Gradient boosting 0.846 ± 0.018 0.837 ± 0.011 0.649 ± 0.051 0.485 ± 0.031 0.553 ± 0.016

AdaBoost 0.830 ± 0.033 0.818 ± 0.011 0.571 ± 0.024 0.485 ± 0.079 0.522 ± 0.053

XGBoost 0.841 ± 0.039 0.816 ± 0.015 0.566 ± 0.036 0.477 ± 0.086 0.515 ± 0.064

Naive Bayes 0.843 ± 0.034 0.798 ± 0.022 0.512 ± 0.039 0.685 ± 0.075 0.585 ± 0.048

SVM (RBF Kernel) 0.872 ± 0.027 0.814 ± 0.016 0.540 ± 0.031 0.738 ± 0.062 0.623 ± 0.035

LightGBM 0.845 ± 0.040 0.822 ± 0.015 0.572 ± 0.040 0.600 ± 0.062 0.583 ± 0.035

KNN 0.814 ± 0.040 0.824 ± 0.013 0.665 ± 0.072 0.315 ± 0.038 0.427 ± 0.044

Extra trees 0.871 ± 0.030 0.845 ± 0.015 0.658 ± 0.048 0.538 ± 0.049 0.590 ± 0.038

Voting classifier 0.865 ± 0.032 0.829 ± 0.015 0.598 ± 0.042 0.554 ± 0.039 0.574 ± 0.029

SMOTE-ENN

Logistic regression 0.978 ± 0.007 0.941 ± 0.011 0.935 ± 0.017 0.966 ± 0.016 0.950 ± 0.009

Decision tree 0.912 ± 0.020 0.926 ± 0.014 0.926 ± 0.023 0.949 ± 0.012 0.937 ± 0.011

Random forest 0.994 ± 0.002 0.958 ± 0.014 0.945 ± 0.022 0.985 ± 0.009 0.965 ± 0.011

Gradient boosting 0.993 ± 0.003 0.960 ± 0.006 0.955 ± 0.018 0.979 ± 0.013 0.966 ± 0.005

AdaBoost 0.991 ± 0.004 0.958 ± 0.009 0.951 ± 0.017 0.979 ± 0.012 0.964 ± 0.008

XGBoost 0.992 ± 0.005 0.958 ± 0.006 0.949 ± 0.019 0.981 ± 0.012 0.964 ± 0.005

Naive Bayes 0.933 ± 0.021 0.852 ± 0.039 0.915 ± 0.024 0.821 ± 0.068 0.864 ± 0.041

SVM (RBF Kernel) 0.990 ± 0.006 0.962 ± 0.009 0.949 ± 0.011 0.987 ± 0.008 0.968 ± 0.008

LightGBM 0.993 ± 0.004 0.957 ± 0.007 0.955 ± 0.020 0.972 ± 0.016 0.963 ± 0.005

KNN 0.990 ± 0.007 0.956 ± 0.013 0.933 ± 0.021 0.996 ± 0.009 0.963 ± 0.011

Extra trees 0.996 ± 0.001 0.964 ± 0.007 0.951 ± 0.009 0.989 ± 0.007 0.970 ± 0.006

Voting classifier 0.994 ± 0.003 0.953 ± 0.006 0.940 ± 0.018 0.983 ± 0.011 0.961 ± 0.005

patient did not transfusion albumin, corresponding to f(x) = −0.04; 
patient had no diabetes, corresponding to f(x) = −0.03. Similarly, 
other feature variables correspond to f(x) values. As described in 
Figure 3D, the final f(x) was 0.04; therefore, the patient was negative 
case representative.

3.3 Acute non-variceal gastrointestinal 
bleeding patients machine learning model

3.3.1 Clinical characteristic and predictor 
screening

The study identified 2,425 patients with acute non-variceal 
gastrointestinal bleeding through ICD code verification. Based 
on clinical outcomes, 1969 patients (81.2%) were stratified into 
survival group, and 456 patients (18.8%) were classified into 
non-survival group. The clinical characteristic of demographics, 
medical history, previous history, intervention measures, vital 
sign, related scores, and laboratory results are compared in 
Table 5.

The variceal bleeding study initially evaluated 92 candidate 
variables, with 70 demonstrating statistically significant associations 

(p < 0.001) upon rigorous screening. The feature variable selection 
results are presented in Table 4. To enhance the sensitivity of the ML 
model, we only incorporated 70 variables with p < 0.001.

3.3.2 Machine learning model construction and 
evaluation

Hybrid approaches combining SMOTE-ENN and ADASYN 
techniques were employed to simultaneously address data imbalances. 
Subsequently, 12 ML algorithms were adopted to select the optimal 
ML models. The dual validation strategy incorporating both 5-fold 
cross validation (Table 6) and independent validation (Table 7) serves 
as robust safeguard against overfitting by providing multiple 
performance estimates and maintaining completely unseen data for 
final evaluation.

Through comprehensive evaluation of key parameters 
(including accuracy, precision, recall, and F1-score), the Gradient 
Boosting model exhibited excellent prediction performance with 
AUC of 0.985 ± 0.002, accuracy of 0.948 ± 0.009, precision of 
0.949 ± 0.009, recall of 0.968 ± 0.009, and F1-score of 0.959 ± 0.007, 
respectively. Thus, GB model demonstrated superior  
performance and was consequently selected as the excellent 
predictive framework.
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3.3.3 Machine learning model performance
As represented in Table 6, the SMOTE-ENN imbalance-handling 

technique achieves superior performance across nearly all metrics. 
Consequently, SMOTE-ENN was finally selected as the optimal 
algorithm, outperforming the ADASYN technique. The consistency 
performance observed in both 5-CV and IV confirmed that 
SMOTE-ENN effectively mitigates class imbalance issue without 
generalizing overfitting, making it the most reliable 
resampling approach.

Regarding the ML model performance, the AUC values varied 
significantly across different algorithms when using the ADASYN and 
SMOTE-ENN techniques, as evaluated through both 5-CV and IV in 
Figure 4. The ET model emerged as the optimal choice due to the 
highest AUC values and overall excellent performance, as detailed in 
Section 3.2.2.

3.3.4 Machine learning model SHAP explainable
To directly display the weights of each feature variable and its 

predictive values of the GB model, SHAP (Shapley Additive 
exPlanations) algorithms were performed to visualize variables. The 
SHAP summary plot contained average SHAP values of variables and 
a representation of each feature’s contribution with SHAP values. The 
top  20 feature variables were GCS score, vasoactive drugs, acute 
kidney failure, AIMS65 score, APACHE-II score, mechanical 

ventilation, lactate_min, chronic liver disease, APTT_min, APTT_
max, potassium_max, acute heart failure, anticoagulants, albumin_
max, APTT_mean, BUN_miin, sepsis, respiratory rate_max, WBC_
min, and heart rate_max.

The SHAP feature importance plot indicated top  20 feature 
variable weight of the optimal GB model in mortality prediction 
(Figure 5A). In the SHAP summary plot, each point represents the 
SHAP value of corresponding feature variable for given sample 
(Figure  5B). Similarly, points trending toward red color indicate 
higher feature values, while those approaching blue color denote lower 
feature values.

3.3.5 Machine learning Explainability for patients
The SHAP explains model predictions by quantifying feature 

contributions, visualized via waterfall plots. The positive patient was 
randomly selected in Figure 5C. The base value of the GB model is E 
f(x) = 1.36, the vasoactive drugs corresponding to f(x) = 1.22 and 
previous acute kidney failure corresponding to f(x) = 0.50. Similarly, 
other feature variables correspond to ( )f x  values. As described in 
Figure 5C, the final f(x) was 5.581; therefore, the patient was positive 
case representative.

Similarly, the negative patient was randomly selected in 
Figure 5D. The base value of the GB model is E f(x) = −1.11, and the 
patient had not acute kidney failure, corresponding to f(x) = −1.83; 

FIGURE 2

AUC of different machine learning models for AVGIB patients in 5 CV and IV. (A) The ROC of models by ADASYN technique in 5 CV; (B) the ROC of 
models by ADASYN technique in IV; (C) the ROC of models by SMOTE-ENN technique in 5 CV; (D) the ROC of models by SMOTE-ENN technique in IV. 
SMOTE-ENN: Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors; ADASYN: Adaptive Synthetic Sampling.
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lactate min value was 1.0 mmol/L corresponding to f(x) = −0.80. 
Similarly, other feature variables correspond to f(x) values. As 
described in Figure 5D, the final f(x) was-3.78; therefore, the patient 
was negative case representative.

4 Discussion

Despite significant advancements in the prevention and treatment 
of AUGIB, the prognosis still remains great challenge, especially 
during ICU hospitalization (33). AUGIB patients constantly presented 
with massive bleeding, persistent hematemesis, melena, and even with 
active bleeding. Due to underlying circulatory failure and the 
possibility of MODS, high-risk patients often require ICU intensive 
bundle therapy (2). Multidisciplinary collaboration, fluid resuscitation, 
blood transfusion, correction of coagulopathy, and early endoscopic 
interventions all contribute to the outcomes (34–36). However, not all 
patients admitted to the ICU received emergency endoscopy, 
pharmacological hemostasis, blood transfusion, interventional 
therapy, or surgical intervention, it was judged by conditions. Previous 
scores, such as AIMS65, Rockall, and GBS, could be utilized as risk 
stratification tools. However, the score’s accuracy, sensitivity, and 
specificity were unsatisfactory, ranging from 70 to 80% (37). The 
APACHE-II score may be  used for prediction in ICU. However, 
relevant studies are relatively limited (38).

The AUGIB patient mortality is associated with multiple factors, 
including patient age, medical history, personal history, laboratory tests, 
and vital signs. Therefore, an integrated model with various variables is 
desperately needed. Variceal and non-variceal, as major categories of 

acute upper gastrointestinal hemorrhage, substantially influence clinical 
outcomes (39). Machine learning models are emerging as powerful tools 
by AI algorithms, which can achieve high accuracy and automated 
decision-making with highly adaptable and predictive power (40). Zhao 
X model was especially for non-variceal GIB patients (12), while the 
Agarwal S model was used for esophageal varices patients (41). The Kou 
Y prediction model was designed for GIB patients with acute myocardial 
infarction (AMI) (42). Thus, we aimed to construct ML model for 
AUGIB patients based on varice and non-varice subtypes. The 
MIMC-IV database was real-world clinical data from the ICU of Beth 
Israel Deaconess Medical Center (BIDMC), open access with millions 
of electronic health records including structured data and 
non-structured data, physiological waveform data, and time series data, 
which was the ideal resource for the ML model (43). The dynamic initial 
value, the minimum, max, and mean value give more accurate data for 
prediction. Thus, multiple values of vital signs and laboratory results 
were integrated into the ML model.

The ET model exhibited excellent performance for AVIGB 
patients with AUC of 0.996 ± 0.007, accuracy of 0.966 ± 0.009, 
precision of 0.957 ± 0.024, recall of 0.988 ± 0.012, and F1-score of 
0.972 ± 0.007; the GB model was the optimal for ANGIB patients 
with AUC of 0.985 ± 0.002, accuracy of 0.948 ± 0.009, precision of 
0.949 ± 0.009, recall of 0.968 ± 0.009, and F1-score of 0.959 ± 0.007, 
respectively. In other words, both prediction models can accurately 
identify positive patients while correctly recognizing negative 
patients better than previous ML models. Further analysis of the 
risk factors ranking in the top 10 revealed that vasoactive drugs, 
GCS score, AIMS65 score, anticoagulation, and SpO2 were the most 
related variables.

FIGURE 3

SHAP explainable of the extra trees prediction model. (A) The SHAP feature importance plot; (B) the SHAP summary plot; (C) the ML explainability of 
positive patient; (D) the ML explainability of negative patient.
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TABLE 5 Feature characteristics of ANGIB patients in survival and non-survival groups.

Variables Total (n = 2,425) Survival (n = 1969) Non-survival (n = 456) p-value

Demographics

Age, y 67.68 (56.38, 79.31) 67.52 (56.06, 79.37) 68.98 (57.59, 79.10) 0.211

Male, n (%) 1,439 (59.34%) 1,148 (58.30%) 291 (63.82%) 0.035

Medical History

Anticoagulants, n (%) 488 (20.12%) 425 (21.58%) 63 (13.82%) <0.001

Antiplatelet agents, n (%) 942 (38.85%) 781 (39.66%) 161 (35.31%) 0.096

PPI, n (%) 2,317 (95.55%) 1880 (95.48%) 437 (95.83%) 0.839

Intervention measures

Vasoactive drugs, n (%) 816 (33.65%) 511 (25.95%) 305 (66.89%) <0.001

CRRT, n (%) 169 (6.97%) 86 (4.37%) 83 (18.20%) <0.001

Mechanical ventilation, n (%) 944 (38.93%) 641 (32.55%) 303 (66.45%) <0.001

Vital sign

Heart rate_min, bmp 72.00 (63.00, 84.00) 72.00 (63.00, 83.00) 76.00 (62.00, 88.00) 0.004

Heart rate_max, bmp 105.00 (92.00, 120.00) 104.00 (91.00, 119.00) 110.00 (97.00, 126.00) <0.001

Heart rate_mean, bmp 86.96 (76.25, 98.46) 85.76 (75.43, 97.49) 91.11 (80.18, 103.68) <0.001

Respiratory rate_min, bmp 12.00 (10.00, 15.00) 12.00 (10.00, 15.00) 13.00 (10.00, 16.00) <0.001

Respiratory rate_max, bmp 27.00 (24.00, 32.00) 27.00 (24.00, 31.00) 29.00 (25.00, 34.00) <0.001

Respiratory rate_mean, bmp 18.88 (16.69, 21.55) 18.65 (16.55, 21.14) 20.25 (17.38, 23.69) <0.001

SBP_min, mmHg 90.00 (80.00, 101.00) 91.00 (82.00, 103.00) 83.00 (75.00, 92.00) <0.001

SBP_max, mmHg 144.00 (129.00, 161.00) 145.00 (129.00, 162.00) 139.00 (123.00, 155.00) <0.001

SBP_mean, mmHg 114.62 (104.41, 127.71) 116.20 (106.21, 129.30) 107.54 (100.11, 118.27) <0.001

DBP_min, mmHg 44.00 (37.00, 52.00) 45.00 (38.00, 53.00) 41.00 (34.00, 49.00) <0.001

DBP_max, mmHg 86.00 (74.00, 100.00) 87.00 (75.00, 100.00) 83.00 (70.00, 97.12) <0.001

DBP_mean, mmHg 61.19 (54.15, 69.50) 62.04 (54.92, 70.25) 57.37 (51.08, 65.47) <0.001

MBP_min, mmHg 57.00 (50.00, 65.00) 58.00 (51.00, 66.00) 53.00 (45.00, 61.00) <0.001

MBP_max, mmHg 100.00 (88.00, 114.00) 100.00 (89.00, 114.00) 97.00 (86.00, 113.25) 0.002

MBP_mean, mmHg 75.15 (68.45, 83.50) 76.09 (69.47, 84.68) 71.31 (65.66, 78.39) <0.001

SpO2_min, % 93.00 (90.00, 95.00) 93.00 (91.00, 95.00) 92.00 (88.00, 94.00) <0.001

SpO2_max, % 100.00 (100.00, 100.00) 100.00 (100.00, 100.00) 100.00 (100.00, 100.00) 0.636

SpO2_mean, % 97.41 (96.00, 98.63) 97.50 (96.20, 98.65) 96.95 (95.32, 98.56) <0.001

Previous history

Myocardial infarction, n (%) 442 (18.23%) 348 (17.67%) 94 (20.61%) 0.162

Congestive heart failure, n (%) 858 (35.38%) 667 (33.88%) 191 (41.89%) 0.002

Hypertension, n (%) 732 (30.19%) 617 (31.34%) 115 (25.22%) 0.012

Diabetes, n (%) 815 (33.61%) 664 (33.72%) 151 (33.11%) 0.847

Atrial fibrillation, n (%) 742 (30.60%) 580 (29.46%) 162 (35.53%) 0.013

Chronic kidney disease, n (%) 778 (32.08%) 617 (31.34%) 161 (35.31%) 0.114

COPD, n (%) 289 (11.92%) 219 (11.12%) 70 (15.35%) 0.015

Chronic liver disease, n (%) 766 (31.59%) 557 (28.29%) 209 (45.83%) <0.001

Blood transfusion

i_RBC 1,499 (61.81%) 1,203 (61.10%) 296 (64.91%) 0.145

i_FFP 519 (21.40%) 349 (17.72%) 170 (37.28%) <0.001

i_PLT 375 (15.46%) 246 (12.49%) 129 (28.29%) <0.001

i_ALB 399 (16.45%) 250 (12.70%) 149 (32.68%) <0.001

(Continued)
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TABLE 5 (Continued)

Variables Total (n = 2,425) Survival (n = 1969) Non-survival (n = 456) p-value

Related scores

APACHE-II 12.00 (10.00, 16.00) 12.00 (9.00, 15.00) 17.00 (12.00, 21.00) <0.001

GBS 13.00 (10.00, 15.00) 13.00 (10.00, 15.00) 13.00 (10.00, 15.00) 0.003

AIMS65 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 3.00 (2.00, 3.00) <0.001

Rockall 7.00 (5.00, 7.00) 6.00 (5.00, 7.00) 7.00 (6.00, 8.00) <0.001

Shock Index 0.76 (0.63, 0.92) 0.75 (0.62, 0.90) 0.84 (0.69, 1.00) <0.001

GCS 14.00 (11.00, 15.00) 14.00 (13.00, 15.00) 10.00 (6.00, 14.00) <0.001

Laboratory results

WBC_min, 109/L 8.70 (5.90, 12.30) 8.30 (5.90, 11.70) 10.30 (6.38, 14.80) <0.001

WBC_max, 109/L 12.10 (8.20, 17.20) 11.70 (8.00, 16.40) 14.30 (9.60, 20.60) <0.001

WBC_mean, 109/L 10.42 (7.15, 14.60) 10.00 (7.00, 13.90) 12.20 (8.09, 17.61) <0.001

RBC_min, 1012/L 2.75 (2.36, 3.27) 2.76 (2.38, 3.27) 2.71 (2.29, 3.24) 0.058

RBC_max, 1012/L 3.29 (2.90, 3.81) 3.31 (2.92, 3.81) 3.22 (2.85, 3.80) 0.030

RBC_mean, 1012/L 3.00 (2.67, 3.50) 3.03 (2.69, 3.51) 2.92 (2.59, 3.48) 0.023

Hemoglobin_min, mg/dL 8.20 (7.00, 9.70) 8.20 (7.00, 9.70) 8.20 (7.07, 9.80) 0.662

Hemoglobin_max, mg/dL 9.90 (8.60, 11.30) 9.90 (8.60, 11.30) 10.00 (8.60, 11.40) 0.591

Hemoglobin_mean, mg/dL 9.00 (7.96, 10.37) 9.01 (7.96, 10.35) 8.98 (7.96, 10.46) 0.634

Platelets_min, 109/L 153.00 (96.00, 226.00) 158.00 (103.00, 230.00) 125.00 (61.00, 201.25) <0.001

Platelets_max, 109/L 199.00 (129.00, 286.00) 206.00 (138.00, 292.00) 167.50 (97.75, 258.25) <0.001

Platelets_mean, 109/L 176.00 (112.00, 250.00) 181.67 (119.50, 255.75) 145.67 (77.38, 223.12) <0.001

ALT_min, U/L 21.00 (13.00, 40.00) 20.00 (13.00, 37.00) 27.00 (16.00, 59.00) <0.001

ALT_max, U/L 23.00 (14.00, 45.00) 21.00 (13.00, 41.00) 31.00 (18.00, 72.00) <0.001

ALT_mean, U/L 22.00 (13.50, 43.00) 21.00 (13.00, 39.00) 29.17 (17.00, 66.75) <0.001

AST_min, U/L 30.00 (19.00, 65.00) 28.00 (19.00, 57.00) 49.00 (24.00, 104.50) <0.001

AST_max, U/L 33.00 (20.00, 80.00) 31.00 (20.00, 66.00) 54.00 (26.00, 150.00) <0.001

AST_mean, U/L 32.00 (20.00, 74.00) 30.00 (19.00, 62.00) 52.50 (25.19, 134.50) <0.001

ALB_min, mg/dL 3.01 (2.60, 3.46) 3.09 (2.69, 3.50) 2.80 (2.30, 3.26) <0.001

ALB_max, mg/dL 3.10 (2.66, 3.50) 3.10 (2.70, 3.59) 2.90 (2.40, 3.30) <0.001

ALB_mean, mg/dL 3.05 (2.60, 3.50) 3.10 (2.70, 3.51) 2.85 (2.35, 3.30) <0.001

TBIL_min, mg/dL 0.80 (0.40, 1.70) 0.70 (0.40, 1.47) 1.30 (0.50, 4.33) <0.001

TBIL_max, mg/dL 0.90 (0.50, 2.20) 0.80 (0.50, 1.70) 1.60 (0.60, 5.93) <0.001

TBIL_mean, mg/dL 0.80 (0.45, 1.95) 0.80 (0.45, 1.60) 1.48 (0.57, 5.26) <0.001

BUN_min, mg/dL 25.00 (15.00, 43.00) 24.00 (15.00, 40.00) 32.00 (19.00, 56.00) <0.001

BUN_max, mg/dL 31.00 (18.00, 52.00) 29.00 (18.00, 49.00) 39.00 (24.00, 65.00) <0.001

BUN_mean, mg/dL 27.67 (17.00, 47.60) 26.33 (16.33, 45.00) 35.67 (21.50, 61.67) <0.001

Creatinine_min, mg/dL 1.10 (0.70, 1.80) 1.00 (0.70, 1.70) 1.40 (0.80, 2.30) <0.001

Creatinine_max, mg/dL 1.30 (0.90, 2.20) 1.20 (0.80, 2.00) 1.80 (1.10, 2.90) <0.001

Creatinine_mean, mg/dL 1.19 (0.80, 2.00) 1.10 (0.77, 1.84) 1.60 (1.00, 2.55) <0.001

Lactate_min, mmol/L 1.60 (1.10, 2.30) 1.60 (1.00, 2.10) 1.90 (1.40, 3.02) <0.001

Lactate_mean, mmol/L 1.60 (1.10, 2.40) 1.60 (1.10, 2.20) 2.08 (1.44, 3.30) <0.001

Lactate_max, mmol/L 1.60 (1.10, 2.40) 1.60 (1.00, 2.30) 1.83 (1.30, 3.30) <0.001

Potassium_min, mmol/L 3.80 (3.50, 4.30) 3.80 (3.50, 4.20) 3.90 (3.40, 4.40) 0.089

Potassium_max, mmol/L 4.40 (4.00, 5.00) 4.40 (4.00, 4.90) 4.60 (4.10, 5.20) <0.001

Potassium_mean, mmol/L 4.14 (3.80, 4.59) 4.12 (3.80, 4.53) 4.25 (3.80, 4.70) 0.005
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TABLE 6 5-fold cross-validation of ML models prediction performance for ANGIB patients.

Models Mean AUC Mean accuracy Mean precision Mean recall Mean F1 score

ADASYN

Logistic regression 0.847 ± 0.016 0.782 ± 0.011 0.451 ± 0.018 0.734 ± 0.042 0.558 ± 0.025

Decision tree 0.722 ± 0.020 0.745 ± 0.009 0.396 ± 0.015 0.683 ± 0.073 0.500 ± 0.030

Random forest 0.842 ± 0.012 0.831 ± 0.009 0.616 ± 0.067 0.285 ± 0.019 0.388 ± 0.014

Gradient boosting 0.835 ± 0.014 0.847 ± 0.007 0.644 ± 0.032 0.423 ± 0.030 0.510 ± 0.025

AdaBoost 0.821 ± 0.016 0.837 ± 0.010 0.591 ± 0.034 0.426 ± 0.050 0.494 ± 0.041

XGBoost 0.826 ± 0.018 0.835 ± 0.017 0.587 ± 0.056 0.414 ± 0.063 0.484 ± 0.058

Naive Bayes 0.809 ± 0.018 0.792 ± 0.014 0.458 ± 0.028 0.558 ± 0.027 0.502 ± 0.020

SVM (RBF Kernel) 0.836 ± 0.017 0.799 ± 0.011 0.475 ± 0.023 0.649 ± 0.050 0.548 ± 0.028

LightGBM 0.831 ± 0.008 0.831 ± 0.007 0.551 ± 0.015 0.555 ± 0.053 0.552 ± 0.031

KNN 0.756 ± 0.015 0.830 ± 0.009 0.619 ± 0.063 0.241 ± 0.054 0.345 ± 0.062

Extra trees 0.848 ± 0.009 0.834 ± 0.009 0.566 ± 0.030 0.520 ± 0.030 0.541 ± 0.023

Voting classifier 0.853 ± 0.011 0.838 ± 0.012 0.580 ± 0.039 0.498 ± 0.050 0.535 ± 0.041

SMOTE-ENN

Logistic regression 0.944 ± 0.018 0.870 ± 0.015 0.922 ± 0.022 0.865 ± 0.010 0.893 ± 0.012

Decision tree 0.906 ± 0.014 0.876 ± 0.004 0.919 ± 0.012 0.880 ± 0.008 0.899 ± 0.003

Random forest 0.985 ± 0.004 0.940 ± 0.012 0.934 ± 0.017 0.974 ± 0.007 0.953 ± 0.009

Gradient boosting 0.985 ± 0.002 0.948 ± 0.009 0.949 ± 0.009 0.968 ± 0.009 0.959 ± 0.007

AdaBoost 0.966 ± 0.006 0.911 ± 0.011 0.926 ± 0.017 0.932 ± 0.005 0.929 ± 0.008

XGBoost 0.983 ± 0.005 0.941 ± 0.014 0.945 ± 0.015 0.961 ± 0.009 0.953 ± 0.011

Naive Bayes 0.893 ± 0.025 0.808 ± 0.014 0.910 ± 0.023 0.770 ± 0.007 0.834 ± 0.010

SVM (RBF Kernel) 0.976 ± 0.008 0.924 ± 0.017 0.941 ± 0.017 0.938 ± 0.012 0.939 ± 0.013

LightGBM 0.986 ± 0.002 0.949 ± 0.007 0.958 ± 0.013 0.961 ± 0.008 0.959 ± 0.005

KNN 0.984 ± 0.006 0.938 ± 0.015 0.915 ± 0.018 0.995 ± 0.005 0.953 ± 0.011

Extra trees 0.978 ± 0.006 0.927 ± 0.014 0.948 ± 0.019 0.935 ± 0.006 0.941 ± 0.011

Voting classifier 0.984 ± 0.005 0.941 ± 0.015 0.946 ± 0.021 0.961 ± 0.007 0.953 ± 0.011

(1) Vasoactive agents: If patients present with persistent bleeding or 
hemodynamic instability or with comorbidities such as cirrhosis, renal 
insufficiency, or heart failure, vasoactive drugs should be considered to 

maintain blood pressure and improve tissue perfusion. AGA Clinical 
Practice in 2024 suggested that vasoactive drugs should be initiated as 
soon as the diagnosis of variceal hemorrhage should be continued for 2 

TABLE 5 (Continued)

Variables Total (n = 2,425) Survival (n = 1969) Non-survival (n = 456) p-value

Sodium_min, mmol/L 137.00 (134.00, 140.00) 137.00 (134.00, 140.00) 137.00 (133.00, 140.00) 0.021

Sodium_max, mmol/L 140.00 (137.00, 143.00) 140.00 (137.00, 143.00) 140.00 (136.00, 144.00) 0.714

Sodium_mean, mmol/L 139.00 (135.50, 141.50) 139.00 (135.83, 141.50) 138.45 (134.50, 142.00) 0.137

PT_min, sec 14.20 (12.50, 17.30) 13.90 (12.40, 16.40) 16.30 (13.40, 21.42) <0.001

PT_max, sec 15.20 (13.10, 20.30) 14.80 (12.90, 19.00) 18.55 (14.50, 27.47) <0.001

PT_mean, sec 14.75 (12.85, 18.90) 14.40 (12.70, 18.00) 17.58 (14.16, 24.51) <0.001

APTT_min, sec 29.50 (26.10, 35.00) 28.80 (25.80, 33.50) 34.90 (29.10, 47.40) <0.001

APTT_max, sec 33.30 (28.20, 46.30) 31.90 (27.70, 40.20) 46.20 (32.75, 68.30) <0.001

APTT_mean, sec 31.80 (27.40, 40.60) 30.70 (26.95, 37.32) 40.95 (31.59, 57.27) <0.001

INR_min 1.30 (1.10, 1.60) 1.20 (1.10, 1.50) 1.50 (1.20, 2.00) <0.001

INR_max 1.40 (1.20, 1.90) 1.30 (1.20, 1.70) 1.70 (1.30, 2.60) <0.001

INR_mean 1.33 (1.15, 1.73) 1.30 (1.15, 1.65) 1.60 (1.27, 2.28) <0.001
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to 5 days to prevent early rebleeding (44). As described in previous 
research, vasoactive agents might be closely related to mortality (45). The 
use of vasoactive agents indicates hypotension, shock, or circulatory 
failure, all of which are associated with poor outcomes in AUGIB patients. 
(2) GCS score: The GCS (Glasgow Coma Scale) score consists of three 
components: verbal response, eye-opening response, and motor response, 
which collectively reflect the level of consciousness. Patients with 
hemodynamic instability, advanced cirrhosis with hepatic encephalopathy 
(HE), or severe cardiac or renal dysfunction may present with varying 
degrees of consciousness, leading to diverse GCS scores. Qiu W’s research 
indicated that a higher GCS score was associated with an increased risk 
of GIB patients (45). AUGIB patients in ICU have a higher proportion of 
advanced cirrhosis, chronic renal insufficiency, or congestive heart failure; 
the lower GCS scores were independent predictive factors of mortality 
(46). (3) AIMS 65 score: The AIMS65 developed in 2011 by Saltzman JR 
was simple and easy to implement without endoscopy result (47). It 
focused on the evaluation of in-hospital mortality with high accuracy (6). 
The AIMS65 scale also had good predictability and was suitable for rapid 
preliminary evaluation at the outset (48). The prediction value of AIMS65 
was also confirmed by the ML model, as expected. (4) Anticoagulants: 
The AGC 2020 guideline stresses the association between anticoagulants 
and antiplatelets in acute GIB patients, and the administration of fresh 

frozen plasma (FFP) can significantly impact prognosis (49). 
Gastrointestinal bleeding patients who have coagulopathies or are on oral 
anticoagulants or antiplatelet agents often face a high risk of massive 
bleeding or rebleeding due to deficiencies in coagulation factors and 
prolonged hemostasis. (5) SpO2: SpO2 is a standard indicator for 
evaluating oxygenation and is characteristic of non-invasive and 
continuous measures. The minimum SpO2 value indicates the onset of 
hypoxemia, which reflects inadequate tissue and organ perfusion levels 
and a decline in cardiorespiratory function (10). In addition, reduced 
SpO2 is a risk prognostic factor for disease progression (50). The 
minimum of SpO2 was an independent risk factor in our study, consistent 
with other researchers (10, 51).

While our ML model demonstrated excellent prediction 
performance with large-scale data, several limitations should 
be acknowledged. First, as a retrospective study, it was inherently 
subject to selection biases or system biases, which may have led to the 
omission of specific crucial parameters. Second, the MIMIC-IV 
database is regarded as a signal center medical unit; external validation 
is required further to confirm the prediction value of the optimal ML 
models. Third, the etiology of GIB patients is diverse. In this study, no 
diagnosis-related subgroup analysis was conducted, which may have 
affected the accuracy to some extent.

TABLE 7 Independent validation of ML models prediction performance for ANGIB Patients.

Models Mean AUC Mean accuracy Mean precision Mean recall Mean F1 score

ADASYN

Logistic regression 0.864 ± 0.012 0.781 ± 0.018 0.454 ± 0.025 0.787 ± 0.028 0.575 ± 0.024

Decision tree 0.732 ± 0.017 0.726 ± 0.024 0.376 ± 0.023 0.684 ± 0.049 0.484 ± 0.021

Random forest 0.861 ± 0.010 0.842 ± 0.007 0.635 ± 0.044 0.374 ± 0.046 0.468 ± 0.036

Gradient boosting 0.862 ± 0.014 0.847 ± 0.018 0.637 ± 0.084 0.448 ± 0.028 0.524 ± 0.039

AdaBoost 0.858 ± 0.017 0.841 ± 0.012 0.607 ± 0.062 0.464 ± 0.044 0.523 ± 0.028

XGBoost 0.859 ± 0.016 0.846 ± 0.011 0.641 ± 0.059 0.422 ± 0.053 0.506 ± 0.041

Naive Bayes 0.818 ± 0.019 0.790 ± 0.013 0.457 ± 0.023 0.631 ± 0.038 0.529 ± 0.025

SVM (RBF Kernel) 0.863 ± 0.011 0.817 ± 0.017 0.511 ± 0.033 0.727 ± 0.025 0.600 ± 0.029

LightGBM 0.869 ± 0.018 0.843 ± 0.017 0.577 ± 0.047 0.646 ± 0.031 0.608 ± 0.030

KNN 0.770 ± 0.021 0.838 ± 0.010 0.710 ± 0.092 0.237 ± 0.024 0.355 ± 0.033

Extra trees 0.871 ± 0.013 0.835 ± 0.012 0.559 ± 0.037 0.602 ± 0.036 0.578 ± 0.021

Voting classifier 0.877 ± 0.014 0.849 ± 0.014 0.608 ± 0.049 0.569 ± 0.040 0.586 ± 0.027

SMOTE-ENN

Logistic regression 0.948 ± 0.007 0.872 ± 0.008 0.933 ± 0.009 0.856 ± 0.019 0.893 ± 0.008

Decision tree 0.936 ± 0.006 0.888 ± 0.004 0.940 ± 0.011 0.876 ± 0.015 0.907 ± 0.004

Random forest 0.988 ± 0.005 0.954 ± 0.007 0.950 ± 0.010 0.978 ± 0.014 0.964 ± 0.006

Gradient boosting 0.990 ± 0.003 0.958 ± 0.005 0.956 ± 0.006 0.978 ± 0.011 0.967 ± 0.004

AdaBoost 0.972 ± 0.007 0.925 ± 0.007 0.940 ± 0.010 0.941 ± 0.013 0.940 ± 0.006

XGBoost 0.988 ± 0.004 0.955 ± 0.009 0.955 ± 0.008 0.974 ± 0.013 0.964 ± 0.008

Naive Bayes 0.902 ± 0.013 0.811 ± 0.009 0.919 ± 0.011 0.765 ± 0.012 0.835 ± 0.008

SVM (RBF Kernel) 0.984 ± 0.006 0.945 ± 0.007 0.959 ± 0.012 0.954 ± 0.006 0.956 ± 0.005

LightGBM 0.991 ± 0.004 0.963 ± 0.006 0.965 ± 0.008 0.976 ± 0.012 0.970 ± 0.005

KNN 0.993 ± 0.004 0.962 ± 0.006 0.946 ± 0.007 0.997 ± 0.003 0.971 ± 0.004

Extra trees 0.983 ± 0.004 0.940 ± 0.006 0.958 ± 0.006 0.946 ± 0.007 0.952 ± 0.005

Voting classifier 0.987 ± 0.005 0.958 ± 0.005 0.958 ± 0.009 0.975 ± 0.009 0.966 ± 0.004
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FIGURE 4

AUC of different machine learning models for ANGIB patients in 5 CV and IV. (A) The ROC of models by ADASYN technique in 5 CV; (B) the ROC of 
models by ADASYN technique in IV; (C) the ROC of models by SMOTE-ENN technique in 5 CV; (D) the ROC of models by SMOTE-ENN technique in IV. 
SMOTE-ENN: Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors; ADASYN: Adaptive Synthetic Sampling.

FIGURE 5

SHAP explainable of the gradient boosting prediction model. (A) The SHAP feature importance plot; (B) the SHAP summary plot; (C) the ML 
explainability of positive patient; (D) the ML explainability of negative patient.

https://doi.org/10.3389/fmed.2025.1580094
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2025.1580094

Frontiers in Medicine 18 frontiersin.org

5 Conclusion

In this study, we  developed prediction models especially for 
AVGIB and ANGIB hospital ICU patients based on as many as 12 
standard algorithms. Considering the imbalanced dataset of real-
world patients, the SMOTE-ENN technique was performed to 
improve model performance and optimize evaluation metrics. When 
compared with key parameters, gradient boosting and extremely 
randomized tree both ranked first with excellent performance by 
integrating feature variables. The SHAP plot visualization displays 
feature variables by weight: vasoactive drugs, GCS score, AIMS65 
score, anticoagulants, and SpO2. Most importantly, two website 
prognostic prediction platforms were developed to enhance clinical 
accessibility: the ET model for AVGIB patients available at 
https://10zr656do5281.vicp.fun while the GB model for ANGIB 
patients accessible at http://10zr656do5281.vicp.fun.

The models provide valuable decision support for clinicians, 
enabling the early identification of at-risk patients, timely initiation of 
endoscopy, correction of coagulation dysfunction, fluid resuscitation, 
and combined with interventional or even surgery to reduce mortality 
and improve outcomes.
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